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1 Introduction

Sensing is a significant contributor to the current mobile

computing revolution. Today’s typical smartphone has

more than eight sensors, including multiple mics, cam-

eras, accelerometers, gyroscopes, a GPS, a digital com-

pass, and proximity sensors. These sensors not only pro-

vide natural user interaction with the device, but also of-

fer tantalizing opportunities for context-aware comput-

ing.

A rich history of work has investigated algorithms for

converting raw sensor data into context, and their specific

usages [3]. To cite just two examples: A restaurant finder

app may adjust its search radius depending on whether a

user is on foot, cycling, or driving, which can be inferred

from GPS and IMU1 readings [11]. A Twitter app might

choose to alert the user of her latest updates at an in-

terruptible moment such as when she is not engaged in

conversation, which can be inferred from the mic’s au-

dio [5].

The ingredients for context appear ready: the sens-

ing hardware, the data processing algorithms and the

application scenarios are all primed. The question that

emerges is: who is responsible for context generation?

One option is for apps to manage their own context

generation. This approach appears appealing because

apps are most familiar with their own context needs.

However, many mobile OSs such as iPhone’s iOS and

Windows Phone’s WP7 harbor legitimate energy con-

cerns and severely restrict non-foreground processing.

As a result, an app may generate context from imme-

diately available sensor data, but is unable to maintain

context while outside the scope of its execution. This

can be as simple as missing the accelerometer’s transi-

tion from sitting to standing, since sensing either state

outside the transition period does not yield distinguish-

ing information. Alternatively, Android apps may run in

the background, but then the user is at the mercy of the

flawless app developer to use resources intelligently. An-

other option is to simply ship all sensor data to the cloud

1Inertial Measurement Unit, responsible for acceleration and orien-

tation measurements
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Figure 1: OS services and apps ought to benefit from

context generated by the OS.

for processing. However, the high power cost of radio

communication and the latency requirements of certain

apps like games quickly curtails this option.

We take the unorthodox view that the operating system

ought to shoulder responsibility for converting raw sen-

sor data to Contextual Data Units (CDUs). The CDU is

simply an abstract data type that embodies a unit of con-

text meaningful to applications. A concrete CDU such

as user motion state might take values such as sitting,

standing, walking, and driving. In contrast, traditional

OSs offer apps opaque bytes, a very low level and unas-

suming interface to data. We suggest that the right ap-

proach for mobile systems is a much higher level of data

abstraction: the CDU.

Though there will be challenges to incorporating con-

text generation in the OS, it may lead to two main ben-

efits. First, not only apps, but also core OS services can

subscribe and respond to context changes (Figure 1). Our

initial investigation suggests that memory management,

scheduling, I/O and security may all benefit. Second,

OS-managed CDUs offer tighter quality control of user

experience, resulting in lower app battery impact and pri-

vacy exposure of raw sensor data. In turn, this can lead

to interesting user-to-user context sharing opportunities.

§2 discusses these two points in detail.

We propose the design of a new mobile phone operat-

ing system Context Dataflow Operating System – or sim-

ply CondOS – that embraces context generation. Con-

dOS provides both applications and internal OS services

the ability to query or subscribe to CDUs while protect-



ing raw sensor data privacy. A concrete set of CDUs will

form an initial context vocabulary. Though we are not yet

prepared to finely delineate a base vocabulary, we hope

our examples throughout this paper can facilitate the dia-

log. In complement, CondOS provides a way for apps to

extend the CDU vocabulary by defining their own CDUs

for inclusion in the kernel. CDUs are defined by their

CDU Generators, which are graphs of processing com-

ponents. CondOS incorporates CDU Generators into its

composite context dataflow, akin to the Click Modular

Router’s packet dataflow [7]. CondOS’s centralization

of context generation and dataflow design permits sev-

eral opportunities for energy reduction, such as shared

dataflow processing, dataflow-to-hardware mapping, and

principled flow degradation. §3 outlines the CondOS de-

sign.

2 Advantages of OS-managed Context

2.1 Context-Aware OS Services

CDUs can inform the OS as well as applications. This

section looks at scenarios in which context may benefit

traditional OS services on the phone.

Memory Management: Memory is scarce on mobile

devices, yet users are demanding multi-tasking and faster

app startup times. Like traditional OSs, mobile OSs only

load applications into memory upon user request, which

leads to slow load times, especially for data intensive

apps like games.

Context can provide good hints when deciding

which applications to preload. As an example, con-

sider accelerometer-based activity detection [11]. Idle

standing-around CDUs may suggest preloading a casual

game app. Running or walking may suggest loading a

music or workout app. Driving may suggest loading a

maps or restaurant finder app. As another example, con-

sider logical location CDUs such as home and office. It

may be more appropriate to preload Twitter, Facebook,

and gaming apps in the former, and calendar and produc-

tivity apps in the latter.

In a similar vein, context ought to aid memory evic-

tion decisions. Mobile OSs such as Android and iOS

do not use virtual memory but rather evict entire applica-

tions from memory when contention arises. CondOS can

improve upon LRU eviction by evicting unlikely candi-

dates for future access. Elaborating upon the example

above, gaming while driving may be relatively rare, so

once driving activity is detected, the OS ought to evict

games from memory even if they were recently accessed.

Security: The OS can use contextual data hints to mix

tight security while retaining convenience. For exam-

ple, a sanctuary such as home could suggest relaxing the

home screen’s password lock, enabling Bluetooth device

discovery and liberalizing access control to photos and

music for sharing with other local devices.

Lending one’s phone to friends and family, even tem-

porarily, poses security risks due to the amount of per-

sonal information and apps on the phone. For exam-

ple, biometric context [1] might help to differentiate the

phone’s owner (who ought to have full access), from the

owner’s child (who is authorized to access only educa-

tional content), from the owner’s casual acquaintances

(who are authorized to access only the phone dialer).

Certainly a mobile OS with traditional access control

mechanisms can offer the requisite security; the role of

context is to make these mechanisms convenient and

light-weight, which is especially important for mobile.

Scheduling: The scheduler manages the processor to

ensure system responsiveness, fairness, throughput, and

other key performance metrics. Most practical operat-

ing systems employ priority based preemptive sched-

ulers where design parameters such as thread priority and

time quantum size directly influence performance met-

rics. Mobile device OSs, including iOS and WP7, assign

high priority to the user’s foreground process, and often

starve all other apps. This design helps improve device

battery life and responsiveness of the foreground appli-

cation but restricts application functionality and resultant

user experience.

Context information can help overcome this restrictive

design choice while limiting the impact on battery life

and responsiveness. We suggest that context can directly

influence process priorities and time quantum sizes. For

instance, the activity riding a bus may increase the prior-

ity of background tasks such as download of social net-

work updates and news – even in the presence of a fore-

ground app – because the use of those background tasks

is associated with this context. Location context, such as

the user’s presence at a weather-affected airport, may re-

duce the time quantum assigned to a foreground gaming

app to make time for a flight status update app that has

increased in priority at this location.

To enable context-aware scheduling, an application in

CondOS may specify a priority level for each context in

which it wishes to run. In lieu of distinguishing prior-

ity based on foreground or background status, the appli-

cation moves among multiple priority queues as context

changes. If time quanta get assigned to a priority queue

in a certain context, the applications in that queue will

receive background execution opportunities, improving

functionality and user experience. These applications re-

main starved in other contexts, thus limiting their battery

drain.
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Energy Management: Critical battery outages cause

headaches for mobile device users. Energy management

is a key function of the mobile OS and can be assisted by

context. Unfortunately, state of the art mobile OSs fail to

avert low battery situations because the OS is not capable

of foreseeing recharge opportunities.

Context can assist energy budgeting by predicting

time-to-recharge. For example, the logical location mall

or the activity riding a bus may hint that the next recharge

may be some time off, whereas the logical location home

may indicate liberal recharge opportunities. In response,

the OS can shed workload. Examples include throttling

tethering bandwidth and new email polling, and defer-

ring network activities that are delay tolerant, such as

uploading photos to social networking sites.

I/O: Phones are used in such a wide array of environ-

ments which makes it difficult to create a one-size-fits-all

I/O solution. For example, the phone’s basic alert mecha-

nism, ringing, can easily be too loud in a meeting, or too

soft at a party. Context can help by capturing and pro-

cessing audio from the mic to determine the appropriate

ring volume. Similarly, voice-based input may be most

appropriate while driving, but not useful in a noisy bar.

The displayed font size and touch screen keyboard could

also be enlarged or reduced based on whether the user is

sitting or walking. Network I/O responding to context is

also intriguing. As an example, previous work has shown

that optimal Wi-Fi and Bluetooth scanning periods and

protocol window sizes depend upon IMU sensors distill-

ing motion context such as sitting vs. walking [13].

2.2 Enhanced Sensor Privacy

Raw sensor data is powerful and can put users’ privacy

in jeopardy. Imagine a benign but buggy app that acci-

dentally leaks your geolocation (lat/long) coordinates to

the web, when it only intended to calculate whether you

were at home or at work. In general, state of the art mo-

bile OSs force the user to trust the app completely with

raw data, even though the intention may be that the app

only manipulates the sensor data to calculate and respond

to a very narrowly-defined piece of context.

CondOS is well positioned to advance privacy-

preserving sensor data processing. By delegating pro-

cessing to CondOS, apps no longer touch raw sensor

data. Nefarious and benign yet buggy apps can only re-

ceive CDUs at the kernel boundary.

Privacy authorization can also be of finer granularity

in CondOS. At installation time, each mobile app might

present a declaration of the context it desires, and the

user can authorize each CDU type explicitly. If an app

requests to install its own custom CDU Generator, then

CondOS should fall back to asking the user for raw sen-

sor data authorization on behalf of the app, since cus-

tom CDU Generators can disguise raw data through their

CDUs. Similarly, apps that must have raw data (such as

maps that use lat/long) can be serviced through custom

CDU Generators. These measures enable higher resolu-

tion privacy control than the all-or-nothing sharing avail-

able today.

Moreover, CondOS could display a CDU ticker, an

ambient display widget like a stock ticker that displays

the latest CDUs generated [6]. The user can then visu-

ally inspect in-flight CDUs. This technique works well

when the domain of the CDU is small (e.g. discrete text-

based labels) and the domain of the raw data is large

(e.g. continuous multi-dimensional signals), which is of-

ten the case. The CDU ticker is in the OS domain so the

app has no way to manipulate it directly.

With CondOS, users need only trust the CDU conver-

sion process, rather than the good intentions of a bug-free

app. Moreover, users retain the opportunity to inspect

the CDU ticker. As an alternative, taint tracking can also

prevent leakage of raw sensor data [4], but its overhead

is much more palpable, and its propagation of taints to

CDUs may report high false positives. Our overhead is

only that of regular kernel boundary protection.

The above mechanism can also be used to guard pri-

vacy when sharing sensor data among users. Imagine

applications which wish to achieve wide- or local-area

sensing goals. As an example, Alice may want to know

which of her friends is partaking in an interesting so-

cial event. Audio signals from their phones can indicate

which social event is the most lively. It is possible to ask

for each phone’s audio signal but this potentially intrudes

on her friends’ privacy. Instead, the CondOS approach

calls for Alice to send her friends the party on CDU Gen-

erator, which – provided they trust her intentions – they

can install and run locally on their phones. If party on is

already installed, then each friend only needs to decide

whether to share the CDU. Alice only gets to see the ex-

ported CDUs, and not the raw audio data. Furthermore, a

sharing friend can inspect the generated CDUs and apply

discretion before sharing.

Sharing CDUs and CDU processors rather than raw

sensor data may have other advantages besides privacy.

Since the domain of the former is far smaller than that

of the latter, big compression and communication sav-

ings might be achieved. At the same time, the operating

system can attest to the integrity of CDUs by extending

trusted sensor data techniques [12] to trusted CDUs.

3 Toward a CondOS Design

Two challenges motivate the CondOS design. One chal-

lenge is to support a diverse and extensible CDU vo-

cabulary while minimizing redundant CDU processing.
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Figure 2: Example context dataflow installed in CondOS

A running system might have many concrete CDUs de-

fined (possibly in proportion to the number of apps in-

stalled), yet CDU Generators will likely share much ba-

sic processing commonality. Prototypical cases of re-

dundancy arise from popular signal processing subproce-

dures (e.g. mel-frequency cepstrum coefficient computa-

tions are widely used in audio processing), and hierarchi-

cally organized CDUs (e.g. sound context’s music is re-

fined by music context’s genre). A second challenge is to

guarantee system performance even while running app-

defined CDU Generators. Predictability gives the OS a

much better chance of anticipating and possibly avoiding

low-energy or overload situations. Mobile OSs that fail

to do this run the risk of failing users at critical junctures.

3.1 Design Proposal

We outline a design for CondOS that addresses the above

challenges. Each CDU Generator consists of a directed

acyclic graph of components connected to each other by

producer-consumer interfaces. The head component(s)

consume(s) data from one or more sensors and the tail

component produces the CDU Generator’s CDUs. In-

termediate producer-consumer linkages define their own

intermediate data types.

CDU Generators are managed by the OS’s CDU Man-

ager. The CDU Manager aggregates all CDU Genera-

tors into a composite dataflow, which is inspired by the

Click Modular Router design [7]. Figure 2 illustrates an

example dataflow with three CDU Generators installed:

a Logical Location Generator that converts geolocation

signals into logical locations such as home and office; a

Motion State Generator that converts inertial movement

readings into sitting, walking, etc., and; an Interruptible

Generator that interprets audio and motion data to deter-

mine whether the user is interruptible.

Apps and OS services can make one time CDU re-

quests, or subscribe to CDUs by simply wiring to the ap-

propriate CDU Generator output. For example, a newer

version of an OS service, such as the memory manager,

may start to take advantage of the Interruptible Proces-

sor’s CDU by simply wiring to it.

CondOS imposes constraints on dataflow components

in order to maintain predictable CDU processing. Com-

ponents are non-recursive, and may only be wired in a

fixed number of producer/consumer relationships. Com-

ponents are also sandboxed (e.g. no network communi-

cation) except at their input and output interfaces. Prior

work [8] has shown that these constraints are sufficient

for statically determining a performance profile such as

memory, timing and energy usage at the time of CDU

Generator installation.

Dataflow processing is activated in response to three

types of events. First, an app or an OS service can ex-

plicitly ask for a CDU. Classic trade-offs between eager

and lazy evaluation can be considered. Second, contin-

uous CDUs require periodic maintenance. For example,

sitting and standing may be hard to differentiate without

periodic checks to identify standing up or sitting down

motions. Lastly, CDU Manager may opportunisticly pro-

cess a CDU if a subgraph of its CDU Generator graph

has been otherwise activated for processing. The precise

thresholds for piggyback processing may be set based on

the cost savings expected from the performance profile,

and the benefit expected from the CDU’s activation fre-

quency.

3.2 Energy Reduction Opportunities

Shared Dataflow Processing: Sharing both raw sensor

data and intermediate results is a natural consequence of

the dataflow architecture. Figure 2 shows an example

of sharing occurring for the Motion Features component,

which may be calculating an FFT on the raw accelerome-

ter signal for both CDU2 and CDU3. As new CDU Gen-

erators are installed, CDU Manager merges new graph

components into the existing dataflow accordingly. As

another example of sharing, a single app’s interest in log-

ical location may not warrant an expensive but accurate

GPS request, but multiple apps that can all share in the

benefits might. CondOS’s challenge is to manage syn-

chronization of these sharing opportunities.

Dataflow to Hardware Mapping: With the emergence

of coprocessors and GPGPUs, mobile processor hard-

ware is increasing in diversity. These platform varia-

tions cause headaches for app developers. CondOS’s

install-time static analysis provides an opportunity to
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map dataflow components to the user’s specific phone

hardware. For example, highly parallel audio and video

processing routines may suit multiple cores [2], while

highly geometric IMU calculations may be appropriate

for GPGPUs. In particular, mapping dataflow to avail-

able hardware may be especially important for CDUs

requiring continuous sensing. For example, although

accelerometers nominally consume sub-milliwatts in

power, reading data from them requires the main pro-

cessor, which uses hundreds of milliwatts. Recent work

has proposed using a dedicated low power sensing pro-

cessor to offload sensing [10]. The sensing processor can

accumulate data and apply simple filters. Only threshold

events will activate the main processor for further pro-

cessing. CondOS’s dataflow components could provide

a good level of granularity for such mapping to hardware.

Principled Flow Degradation: In CondOS, apps dele-

gate handling of energy concerns during context genera-

tion to the OS. CondOS might efficiently service low en-

ergy situations by paring back CDU generation in a prin-

cipled way that ultimately maintains the perception of

an uninterrupted CDU stream. Degradation strategies in-

clude using cached or extrapolated results, throttling sen-

sor sample-rates, and using variable fidelity CDU Gener-

ators that degrade context detection accuracy in return

for energy savings. An example of the latter is [9]. Con-

dOS’s advantage is that predicting the trade-off from

degradation of individual components may be feasible

with dataflow static analysis.

4 Discussion and Conclusion

CondOS may provide the mechanism for OS services to

subscribe to context, but it intentionally does not dictate

the policy decisions resulting from context changes. One

way to encode context-to-decision mappings is with a

rule-based system, like a firewall’s policy table. An ex-

ample rule might be: if the user is at home, the security

subsystem should disable the password lock. Another op-

tion is to use a small embedded machine learner to auto-

matically extract mappings. The embedded learner may

be more suitable for adapting to users’ preferences pro-

vided there is a clear feedback loop for observing pref-

erences. For example, in the context standing, the mem-

ory manager might learn over time to prefer preloading

games for some users, and ebook apps for others since

it is easy to identify what the user actually loads. Simi-

larly, it could also learn that some context is simply not

accurate enough to usefully predict a user’s behavior, and

adapt accordingly to safe defaults.

The context vocabulary will doubtless play an integral

role to the utility of CondOS. We suspect that, like net-

work protocols, a few CDUs will emerge as consensus

defaults for inclusion in all mobile OSs. Since we are

at the early stages of understanding what context will ul-

timately prove most useful, CondOS aims to make sup-

porting any app- or OS service-defined context type easy.

Context extracted from raw sensor data has significant,

unrealized potential to improve the entire mobile experi-

ence: from apps to the OS. The idea that the OS ought

to manage (even app-specific) context generation at first

appears counter-intuitive. Yet upon closer inspection we

found several advantages to this approach, namely: bet-

ter support for the OS itself to consume and benefit from

context, better sensor privacy, and better centralized en-

ergy reduction opportunities. The design of CondOS, a

context dataflow operating system, is a step toward real-

izing these benefits.
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