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Abstract
In this paper we introduce a runtime system to allow
unmodified multi-threaded applications to use multiple
machines. The system allows threads to migrate freely
between machines depending on the workload. Our pro-
totype, COMET (Code Offload by Migrating Execution
Transparently), is a realization of this design built on top
of the Dalvik Virtual Machine. COMET leverages the
underlying memory model of our runtime to implement
distributed shared memory (DSM) with as few interac-
tions between machines as possible. Making use of a
new VM-synchronization primitive, COMET imposes lit-
tle restriction on when migration can occur. Additionally,
enough information is maintained so one machine may
resume computation after a network failure.

We target our efforts towards augmenting smartphones
or tablets with machines available in the network. We
demonstrate the effectiveness of COMET on several real
applications available on Google Play. These applications
include image editors, turn-based games, a trip planner,
and math tools. Utilizing a server-class machine, COMET
can offer significant speed-ups on these real applications
when run on a modern smartphone. With WiFi and 3G
networks, we observe geometric mean speed-ups of 2.88X
and 1.27X relative to the Dalvik interpreter across the set
of applications with speed-ups as high as 15X on some
applications.

1 Introduction
Distributed Shared Memory (DSM) systems provide a
way for memory to be accessed and modified between
computing elements. It was an active area of research
in the late 1980s. Classically, DSM has been applied to
networks of workstations, special purpose message pass-
ing machines, custom hardware, and heterogeneous sys-
tems [18]. With the onset of relatively low performance
smartphones, a new use case for DSM has presented itself.

In our work, we apply DSM to offloading – the task of
augmenting low performance computing elements with
high performance elements.

Offloading is an idea that has been around as long
as there has been a disparity between the computational
powers of available computing elements. The idea has
grown in popularity with the concept of ubiquitous com-
puting where many low-powered, well-connected com-
puting elements would exist that could benefit from the
computation of nearby server-class machines. The pop-
ular approach to this problem is visible in specialized
systems like Google Translate and Apple iOS’s Siri. For
broad applicability, COMET and other recent work [9, 8]
have aimed to generalize this approach to enable offload-
ing in applications that contain no offloading logic. These
systems when compared to specialized offloading systems
can offer similar benefits that compilers offer over hand-
optimized code. They can save programmer effort and
in some cases outperform many specialized efforts. We
believe our work is unique as it is the first to apply DSM
to offloading. Using DSM instead of remote procedure
calls (RPC) offers many advantages including full multi-
threading support, migration of a thread at any point
during its execution, and in some cases, more efficient
data movement.

However, in applying DSM, we faced many challenges
unique to our use case. First, the latency and bandwidth
characteristics of a smartphone’s network connection to
an external server are much worse than those of a clus-
ter of workstations using a wired connection. Second,
the type of computation is significantly different: while
previous DSM systems focused on scientific computing,
we aim to augment real user-facing applications with
more stringent response requirements. Despite these chal-
lenges, we show in §5 that performance improvements can
be significant for a wide range of applications across both
WiFi and 3G networks.

Our design aims to serve these primary goals:

1



94 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

PhoneOS

Unmodified &
multi-threaded

Memory
states

Distributed memory
synchronization

Memory
states

Mobile
application

in-sync

Offloaded 
threads 

Executes concurrently
with non-offloaded threads

via 
network

Distributed memory
synchronization

RemoteOS

Figure 1: High-level view of COMET’s architecture

• Require only program binary (no manual effort)
• Execute multi-threaded programs correctly
• Improve speed of computation
• Resist network and server failures
• Generalize well with existing applications

Building upon previous work, our work offers sev-
eral new contributions. To the best of our knowledge,
we propose a new approach to lazy release consistency
DSM [20] that operates at the field level granularity to
allow for multiple writers of the same memory unit. This
allows us to minimize the number of times the client and
server need to communicate to points where communica-
tion must occur. Using DSM also allows us to be the first
offloading engine to fully support multi-threaded compu-
tation and allow for threads to move between endpoints
at any interpreted point in their execution rather than
offloading only entire methods. Despite these features,
COMET is designed to allow computation to resume on
the client if the server is lost at any point during the
system’s execution. Finally, we propose a very simple
scheduling algorithm that can give some loose guarantees
on worst case performance. Figure 1 gives an overview of
the design of the system.

We implemented COMET within the Dalvik Virtual
Machine of the Android Gingerbread operating system
and conducted tests using a Samsung Captivate phone and
an eight core server for offloading. Our tests were com-
prised of a suite of nine real-world applications available
on Google Play including trip planners, image editors,
games, and math/science tools. From our tests, we found
that COMET achieved a geometric mean speedup of 2.88X
and average energy savings of 1.51X when offloading
using a WiFi connection. 3G did not perform as well with
a geometric speedup of 1.27X and a modest increase in
energy usage. With lower latency and higher bandwidth,
we expect better offloading performance for 4G LTE net-
works compared to 3G.

The rest of the paper is organized as follows. In §2,
we summarize works in the field of DSM and offloading
and discuss how they relate to COMET. §3 presents the
overall system design of COMET. §4 describes how we
implemented COMET using Android’s Dalvik Virtual Ma-
chine. §5 presents how we evaluated COMET including
the overheads introduced by the offloading system, per-
formance and energy improvements for our benchmark
suite, and two case studies demonstrating some interesting
challenges and how COMET solves them. §6 covers some
limitations of our system, and §7 ends with final remarks.

2 Related Work
A significant amount of work has gone into designing
systems that combine the computation efforts of multiple
machines. The biggest category of such systems are
those that create new programming language constructs
to facilitate offloading. Agent Tcl [14] was one such a
system that allowed a programmer to easily let computa-
tion “jump” from one endpoint to another. Other systems
that fall into this broad category include Emerald [19],
Network Objects [5], Obliq [6], Rover [17], Cuckoo [21],
and MapReduce [11]. Other work instead focuses on spe-
cific kinds of computation like Odessa [26] which targets
perception applications, or SociableSense [27] designed
for harvesting social measurements. COMET takes an
alternative approach by building on top of an existing
runtime and requiring no binary modifications.

Other related offloading systems include OLIE [15],
which applied offloading to Java to overcome resource
constraints automatically. Messer et al. [23] proposed a
system to automatically partition application components
using MINCUT algorithms. Hera-JVM [22] used DSM
to manage memory consistency while doing RPC-style
offloading between cores on a Cell processor. Helios [25]
was an operating system built to utilize heterogeneous
programmable devices available on a device.

Closer to our use case, MAUI [9] enabled automated
offloading and demonstrated that offloading could be an
effective tool for performance and energy gains. In their
system, the developer was not required to write the logic
to ship computation to a remote server; instead he/she
would decide which functions could be offloaded and the
offloading engine would do the work of deciding what
should be offloaded and collecting all necessary state.
Requiring annotation of what could be offloaded limited
the reach of the system leaving room for CloneCloud [8]
to extend this design, filling this usability gap by using
static analysis to automatically decide what could be of-
floaded. Other works, like ECOS [13], attempt to address
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the problem of ensuring data privacy to make offloading
applicable for enterprises.

JESSICA2 implemented DSM in Java for clusters of
workstations. JESSICA2 implemented DSM at the object
level using an object homing technique. This approach is
not suitable for our use case because each synchronization
operation triggers a network operation. Moreover it is not
robust to network failures.

Munin [7] was one of a couple early DSM prototypes
built during the 90s that targeted scientific computation
on workstations. Shasta [29] aimed to broaden the ap-
plicability of software DSM by making a system that
worked with existing applications. These were followed
up by systems like cJVM [4] and JESSICA2 [30] which
brought together DSM and Java. However these systems
are constructed for low latency networks where the cost
communication is relatively low encouraging designs with
more communication events and less data transfer. Ad-
ditionally, as is the case with cJVM and JESSICA2, the
DSM design is not conducive to failure recovery.

Our work can be seen as a combination of the efforts
of these DSM systems with the offloading frameworks
of Maui and CloneCloud. Unlike much of the work on
offloading discussed above, we focus not on what to of-
fload but more on the problem of how to offload. COMET
makes use of a new approach to DSM to minimize the
number of communication events necessary while still
supporting multi-threaded applications. We attempt to
demonstrate COMET’s applicability by evaluating on sev-
eral existing applications on Google Play.

3 Design
This section contains the overall design of COMET to
meet the five goals listed in §1. Although some specific
references to Java are made, the design of COMET aims to
be general enough to be applied to other managed runtime
environments (such as Microsoft’s Common Language
Runtime). Working with a virtualized runtime gives the
additional benefit of allowing the use of heterogeneous
hardware.

To facilitate offloading we use DSM techniques to keep
the heap, stacks, and locking states consistent across
endpoints. These techniques together form the basis of
our distributed virtual machine, allowing the migration
of any number of threads while being consistent with
the Java Memory Model. Our DSM strategy can be
considered both lazy and eager – lazy in the classic sense
that our protocol acts on an acquire, and eager in the
sense that we eagerly transmit all dirtied data when we do
act. This strategy is useful for reducing the frequency of
required communication between endpoints, necessary to

deal with high latency between endpoints that often exists
in wireless networks.

While it appears our design could be extended to more
than two endpoints, we discuss how operations work
specifically for the two endpoint case that our prototype
supports. Our intended endpoints are one client (a phone)
and one server (a high-performance machine). However,
the design rarely needs to identify which endpoint is
which and our work could be used in principle to combine
two similarly powered devices.

3.1 Security
Under our design a malicious server can take arbitrary
action on behalf of the client process being offloaded.
Additionally we have no mechanism to ensure the accu-
racy of the computed data nor the privacy of the inputs
provided. Therefore it seems necessary that the offload
server be trusted by the client.

However there is no need for the server to trust the
client. In this initial design the server only grants access of
its computation resources to the client and it has no private
data to compromise or dependency on the accuracy of
computation.

3.2 Overview of the Java Memory Model
The Java Memory Model plays an important role in our
design dictating what data must be observed by a thread.
In the JMM, memory reads and writes are partially or-
dered by a transitive “happens-before” relationship. A
read must observe a write if the write “happens-before”
the read. The Java specification also supports threads and
locks which directly tie into the JMM.

Within a single thread, all memory operations are to-
tally ordered by which happened first during execution.
Across threads, release consistency is used; when thread
A acquires a lock previously held by thread B, a “happens-
before” relationship is established between all operations
in thread B up to the point the lock was released and for all
future memory operations of thread A, meaning whatever
writes thread B made before releasing the lock should be
visible to thread A. Other miscellaneous operations like
volatile memory accesses or starting a thread, can also
create “happens-before” relationships between accesses
in different threads.

Still there remain cases where there may be several
writes that a read could observe. These situations are
called data races and usually indicate a buggy program.
This situation, however, is occasionally intentional. For
example, let W be the set of writes that “happen-before“
the read. Then the VM may let the read observe any
maximal element of W or any write not ordered with
respect to the read.
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An existing method to follow the JMM while offloading
is to offload one thread at a time and block all other local
execution before the offloaded thread returns [9]. This
prevents multiple threads from making progress simul-
taneously, reducing the benefit of offloading. This also
eliminates the possibility of offloading computation (e.g.,
a function) that calls synchronization primitives unless
it can be checked automatically that the code will not
deadlock.

A slight modification is to let local threads continue
executing, until they access shared state across threads [8].
This again limits the usefulness of offloading and, for
example, prevents offloading a thread that may grab a lock
later on. Additionally, this kind of scheme can introduce
deadlocks into the program’s execution if the offloaded
thread tries to wait for data from another thread. COMET
overcomes these limitations by relying on DSM and VM-
synchronization techniques to keep the distributed virtual
machine in a consistent state without limiting what can
execute at any time.

3.3 Field-based DSM
Our key contribution over past DSM systems is the use
of field level granularity to manage memory consistency.
By doing things at this granularity, we can avoid tracking
anything more than a single bit indicating the dirtiness
of each field. Our DSM mechanism allows for multiple
readers and writers to simultaneously access the same
field without communication.

This is possible with DSM for Java, but not for other
less-managed runtimes, because reads and writes can only
happen at non-overlapping memory locations of known
widths. In particular, this means we can always merge
changes between two endpoints, even if they have both
dirtied a field, by just selecting one of the writes to
“happen-before” the other as described in §3.2. If instead
we worked at a coarser granularity, it would be unclear
how to merge two dirty memory regions. Even a copy of
the original memory region does not allow us to merge
writes without a view into the alignment of fields in
memory. This is particularly important in Java where
values must not appear “out of thin air.”

3.4 VM-Synchronization
At the heart of our design is the directed VM-
synchronization primitive between two endpoints; the
pusher and the puller. In full, the primitive synchronizes
the states of the virtual heap, stacks, bytecode sources,
class initialization states, and synthetic classes.

Synchronizing the virtual heap is accomplished by
tracking dirty fields of objects discussed in §3.3. During
a VM-synchronization, the pusher sends over all of the

qux() {
    y=1;
    z=1;
    ....
}

Endpoint 1
bar()

x=1

Endpoint 2
baz() qux()

y=1
z=1

z=2
x=2

migrate bar()
update[
  heap[x=1],
  stack[bar(), baz()]
] bar()

lock(mutex)

update[
  heap[y=1, z=1],
  stack[bar(), qux()]
]
owner(mutex)=ep1

migrate bar()
update[
  heap[z=2],
  stack[bar(), qux()]
]baz() {

    x=1;
    ...
    synchronize(mutex) {
        ...
    }
    ...
    x=2;
}

bar() {
    ...    
    z = 2
    ...
}

Figure 2: At the beginning, baz() and bar() are running in
separate threads on ep1, while qux() is running as a different
thread on ep2. ep2 holds the ownership of mutex at the
beginning, but no thread lock on it.

dirty fields it has in the shared heap. The puller then
reads in the changes and overwrites the fields sent by the
pusher. Both endpoints mark the fields involved as clean.

Stack synchronization then is done by sending over
the stacks of any shared threads that are running locally.
This includes each method called, the program counter
into each method, and any method level registers. This
encodes enough information about the thread’s execu-
tion state that the puller could resume execution. This
makes the act of migrating a thread trivial after a VM-
synchronization.

An example of the primitive’s operation is shown in
Figure 2. In the example, ep1 pushes one VM-update
(indicated by “update[...]” in the diagram) to ep2, and two
VM updates go from ep2 to ep1. The pusher operates by
assembling a heap update from all changes to the heap
since the last heap update and an update to each locally
running stack. The puller then receives the update and
merges the changes into its heap and updates the stacks
of each received thread. Note that the pusher’s heap and
thread stacks do not change as a result of this process.
For example in the third VM-synchronization shown in
Figure 2, only the modification to z needs to be sent
because x and y have not changed since the previous
update from ep2 to ep1.
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This primitive is our mechanism for establishing a
“happens-before” relationship that spans operations on
different endpoints. This includes each of the situations
mentioned in §3.2. Any operations that need to establish a
“happens-before” relationship, such as migrating a thread
or acquiring a lock when it was last held elsewhere, will
use this operation.

3.5 Locks
From §3.2 we found that a “happens-before” relationship
needs to be established whenever a lock is acquired that
was last held on another thread. To solve this problem
we assign an owner to each lock, indicating the endpoint
that last held the lock. In Java, any object can be used
as a lock. Thus, each object is annotated with a lock-
ownership flag. When attempting to lock an object that
an endpoint does not own, the requesting thread can
simply be migrated or the endpoint can make a request for
ownership of the lock. Which choice should be followed
is dictated by the scheduler discussed in §3.7.

In the latter case, the other endpoint will usually re-
spond with a VM-update and a flag indicating ownership
has been transferred. Figure 2 demonstrates this behavior
when baz(), running on ep1, attempts to lock on the object
mutex that is originally owned by ep2. This causes a VM-
update to be sent to ep1 as well as ownership of the mutex
object.

Java also supports a form of condition variables that
allow wait and signaling of objects. This comes almost
for free because waiting on an object implies you hold a
lock on the object. When you wait, the lock is released
and execution is suspended until the object is signaled to
continue. Then the lock is re-acquired, which will cause
the appropriate synchronization, if required. COMET only
needs to, in some situations, send a signal to wake up
a waiting remote endpoint. Some additional tracking
of how many threads are waiting on a given condition
variable is maintained to serve this purpose.

Volatiles are handled in a similar fashion to locks.
Only one endpoint can be allowed to perform memory
operations on a volatile field at a time. This is stronger
synchronization than what is required, but it suffices for
our design. Fortunately volatile operations are fairly rare,
especially in situations when offloading is desirable.

3.6 Native Functions
In §3.4 and §3.5, we have described the key parts of
our offloading system. Still, we have to decide what
computation to offload. The obvious question is why
not offload everything? This works fine until a native
function is encountered. These are functions usually
implemented in C with bindings to be accessed from Java.

COMET cannot, in general, offload these functions. These
functions are usually implemented in native code for one
of the following three reasons: (1) reliance on phone
resources (file system, display), (2) performance, and (3)
reliance on readily-available C libraries.

Each of these cases provides its own challenges if you
wish to allow both endpoints to run the corresponding
function. It is very common for these functions to rely
on hidden native state, frequently making this a more
difficult task than it might first appear. So, in general,
we assume that native methods cannot be offloaded unless
we manually mark them otherwise. As applications rarely
include their own native libraries [12], we can do this
once as a manual effort for the standard Android libraries.
Indeed, we have manually evaluated around 200 native
functions as being suitable to run on any endpoint.

Additionally, to support failure recovery we need to be
even more careful about what native methods are allowed
to run on the server. Methods that modify the Java heap
or call back into Java code can be dangerous because if
a VM-synchronization happens while the native method
is executing the client has no way to reconstruct the
state hidden on the native stack of the partially executed
native method. Some native methods warrant a special
exemption (e.g. Java’s reflection library) . For other non-
blocking native methods, we may simply force a pending
VM-synchronization to wait for the method to exit before
continuing.

3.7 τ -Scheduling
The last component of the system is the scheduler. Anal-
ogous to schedulers used by modern operating systems,
the scheduler is charged with the task of moving threads
between endpoints in an attempt to maximize throughput
(alternative goals are possible as well). During a push,
the scheduler decides which local threads should be mi-
grated and which non-essential lock/volatile ownership
flags should be transferred. Additionally, the scheduler
should initiate a push when it wants to migrate a thread or
to avoid requesting ownership of a lock.

For our first iteration of a solution to this problem, we
have used a basic scheduler that relies on past behavior
to move threads from client to server where they remain
as long as possible. This is achieved by tracking how
long a thread has been running on the client without exe-
cuting client-only code (a native method) and migrating
the thread when this time exceeds τ , where τ is some
configurable parameter. For our prototype, we initially
choose τ to be twice the round trip time (RTT). Over the
execution of the application, τ is replaced with twice the
average VM-synchronization time.

This choice of τ has the nice property of limiting
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the damage of mistakes to twice the runtime without
offloading. This is because we need to have made forward
progress for a time of at least τ before migrating. If
we immediately had to migrate back, we have selected
τ so that it should take a time of τ before we are running
locally again. Thus the τ parameter lets us tune risk and
potential benefit of the scheduler.

4 Implementation
We built COMET by extending the Dalvik Virtual Ma-
chine (DalvikVM) targeted for the Android mobile op-
erating system. The DalvikVM is an interpreter for the
Dalvik byte-code based on the Java VM specification. Our
code was written on top of the CyanogenMod’s Ginger-
bread release. While the DalvikVM is intended to be run
on Android, it can be compiled for x86 architectures and
run on common Linux distributions. Because the JIT was
not yet available on x86, we were forced to disable the
JIT for our prototype. The additions to the code-base sum
to approximately 5,000 lines of C code with the largest
component, the one managing most DSM operation, at
900 lines of code.

4.1 Threads and Communication
To effectively handle multi-threaded environments,
threads are virtualized across different endpoints. The
DalvikVM uses kernel threads to run each Java thread. In
our system, kernel threads are paired between endpoints
to represent and act on behalf of a single virtualized
thread. Figure 3 shows pairs of parallel threads that
represent a single thread virtualized across endpoints.

To facilitate operations across endpoints, a full-duplex
byte stream connects two parallel threads. This abstrac-
tion is useful because all of the communication can be
expressed easily between parallel threads. Figure 3 shows
the path that data travel to get from a thread to its cor-
responding parallel thread. When a thread has data to
write, it sends a message to the controller. The controller
then multiplexes the data being written by all threads
over a single TCP connection, applying a compression
filter to save bandwidth and time. The remote controller
will demultiplex and decompress the message, sending
the data to the kernel thread parallel to the sender. This
allows for multiple byte-streams while avoiding the need
to establish multiple connections between endpoints.

To allow messages to be demultiplexed, virtual threads
are assigned IDs (this is the same identifier Thread.getId()
will return). When the controller receives a message, it
can use the ID to look up which thread to deliver the
message to or create the thread if it does not already exist.
When assigning IDs we set the high bit of the ID with the

Figure 3: Communication between endpoints

endpoint ID that created the thread to avoid ID collisions.
When a thread exits, it sends a message to the parallel
thread so that the thread may exit on both endpoints (and
joins so the thread can complete) and the IDs may be
released.

4.2 Tracked Set
In §3.4, we mentioned that updates only need to be sent
for objects that can be accessed by both endpoints. To
identify such objects, we introduce the the notion of the
tracked set of objects.

The tracked set contains all class objects and is
occasionally updated to include other local objects,
for example objects present on a stack during a VM-
synchronization. Global fields are considered to be
part of the class object they are defined in, and thus
are included in the tracked set. Additionally during a
push operation, the tracked set is closed, meaning that
all objects reachable from objects in the tracked set are
added to the tracked set as well. See §4.5 for how tracked
objects can eventually be garbage collected.

To support our DSM design, every tracked object is
annotated with a bitset indicating which fields are dirty.
Figure 4 illustrates how this data is stored and accessed.
Each write to a field of a tracked object causes that field
to be marked as dirty. Additionally, to be able to quickly
find only the objects with dirty fields, a dirty object list is
maintained, to which an object is added the first time one
of its fields is made dirty. As a result, it becomes easy for a
push operation to find all updated fields and add untracked
objects that appear in those modified fields to the tracked
set. After a push, all of the dirty bits are cleared and the
dirty object list is emptied.

Similar to existing systems [9, 8], COMET assigns IDs
to objects in the tracked set. This allows each endpoint
to talk about shared objects in a coherent way, as pointers
are meaningless across endpoints. For efficiency reasons,
objects are assigned incremental IDs when added to the
tracked set, so an object lookup turns into an array lookup
into the tracked set table as shown in Figure 4. Similar
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ID
0
1
2
3
4
5
6
7

Address
xxxx0080
xxxx0020
xxxx0100
xxxx0038
xxxx0118
xxxx0008
xxxx0090
null

Lock
owned

X
X
X

X
X

Volatile
owned

X

X
X

X
X

Object
Dirty

X

X
X
X

X

Field 0
dirty

X

X

X

Field 1
dirty

X

X
X

X

Tracked Set Table

xxxx0020
ID: 1 Fields

xxxx0008
ID: 5 Fields
xxxx0038

ID: 3 Fields
xxxx0060

Fields

xxxx0080
ID: 0 Fields

xxxx0090
ID: 6 Fields

xxxx0100
ID: 2 Fields

xxxx0118
ID: 4 Fields

Java Heap

N/A

ID: 3
ID: 2
ID: 4

ID: 6
ID: 0

Dirty Object List

Figure 4: Tracked Set Table

to thread ID assignment, the high order bit of object IDs
is filled with the endpoint ID to avoid conflict so both
endpoints can add objects to the tracked set. The overhead
associated with tracking field writes and maintaining the
tracked set structures is examined in §5.2.

4.3 VM-Synchronization
Now we are ready to explain the core of our design, the
VM-synchronization operation. VM updates are always
performed between parallel threads with one endpoint
sending updates, the pusher, and the other endpoint re-
ceiving the updates, the puller. There are three major steps
to each synchronization operation.

First, the pusher and puller enter into an executable
exchange protocol where any new bytecode sources that
have been loaded on the pusher are sent over to the
puller. Usually, this step is just as simple as the pusher
sending over a message indicating that there are no new
binaries. Otherwise, the pusher sends over a unique binary
identifier, so the puller can try to look up the binary in its
cache. If it is not found, the puller can request the entire
binary which will be stored it in its cache for future use.

Second, the pusher sends over information about each
thread. To simplify this operation, all locally running
threads are temporarily suspended. We can track what
portion of the stack needs to be resent since the last update
and send each frame higher up on the call stack. Each
interpreted frame contains a method, a program counter,
and the registers used by that method. Using register maps

produced by the DalvikVM, we can detect which registers
are objects and add them to the tracked set. In addition
to the stack information, we also transmit information
about which locks are held by each thread. This enables
the thread on the puller to acquire any activated locks in
addition to allowing functions like Thread.holdsLock() to
execute properly without any communication.

Finally, the pusher sends over an update of the shared
heap. It goes through the dirty object list, finds which
fields have changed, and sends the actual modifications to
those fields. If we attempt to transmit an object field, the
referenced object is added to the tracked set and the ID
of that object is transmitted. Otherwise an endian neutral
encoding of the field is transmitted. Lastly, it clears all
of the dirty flags and the dirty object list and resumes all
other threads. Performance data on how long this takes
and how much data needs to be sent is available in §5.3.2.

After the executable exchange, the puller first buffers
the rest of the VM-synchronization. Then it temporarily
suspends each of the local threads as done during the push.
It then merges in the update to the heap first. This often
involves creating new objects that have not yet been seen
or could involve writing a locally dirty field. In the latter
case the JMM gives us liberty to use either value in the
field but we choose to overwrite with the new data so the
dirty bit can be cleared. After this, the puller reads in
the changes to the stack, again using the register maps
from the DalvikVM to convert any object registers from
their IDs to their corresponding object pointers. After this
completes, the puller can again resume threads locally.
Additionally, heap updates are annotated with a revision
ID, so that they can be pulled in the same order they were
pushed.

As an example, take Figure 4 as the initial state of
the pusher. The heap update will contain five object
definitions corresponding to the five dirty objects. If we
assume that each of these objects only has the two shown
fields, then in total seven field updates will be sent out.
If one of those fields was an object field that pointed
to xxxx0060, it would be assigned ID 7, and instead
we would send out six object definitions and nine field
updates. In either case, after the heap update, the pusher’s
dirty object list will be empty and all of the dirty flags are
cleared.

4.4 Thread Migration
Next we can discuss the operations built on top of the
VM-synchronization. In the core of the offload engine
is the thread loop. At most instances in time, at least one
of a pair of parallel threads is waiting in the thread loop
for a message from its peer. These messages are used
to initiate the actions described below. Additionally, a

7
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special resume message can be sent to tell the thread to
exit the message loop and continue on with its previous
operation.

The primary operation is the migrate operation which
indicates that the requesting thread wishes to migrate
across endpoints. The VM-synchronization handles most
of the challenges involved. In addition, an activate and
deactivate operation is performed on the puller and pusher
respectively. Activate is responsible for grabbing any
locks and setting lock-ownership of objects that are cur-
rently held in the execution of the thread. After that,
the thread either calls directly into an interpreter or falls
back into the interpreter that called into the thread loop
depending on where the thread now is in its execution.
Deactivate is comparatively simpler and just needs to
release any held locks and ownership over them.

Transferring lock ownership is another important op-
eration. As discussed in §3.5 and shown in Figure 4,
each object is annotated with a lock ownership flag so
that a “happen-before” relationship can be established
correctly when needed. Initially each object is owned
by the endpoint that created it. When a thread attempts
to lock an object its endpoint does not own, it needs to
request ownership of the object from the remote endpoint
(or alternatively the scheduler could decide to migrate
the thread). It does so by sending a lock message to the
other endpoint along with the object ID it wishes to gain
ownership of. The parallel thread wakes up and responds
either with a heap update if the endpoint still owns the
object or a failure message if ownership has already been
transferred (i.e., by another virtual thread). In case of
failure, the initial thread will simply repeat the entire
process of trying to lock the object again. Special care
must be taken so that exactly one endpoint always owns
the lock, with the small exception of when ownership is
being transferred and nobody owns the lock.

Volatiles are handled in much the same way as locks. In
addition to the lock ownership flag annotated to objects,
there is also a volatile ownership flag. This flag mirrors
the lock flag so that a “happens-before” relationship is
established when an endpoint that does not hold volatile
ownership of an object needs to access a volatile field of
that object.

4.5 Garbage Collection
The tracked set as described so far will keep growing
indefinitely. Occasionally, some of the shared state will
no longer be needed by either endpoint and it can be re-
moved. To resolve this issue we have a distributed garbage
collection mechanism. This mechanism is triggered after
a normal garbage collection has failed to free enough
memory and the VM is about to signal it is out of memory.

To begin distributed garbage collection, both endpoints
mark every object that is reachable locally. Then a bitvec-
tor indicating whether each tracked object is locally reach-
able is sent to the remote endpoint. Receiving this bitvec-
tor from the all remotely marked objects are marked
locally in addition to any other objects reachable. If any
new objects are marked this way on either endpoint the
bitvectors must be sent again. This process continues until
both endpoints have agreed on which tracked objects are
reachable. In pathological cases this process could take
quite a few round trips to converge. In these cases the
client could just disconnect and initiate failure recovery.

4.6 Failure Recovery
From the design of COMET failure recovery comes almost
for free. To properly implement failure recovery, however,
the client must never enter a state that it could not recover
from if no more data was received from the server. There-
fore each operation that can be performed must either
wait for all remote data to arrive before committing any
permanent changes (e.g. data is buffered in the VM-
synchronization) or the change must be reversible if the
server is lost before the operation completes. To recover
from a failure the client needs only resume all threads
locally and reset the tracked object set.

In the case of resuming execution, the server is required
with each synchronization to send an update of all of the
thread stacks. This way if the server is lost it has the
necessary stack information to resume execution. The
client, however, needs only to send stacks of threads it
is attempting to migrate. Detection of server loss at this
point is simple. If the connection to the server is closed or
if the server has not responded to a heartbeat soon enough.

5 Evaluation
In this section we evaluate the overheads of COMET
(§5.2), and the performance and energy improvements
that COMET enables for a set of applications available
on Google Play as well as one hand-made computation-
intensive benchmark (§5.3). In §5.4 we take a deeper
look at how COMET works in some unique situations as a
series of short case studies.

5.1 Methodology
We tested COMET on a Samsung Captivate smartphone
running the Android 2.3.4 (Gingerbread) operating sys-
tem. Because the phone has some proprietary drivers,
we implemented COMET within a CyanogenMod [10]
build of the Android operating system. Our server is a
3.16GHz, eight core (two quad core Intel Xeon X5460
processors) system with 16GB of RAM, running Ubuntu

8
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µBenchmark T & S T & !S !T & S !T & !S

write-array 30.9% 30.4% 8.96% 7.58%
write-field 36.7% 35.1% 10.6% 9.17%
read-array 8.17% 6.05% 9.71% 5.75%
func-read 12.2% 9.26% 9.76% 9.58%

Table 2: Overheads of COMET relative to an uninstrumented
client. Results are shown for when heap tracking(T) and
the scheduler(S) are enabled/disabled. An exclamation mark
indicates that the specified function is disabled.

11.10. COMET was tested using 802.11g WiFi in the
Computer Science and Engineering building at the Uni-
versity of Michigan, as well as a real 3G connection
using AT&T’s cellular network. To gather energy data,
we used a Monsoon Power Meter [24], which samples
the battery voltage and current every 200µs to generate a
power waveform. We integrated these power waveforms
over time to collect our energy readings.

We evaluated COMET using nine real applications from
Google Play that are diverse in their functionality, but
all have non-trivial computation that may benefit from
offloading. Table 1 lists the package names and their func-
tionality. Additionally, two purely computational applica-
tions were chosen, Linpack (available from Google Play)
and Factor (hand-coded), to highlight the capabilities of
COMET. Factor features multi-threaded execution to il-
lustrate COMET’s capability to offload multiple threads
simultaneously, which will be discussed in detail in §5.4.

In order to create repeatable tests, we used the
Robotium 3.1 user scenario testing framework [28].
This framework allowed us to script user input events
and reliably gather timing information for all of our
benchmarks. All test data has been gathered from five test
runs of each benchmark for each network configuration.

5.2 Microbenchmarks
We test the overheads of our COMET prototype with four
microbenchmarks: Write-array that writes to an array in
one linear pass, Write-field that writes to one index in an
array, Read-array that reads an entire array in one linear
pass, and Func-read that performs array reads through
many small function calls.

Table 2 displays the results of these microbenchmarks.
All results are relative to a client running an uninstru-
mented Dalvik VM using its portable interpreter. Results
are shown for all combinations of when heap tracking or
the scheduler are enabled or disabled.

When performing heavy writes to an object the write
tracking code is triggered and causes performance degra-
dation, which is shown by the write-array and write-field
tests when tracking is enabled. There is never any tracking
of reads so the overhead in read-array and func-read

gives the overheads from modifications to the interpreter
in those cases.

While these overheads seem significantly high, these
microbenchmarks represent worst case scenarios that are
unlikely to appear when running real applications. The
high costs can be offset by benefits from computation
speed-ups and may be reducible with more work.

5.3 Macrobenchmarks
This section discusses high level tests of the applications
listed in Table 1. We have divided each application’s
computation into “UI” and “Computation” components
based on which portions of the applications we believe are
doing interesting computation. The input events used to
operate our tests do not come from actual user traces and
in some cases include additional delays to ensure synchro-
nization. Therefore the ratio of “UI” to “Computation”
time means very little but we still present the “UI” times
to give some indication of how these applications might be
used and because the “UI” portion of execution is difficult
to discount in our energy measurements.

Moreover our application suite and the functionality
exercised in our tests were not chosen based on any real
user data. Therefore these tests serve only as an indication
that our system can work on some applications in the wild.
A user study is required to get some metric on how well
COMET can do in the wild when the system has matured.

5.3.1 Performance and Energy Benefits

The primary goal of COMET is to improve the speed
of computation. As a side-effect, we also expect to
see improvements in energy-efficiency if computation-
intensive portions of code are executed remotely on a
server. Because there is no standard set of benchmarks
in this area of research and readers may be unfamiliar
with the applications chosen as benchmarks, we present
our performance results as absolute times in seconds and
energies in Joules in Figures 5 and 6. Each figure also
shows the computation speed-ups and energy efficiency
improvements relative to the same benchmarks run with-
out offloading enabled.

Figure 5 shows that COMET achieves significant com-
putation speed-ups for most benchmarks when offloading
using WiFi. The geometric mean of computation speed-
up that is observed for offloading interactive applications
over WiFi is 2.88X. The high latency and poor bandwidth
of 3G made it much less successful than WiFi however.
Most of our benchmarks did not see performance im-
provements with the exception of Fractal, Poker, Linpack,
and Factor. In the other benchmarks the scheduler found
it too costly to offload so only small performance impacts

9



102 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Benchmark Package Name Description
In

te
ra

ct
iv

e
B

en
ch

m
ar

ks
Calculus com.andymc.derivative Math tool, computes discrete integrals using Riemann sums
Chess com.alonsoruibal.chessdroid.lite Chess game, does BFS to find best moves
Edgedetect com.lmorda.DicomStudio Image filter, detects and blurs edges
Fractal com.wimolife.Fractal Math tool, zooms and re-renders Mandelbrot fractals
Metro com.mechsoft.ru.metro Trip planner, Finds route between subway stations using Dijkstra’s Algorithm
Photoshop com.adobe.psmobile Image editor, performs cropping, filtering, and image effects
Poker com.leslie.cjpokeroddscalculator Game aid, uses Monte Carlo simulation to find odds of winning a poker game
Sudoku de.georgwiese.sudokusolver Game aid, solves sudoku puzzles given known values

C
om

pu
ta

tio
n

B
en

ch
m

ar
ks

Linpack com.greenecomputing.linpack Computation benchmark, standard linear algebra benchmark suite testing
floating point computation

Factor Not available on Google Play Computation benchmark, hand written application that uses multiple threads to
factors large numbers

Table 1: Description of benchmarks used in this evaluation.

Interactive
Benchmarks WiFi 3G
Calculus 1.47x 0.89x
Chess 3.06x 0.99x
Edgedetect 1.75x 1.03x
Fractal 15.01x 4.05x
Metro 1.22x 0.72x
Photoshop 1.28x 0.76x
Poker 6.15x 3.87x
Sudoku 4.18x 0.92x
GEOMEAN 2.88x 1.28x
Computation
Benchmarks WiFi 3G
Linpack 21.38x 20.94x
Factor 201.68x 168.34x
GEOMEAN 65.66x 59.37x

Figure 5: Absolute execution times for benchmarks with no offloading, WiFi offloading, and 3G offloading. Times are broken
down to reflect portions of time that the benchmarks are doing something computationally interesting versus navigating the UI.
Whiskers show the standard deviation. Computation speed-up figures relative to not offloading are shown on the right.

were seen. On average, offloading using 3G allowed a
1.28X speed-up for our interactive applications.

As a back-of-the-envelope calculation, we can estimate
how many WiFi clients running applications from our
benchmark an eight core server could handle by comput-
ing the average CPU utilization on the server for each
application. This comes out to 28% percent utilization
which suggests that a COMET server could sustain about
28 active clients.

As a consequence of reducing the absolute runtime
of the application and the amount of heavy computation
done on the client, energy improvements are observed in
all but one case when offloading using WiFi. Figure 6
details the energy costs of each test. The short latency
and high bandwidth of WiFi allows a client to spend less
energy transmitting and receiving data when transferring
state and control over to a server. Thanks to this, COMET
was able to improve energy efficiency on average by

1.51X for interactive applications. Again due to 3G’s
network characteristics and higher energy costs we found
that offloading with 3G usually consumed more energy
than it saved. Fractal was the only interactive benchmark
that saw significant energy improvement when using 3G.

5.3.2 The Amount of Transferred State

We now examine how much data COMET’s VM-
synchronization primitive transfers when our benchmarks
offload execution using WiFi and 3G. Table 3 shows the
amount of state transferred downstream and upstream, in
KB, from the client. This data is averaged over the same
five runs used to gather our performance and energy data.

Because all but one of our benchmarks were not de-
signed by us, the authors of these applications likely did
not intend for their code to ship state between a client and
server. Furthermore, we made no effort or modifications
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Download (KB) Upload (KB)
Benchmark Init. (KB) WiFi 3G WiFi 3G

Calculus 765.7 68.7 8.3 361.0 138.3
Chess 849.7 2777.0 0 860.9 0

Edgedetect 774.3 3818.2 0 641.6 0
Fractal 817.9 619.3 518.2 222.8 249.5
Metro 805.7 13.8 0 635.0 0.1

Photoshop 792.8 41757.0 587.0 25939.1 2309.8
Poker 773.5 2.6 1.1 185.6 138.0

Sudoku 876.4 292.7 0 300.0 0.3
Linpack 807.7 1873.6 1872.9 19.0 0.4
Factor 732.6 13.0 11.2 20.6 7.3

GEOMEAN 798.6 294.3 20.0 331.4 13.8

Table 3: Total number of bytes transmitted when offloading.
Init refers to the initial heap synchronization.

to the binaries of these applications to optimize how state
is packaged for offloading. Thus the size of state transfers
may seem large when compared to figures presented in
the literature [9]. Mixed DSM strategies will be used to
reduce this cost in future work.

The first thing that occurs when COMET begins to
offload an application’s execution to a server is an initial
heap synchronization including all of the globally reach-
able state. This first sync includes a great amount of data
that will never change later in the execution and is thus
considerably larger than future updates typically. This
initial heap synchronization is typically between 750–
810KB, regardless of the means of connectivity. This
takes, on average, 1.69s for a WiFi connection and 6.39s
over 3G to complete. As a point of comparison, the
average push and pull operations between two endpoints
are only 5.77ms over WiFi and 111ms over 3G.

COMET is capable of adapting to the available network
conditions. When a low latency connection is available
COMET will more eagerly use this connection to exploit
more offloading opportunities. Figures 5 and 6 show that
for the Photoshop test, even though over 60MB of state
needs to be transferred, there can still be performance
gains and energy savings. Conversely when network la-
tency is high and bandwidth is limited, as is the case when
operating using 3G connectivity, COMET determines that
offloading computation is not advised and scales back its
decisions to offload. Table 3 reflects this observation, as
the KB of data communicated downstream and upstream
when using 3G is significantly less than that of WiFi.

While the state transmissions observed in Table 3 may
seem large, future technologies may make it less costly, in
terms of time, energy, or both, to transmit data and execute
remotely than to perform computation locally. Cellular
carriers are currently adopting 4G LTE, which provides
higher bandwidths and lower latencies than 3G [16]. This
trend in cellular technology promises that in the coming
years it will be practical to transmit the amount of data

Loop : f o r ( ; ; ) {
i n t op = iCode [ f rame . pc + + ] ;
. . .
sw i t ch ( op ) {

. . .
case Token .ADD :
−−s t a c k T o p ;
do add ( s t a c k , sDbl , s tackTop , cx ) ;
c o n t i nu e Loop ;

case Token . CALL : {
. . .

}
}

}

Figure 7: Excerpt from Rhino’s Interpreter.java. Method-
granularity offloading is going to have difficulties offloading
code of this style.

necessary to keep state synchronized when exploiting
more offloading opportunities.

5.4 Case Studies
We now examine specific cases where COMET’s design
allows it to offload where other systems may not. Case
study I focuses on the benefits of offloading at a fine
granularity while case study II looks at the benefits of
being able to offload multiple threads.
Case Study I: Offloading JavaScript

A natural question of this system is if it can work with
derived runtimes. In particular, because of JavaScript’s
prevalence on the web, it would be interesting if
JavaScript could be offloaded as well. Unfortunately,
there are no existing web browsers that use a JavaScript
engine written in Java. The nearest thing appears to be
HtmlUnit [1], a “GUI-Less browser for Java programs”
aimed at allowing automated web testing within Java. The
JavaScript runtime backing HtmlUnit is called Rhino [2].

To test COMET’s ability to offload JavaScript with
Rhino, we ran the SunSpider [3] test suite with and with-
out offloading. For the 18 benchmarks that could run
correctly (some tests exceeded the Dalvik VM’s stack
size), we found that the entire test executed 6.6X faster
with a maximum speed-up for a single test of 8.5X and
a minimum speed-up of 4.7X. This suggests that COMET
can effectively be applied to derived runtimes.

It is important to mention that method-granularity
offloading would fall short in this scenario. Figure 7
gives an excerpt from Rhino’s interpreter. The interpreter
method cannot be offloaded as a whole as any subsequent
client side only calls, such as accesses to the UI, would
need to make an RPC right back to the client which could
be quite expensive if there are even a few such calls.
However, if we do not offload the interpreter loop, there is
likely no other method that has a substantial running time.
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Interactive
Benchmarks WiFi 3G
Calculus 1.07x 0.51x
Chess 1.36x 1.13x
Edgedetect 1.17x 0.95x
Fractal 4.02x 1.32x
Metro 0.80x 0.76x
Photoshop 1.21x 0.59x
Poker 3.05x 0.99x
Sudoku 1.30x 0.76x
GEOMEAN 1.51x 0.84x
Computation
Benchmarks WiFi 3G
Linpack 10.39x 1.20x
Factor 517.50x 185.24x
GEOMEAN 73.32x 14.93x

Figure 6: Absolute energy consumption for benchmarks with no offloading, WiFi offloading, and 3G offloading. Whiskers show
standard deviation. Energy improvements relative to not offloading are displayed on the right.
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Figure 8: An illustration of multi-threaded execution being
offloaded to a server for the Factor application. Time progresses
from the top to the bottom of the diagram.

do add for example is typically going to be fairly quick to
execute. Therefore, offloading at a finer granularity than
methods is necessary to offload with Rhino and programs
like it. This feature is something that COMET offers over
past offloading systems.

Case Study II: Multi-threading in Factor
The multi-threaded Factor benchmark shows the best

case performance of COMET. It works by populating a
work queue with some integers to be factored, and starting
eight threads to process items from the queue. This also
demonstrates that COMET can work well even when some
amount of synchronization is required between threads.
Figure 8 illustrates the offloading of the multi-threaded
Factor benchmark.

The speed-up obtained by WiFi and 3G are 202X and

168X respectively. This is the difference between 44
minutes running locally and 13 seconds over WiFi demon-
strating massive speed-ups using multiple cores. Other
works cannot offload more than one thread at a time, espe-
cially when there are shared data accesses occurring [9, 8],
and therefore can only get a speed-up of around 28.9X.

6 Limitations
Broadly, there are two important limitations of our work.
First, COMET may decide to send over data that is not
needed for computation. This is often wasteful of band-
width and can make offloading opportunities more sparse.
Two approaches that may help mitigate this challenge
are using multiple DSM strategies like what is done in
Munin [7] or applying static analysis to detect when data
need not be sent.

The second limitation lies in the kinds of computa-
tion demanded by smartphones. We have not found a
large number of existing applications that rely heavily on
computation. Those that do frequently either implement
offloading logic right into the application or write the
computationally intensive parts of the application in C
making it difficult to test with COMET. However tools like
COMET can allow new kinds of applications to exist.

7 Conclusion and Future Work
In this paper, we have introduced COMET, a distributed
runtime environment aimed at offloading from smart-
phones. We introduced a new DSM technique and VM-
synchronization operation to keep endpoints in a consis-
tent state according to the memory model of our run-
time. This makes all virtualized code offloadable and
allows multiple threads to be offloaded simultaneously.
We demonstrated this system on nine real applications
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and showed an average speed-up of 2.88X. In one hand-
written application, we were able to reach as much as
202X speedup. To broaden the impact of our work,
we plan on making the COMET system available upon
publication.

Moving forward, the most promising line of work is
in improving the scheduling algorithm used by COMET.
The τ -Scheduler described here is the simplest reasonable
scheduler that we could come up with and the focus of this
work lies elsewhere.
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