
Energy Management in Mobile Devices
with the Cinder Operating System

Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, Nickolai Zeldovich†
Stanford University and MIT CSAIL†

Abstract
We argue that controlling energy allocation is an increas-
ingly useful and important feature for operating systems, es-
pecially on mobile devices. We present two new low-level
abstractions in the Cinder operating system, reserves and
taps, which store and distribute energy for application use.
We identify three key properties of control – isolation, dele-
gation, and subdivision – and show how using these abstrac-
tions can achieve them. We also show how the architecture of
the HiStar information-flow control kernel lends itself well
to energy control. We prototype and evaluate Cinder on a
popular smartphone, the Android G1.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design

General Terms Design

Keywords energy, mobile phones, power management

1. Introduction
In the past decade, mobile phones have emerged as a dom-
inant computing platform for end users. These very per-
sonal computers depend heavily on graphical user interfaces,
always-on connectivity, and long battery life, yet in essence
run operating systems originally designed for workstations
(Mac OS X/Mach) or time-sharing systems (Linux/Unix).

Historically, operating systems have had poor energy
management and accounting. This is not surprising, as their
APIs standardized before energy was an issue. For exam-
ple, the first commodity laptop with performance similar
to a desktop, the Compaq SLT/286 [Com 1988], was re-
leased just one year before the C API POSIX standard.
The resulting energy management limitations of POSIX
have prompted a large body of research, ranging from CPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

scheduling [Flautner 2002] to accounting [Zeng 2003] to of-
floading networking. Despite this work, current systems still
provide little, if any, application control or feedback: users
have some simple high-level sliders or toggles.

This limited control and visibility of energy is especially
problematic for mobile phones, where energy and power de-
fine system lifetime. In the past decade, phones have evolved
from low-function proprietary applications to robust multi-
programmed systems with applications from thousands of
sources. Apple announced that as of April 2010 their App
Store houses 185,000 apps [App 2010] for the iPhone with
more than 4 billion application downloads. This shift away
from single-vendor software to complex application plat-
forms means that the phone’s software must provide effec-
tive mechanisms to manage and control energy as a resource.
Such control will be even more important as the danger
grows from buggy or poorly designed applications to poten-
tially malicious ones.

In the past year, mobile phone operating systems began
providing better support for understanding system energy
use. Android, for example, added a UI that estimates applica-
tion energy consumption with system call and event instru-
mentation, such as processor scheduling and packet counts.
This is a step forward, helping users understand the myster-
ies of mobile device lifetime. However, while Android pro-
vides improved visibility into system power use, it does not
provide control. Outside of manually configuring applica-
tions and periodically checking battery use, today’s systems
cannot do something as simple as controlling email polling
to ensure a full day of device use.

This paper presents Cinder, a new operating system de-
signed for mobile phones and other energy-constrained com-
puting devices. Cinder extends the HiStar secure kernel [Zel-
dovich 2006] to provide new abstractions for controlling
and accounting for energy: reserves and taps. Reserves are
a mechanism for resource delegation, providing fine-grained
accounting and acting as an allotment from which applica-
tions draw resources. Where reserves describe a quantity of a
resource, taps place rate limits on resources flowing between
reserves. By connecting reserves to one another, taps allow
resources to flow to applications. Taps and reserves compose

together to allow applications to express their intentions, en-
abling policy enforcement by the operating system.

Cinder estimates energy consumption using standard
device-level accounting and modeling [Zeng 2002]. HiS-
tar’s explicit information flow control allows Cinder to track
which parties are responsible for resource use, even across
interprocess communication calls serviced in other address
spaces. Without needing any additional state or support
code, Cinder can accurately amortize costs across principals,
such as the energy cost of turning on the radio to multiple
applications that simultaneously need Internet access.

While Cinder runs on a variety of hardware platforms
(AMD64, i386, ARM), the most notable is the HTC Dream,
a.k.a. the Android G1. To the best of our knowledge, other
than extensions to Linux, Cinder is the first research operat-
ing system that runs on a mobile phone. The reason for such
a first is simple: the closed nature of phone platforms makes
porting an operating system exceedingly difficult.

This paper makes three research contributions. First, it
proposes reserves and taps as new operating system mech-
anisms for managing and controlling energy consumption.
Second, it evaluates the effectiveness and power of these
mechanisms in a variety of realistic and complex application
scenarios running on a real mobile phone. Third, it describes
experiences in writing a mobile phone operating system, out-
lining the challenges and impediments faced when conduct-
ing systems research on the dominant end-user computing
platform of this decade.

2. A Case for Energy Control
This section motivates the need for low-level, fine-grained
energy control in a mobile device operating system. It starts
by reviewing some of the prior work on energy visibility and
the few examples of coarse energy control. Using several ap-
plication examples as motivation, it describes three mecha-
nisms an OS needs to provide for energy: isolation, dele-
gation, and subdivision. The next section describes reserves
and taps, abstractions which provide these mechanisms at a
fine granularity.

2.1 Prior Work on Visibility and Control
Managing energy requires accurately measuring its con-
sumption. A great deal of prior work has examined this prob-
lem for mobile systems, including ECOSystem [Zeng 2002],
Currentcy [Zeng 2003], PowerScope [Flinn 1999b], and
PowerBooter [Zhang 2010]. These systems use a model of
the power draw of hardware components based on hardware
states. For example, an 802.11b card draws only slightly
more power while transmitting than receiving, whereas a
CPU’s power draw increases with utilization. Current mo-
bile phone energy accounting systems, such as Android’s,
use this approach. Cinder also does as well; Section 4 pro-
vides the details.

Early systems like ECOSystem [Zeng 2002] proposed
mechanisms by which a user could control per-application
energy expenditure. ECOSystem, in particular, introduced
an abstraction called Currentcy, which gives an application
the ability to spend a certain amount of energy, up to a fixed
cap. This flat hierarchy of energy principals – applications
– is reasonable for simple large applications. Mobile appli-
cations and systems today, however, are far more complex
and involve multiple principals. For example, web browsers
run active code as well as possibly untrusted plugins, net-
work daemons control access to the cellular data network,
and peripherals have complex energy profiles.

2.2 Isolation, Delegation, and Subdivision
We believe that for applications to effectively control energy,
an operating system must provide three energy management
mechanisms: isolation, delegation, and subdivision. We mo-
tivate these mechanisms through application examples that
we follow through the rest of the paper.

The first mechanism is isolation. Isolation is a fundamen-
tal part of an operating system. Memory and inter-process
communication (IPC) isolation provide security, while CPU
and disk space isolation ensure that processes cannot starve
others. Isolating energy consumption is similarly important.
An application should not be permitted to consume inordi-
nate amounts of energy, nor should it be able to deprive other
applications. Consider two processes in a system, each with
some share of system energy. To improve system reliabil-
ity and simplify system design, the operating system should
isolate each process’ share from the other’s. If one process
forks additional processes, these children must not be able
to consume the energy of the other.

The second mechanism is delegation. Delegation allows
a principal to loan any of its available energy and power to
another principal. After delegation, either the resource donor
or the recipient can freely consume the delegated resources.
Furthermore, if there are multiple donors delegating to this
recipient, the resources are pooled for use by the recipi-
ent. Resource delegation is an important enabler of inter-
application cooperation. For example, the Cinder netd net-
working stack transfers energy into a common radio activa-
tion pool when an application cannot afford the high initial
expense of powering up the radio. By delegating their energy
to the radio, multiple processes can contribute to expensive
operations; this may not only improve quality of service, but
even reduce energy consumption.

The third mechanism is subdivision. Subdivision allows
applications to partition their available energy. Combined
with isolation, subdivision allows an application to give an-
other principal a partial share of its energy, while being as-
sured that sure that the rest will remain for its own use.
For example, modern web browsers commonly run plugins,
some of which may even be untrusted. If a browser is granted
a finite amount of power, it might want to protect itself from
buggy or poorly written plugins that could waste CPU en-

ergy. Subdivision lets the browser give full control over a
fraction of its energy allotment to plugins. Isolation further
ensures that each plugin component does not consume more
than its share.

2.3 Prior Systems
Prior systems like ECOSystem [Zeng 2002, 2003] only
partially support isolation and subdivision: child processes
share the resources of their parent. This is sufficient when
applications are static entities, but not when they spawn new
processes and invoke complex services. The web browser
demonstrates the problem: it has no way to prevent its
plugins from consuming its own resources once they are
spawned. Cinder’s subdivision lends naturally to familiar
and standard abstractions such as process trees, resource
containers, and quotas.

Furthermore, prior systems do not permit delegation,
which is akin to priority inheritance. For always-on systems
which have small variations in power draw, such as the lap-
tops for which they were designed, this is not a serious lim-
itation. On mobile phones, however, which have almost two
orders of magnitude difference in active and sleep power, the
cost of powering up peripherals, such as the wireless data in-
terface, can be significant. Delegation provides a means to
facilitate application cooperation.

3. Design
Cinder is based on HiStar [Zeldovich 2006], a secure op-
erating system built upon information flow control. Cinder
adds two new fundamental kernel object types: reserves and
taps. This section gives a brief overview of HiStar and key
features related to resource management, describes reserves
and taps, gives examples of how they can be used, and details
how they are secured.

3.1 HiStar
HiStar is composed of six first-class kernel objects, all pro-
tected by a security label. Its segments, threads, address
spaces, and devices are similar to those of conventional ker-
nels. Containers enable hierarchical control over dealloca-
tion of kernel objects – objects must be referenced by a con-
tainer or face garbage collection. Gates provide protected
control transfer of a thread from one address space to a
named offset in another; they are the basis for all IPC.

3.2 Reserves
A reserve describes a right to use a given quantity of a re-
source, such as energy. When an application consumes a
resource the Cinder kernel reduces the values in the corre-
sponding reserve. The kernel prevents threads from perform-
ing actions for which their reserves do not have sufficient re-
sources. Reserves, like all other kernel objects, are protected
by a security label (§3.5) that controls which threads can ob-
serve, use, and manipulate it.

All threads draw from one or more energy reserves. Cin-
der’s CPU scheduler is energy-aware and allows a thread to
run only when at least one of its energy reserves is not empty.
Threads that have depleted their energy reserves cannot run.
Tying energy reserves to the scheduler prevents new spend-
ing, which is sufficient to throttle energy consumption.

Reserves allow threads to delegate and subdivide re-
sources. As a simple example, an application granted 1000 mJ
of energy can subdivide its reserve into an 800 mJ and a
200 mJ reserve, allowing another thread to connect to the
200 mJ reserve. However, threads rarely manage energy
in such concrete quantities, preferring instead to use taps
(§3.3). A thread can also perform a reserve-to-reserve trans-
fer provided it is permitted to modify both reserves.

Reserves also provide accounting by tracking applica-
tion resource consumption. Applications may access this ac-
counting information in order to provide energy-aware fea-
tures. Finally, reserves can be deleted directly or indirectly
when some ancestor of their container is deleted, just as a file
can be deleted either directly or indirectly when a directory
containing it is deleted in a Unix system.

3.3 Taps
A tap transfers a fixed quantity of resources between two
reserves per unit time, which controls the maximum rate at
which a resource can be consumed. For example, an appli-
cation reserve may be connected to the system battery via a
tap supplying 1 mJ/s (1 mW).

Taps aid in subdividing resources between applications
since partitioning fixed quantities is impractical for most
policies. A user may want her phone to last at least 5 hours
if she is surfing the web; the amount of energy the browser
should receive is relative to the length of time it is used.
Providing resources as a rate naturally addresses this.

Another approach, which Cinder does not take, would be
to implement transfer rates between reserves through threads
that explicitly move resources and enforce rate-limiting as
well as accounting. Given five applications, each to be lim-
ited to consume an average of 1 W, the system could cre-
ate five application reserves and threads, with each thread
transferring while tracking and limiting energy into each
of these applications’ reserves. However, this fine-grained
control would cause a proliferation of these special-purpose
threads, adding overhead and decreasing energy efficiency.

Taps are made up of four pieces of state: a rate, a source
reserve, a sink reserve, and a security label containing
the privileges necessary to transfer the resources between
the source and sink (§3.5). Conceptually, it is an efficient,
special-purpose thread whose only job is to transfer en-
ergy between reserves. In practice, transfers are executed
in batch periodically to minimize scheduling and context-
switch overheads.

Figure 1. A 15 kJ battery, or root reserve, connected to a reserve
via a tap. The battery is protected from being misused by the web
browser. The web browser draws energy from an isolated reserve
which is fed by a 750 mW tap.

3.4 Resource Consumption Graph
Reserves and taps form a directed graph of resource con-
sumption rights. The root of the graph is a reserve represent-
ing the system battery; all other reserves are a subdivision
of this root reserve. Figure 1 shows a simple example of a
web browser whose consumption is rate limited using a tap.
The tap guarantees that even if the browser is aggressively
using energy the battery will last at least 5 hours (15,000 J at
0.750 J/s is about 5.6 hours).

3.5 Access Control & Security
Any thread can create and share reserves or taps to subdivide
and delegate its resources. This ability introduces a problem
of fine-grained access control. To solve this, reserves and
taps are protected by a security label, like all other kernel
objects. The label describes the privileges needed to observe,
modify, and use the reserve or tap.

Using resources from a reserve requires both observe and
modify privileges: observe because failed consumption indi-
cates the reserve level (zero) and modify for when consump-
tion succeeds. Since a tap actively moves resources between
a source and sink reserve, it needs privileges to observe and
modify both reserve levels; to aid with this, taps can have
privileges embedded in them.

4. Cinder on the HTC Dream
Controlling energy requires measuring or estimating its con-
sumption. This section describes Cinder’s implementation
and its energy model. The Cinder kernel runs on AMD64,
i386, and ARM architectures. All source code is freely avail-
able under open-source licenses. Our principal experimental
platform is the HTC Dream (Google G1), a modern smart-
phone based on the Qualcomm MSM7201A chipset.

4.1 Energy accounting
Energy accounting on the HTC Dream is difficult due to the
closed nature of its hardware. It has a two-processor design,
as shown in Figure 2. The operating system and applications
run on an ARM11 processor. A secure, closed ARM9 co-
processor manages the most energy hungry, dynamic, and
informative components (e.g. GPS, radio, and battery sen-
sors). The ARM9, for example, exposes the battery level as
an integer from 0 to 100.

Recent work on processors has shown that fine-grained
performance counters can enable accurate energy estimates

t

f(t)

ARM 9 (Closed):

Modem, Power, GPS

ARM 11: Cinder,

Application S/W

R

Figure 2. The two ARM cores in the MSM7201A chipset. Cinder
runs on the ARM11, whereas the ARM9 controls access to sensitive
hardware including the radio and GPS. The two communicate via
shared memory and interrupt lines.

within a few percent [Economou 2006; Snowdon 2009].
Without access to such state in the HTC Dream, however,
Cinder relies on the simpler well-tested technique of build-
ing a model from offline-measurements of device power
states in a controlled setting [Flinn 1999b; Fonseca 2008;
Zeng 2002]. Phones today use this approach, and so Cinder
has equivalent accuracy to commodity systems.

4.2 Power Model
Our energy model uses device states and their duration to
estimate energy consumption. We measured the Dream’s
energy consumption during various states and operations.
All measurements were taken using an Agilent Technolo-
gies E3644A, a DC power supply with a current sense re-
sistor that can be sampled remotely via an RS-232 interface.
We sampled both voltage and current approximately every
200 ms, and aggregated our results from this data.

While idling in Cinder, the Dream uses about 699 mW
and another 555 mW when the backlight is on. Spinning the
CPU increases consumption by 137 mW. Memory-intensive
instruction streams increase CPU power draw by 13% over
a simple arithmetic loop. However, the HTC Dream does
not have hardware support to estimate what percentage of
instructions are memory accesses. The ARM processor also
lacks a floating point unit, leaving us with only integer,
control flow, and memory instructions. For these reasons,
our CPU model currently does not take instruction mix into
account and assumes the worst case power draw (all memory
intensive operations).

4.3 Peripheral Power
The baseline cost of activating the radio is exceptionally
high: small isolated transfers are about 1000 times more ex-
pensive, per byte, than large transfers. Figure 3 demonstrates
the cost of activating the radio and sending UDP packets
to an echo server that returns the same contents. Results
demonstrate that the overhead involved dominates the total

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30 35 40

J
o

u
le

s

Packets per Second

10 Second Flow Energy Usage Across Packet Sizes and Rates

1500 bytes/pkt
750 bytes/pkt

1 bytes/pkt

Figure 3. Radio data path power consumption for 10 second
flows across six different packet rates and three packet sizes. Short
flows are dominated by the 9.5 J baseline cost shown in Figure 4.
For this simple static test, data rate has only a small effect on the
total energy consumption. The average cost is 14.3 J (minimum:
10.5, maximum: 17.6).

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400

W
a

tt
s

Seconds

Radio Activation Power Draw

Figure 4. Cost of transitioning from the lowest radio power state
to active. One UDP packet is transmitted approximately every
40 seconds to enable the radio. The device fully sleeps after 20 sec-
onds, but the average plateau consumes an additional 9.5 J of en-
ergy over baseline (minimum 8.8 J, maximum 11.9 J). Power con-
sumption for a stationary device can often be predicted with rea-
sonable accuracy, but outliers, such as the penultimate transition,
occur unpredictably.

power cost for flows lasting less than 10 seconds in duration,
regardless of the bitrate.

Figure 4 shows this activation cost. An application pow-
ers up the radio by sending a single 1-byte UDP packet. The
secure ARM9 automatically returns to a low power mode
after 20 seconds of inactivity. Because the ARM9 is closed,
Cinder cannot change this inactivity timeout.

With this workload, it costs 9.5 joules to send a single
byte! One lesson from this is that coordinating applications
to amortize energy start-up costs could greatly improve en-
ergy efficiency. In §5.5 we demonstrate how Cinder can use
reserves and taps for exactly this purpose.

4.4 Mobility & Power Model Improvements
Cinder’s aim is to leverage advances in energy accounting
(see §8.2) to allow users and applications to provision and
manage their limited budgets. Accurate energy accounting
is an orthogonal and active area of research. Cinder is adapt-
able and can take advantage of new accounting techniques
or information exposed by device manufacturers.

// Create a reserve

object_id_t res_id;

res_id = reserve_create(container_id, res_label);

objref res = OBJREF(container_id, res_id);

// Create a tap and connect it between

// the battery and the new reserve

object_id_t tap_id;

tap_id = tap_create(container_id, root_reserve,

res, tap_label);

objref tap = OBJREF(container_id, tap_id);

// Limit the child to 1 mW

tap_set_rate(tap, TAP_TYPE_CONST, 1);

if (fork() == 0) {

// child process: switch to new reserve before exec

self_set_active_reserve(res);

execv(args[0], args);

}

Figure 5. energywrap excerpt without error handling.

5. Applications
To gain experience with Cinder’s abstractions, we devel-
oped applications using reserves and taps. This section de-
scribes these applications, including a command-line utility
that augments existing applications with energy policies, an
energy constrained web browser that further isolates itself
from its browser plugins, and a task manager application that
limits energy consumption of background applications.

5.1 energywrap

Taking advantage of the composability of Cinder’s resource
graph, the energywrap utility allows any application to be
sandboxed even if it is buggy or malicious. energywrap
takes a rate limit and a path to an application binary. The
utility creates a new reserve and attaches it to the reserve in
which energywrap started by a tap with the rate given as
input. After forking, energywrap begins drawing resources
from the newly allocated reserve rather than the original re-
serve of the parent process and executes the specified pro-
gram. This allows even energy-unaware applications to be
augmented with energy policies.

The sandboxing policy provided by energywrap is im-
plemented in about 100 lines of C++. An excerpt is shown
in Figure 5. HiStar provides a wrap utility designed to iso-
late applications with respect to privileges and storage re-
sources. Coupling this utility with energywrap allows any
application or user to provide a virtualized environment to
any thread or application. Section 6.1 evaluates the effec-
tiveness of energy sandboxing and isolation.

energywrap has proved useful in implementing policies
while designing and testing Cinder, particularly for legacy
applications that have no notion of reserves or taps. Since
energywrap runs an arbitrary executable, it is possible to
use energywrap to wrap itself or shell scripts, which may
invoke energywrap with other scripts or applications. This

Figure 6. (a) A web browser configured to run for at least 6 hours
on a 15 kJ battery. The web browser further ensures that its plugin
cannot use more than 10% of its energy. (b) Adding 0.1x backward
proportional taps promotes sharing of excess energy unused by the
browser and plugin.

allows a wide class of ad hoc policies to be scripted using
standard shell scripting or on-the-fly at the command line.

5.2 Fine-grained Control
Mobile browsers now support plugins like Adobe Flash [Fla
2009], and we can expect more plugins and extensions to
follow. On a device where resources are precious, it is im-
portant to have tight control over these plugins.

In Cinder, an application may be given some fixed rate or
quota of energy using reserves and taps. A web browser may,
for example, want to also run a plugin while ensuring that it
cannot starve other plugins or even the browser itself. Shown
in Figure 6a, the browser can allocate a separate reserve for
the plugin and connect it to its own energy via a low rate tap.

Often a single plugin (e.g. Flash) may be handling a
number of pages or requests all in a single process. To scale
the energy given to the plugin with the number of pages
it is handling, the browser can add a tap per page. When
a particular page is no longer being handled (e.g. the user
navigates away) the taps associated with that page can be
automatically garbage collected, effectively revoking those
power sources.

Cinder includes a simple graphical web browser based
on links2 that runs in Xorg or standalone against the frame-
buffer. It is augmented with an extension running in a sepa-
rate process, whose energy usage is subdivided and isolated
from the browser. The browser can send requests to the ex-
tension process (for ad blocking, etc.), and if the extension is
unresponsive due to lack of energy the browser can display
the unaugmented page.

5.2.1 Reclaiming Unused Resources
Consider a problem common to many applications: a web
browser would like to allow a plugin to consume resources
quickly while making sure it shares unused resources. The
plugin may fully utilize peripherals and drive the device at
peak power, requiring a reserve fed with a high rate tap. This
raises a problem: if the plugin draws less than its tap rate, the

reserve will slowly fill with energy that no other application
can use.

To solve this problem, an application can use a propor-
tional tap. These taps transfer a fraction of their source re-
serve’s resource per unit time, rather than a fixed quantity.
Figure 6b shows the fix to the browser; the plugin reserve
on the right is limited to a maximum average power draw of
70 mW. The backwards proportional tap means the plugin
reserve can store up to 10 s of this power (700 mJ) for bursty
operations. Once the reserve reaches 700 mJ, the backwards
proportional tap drains the reserve as quickly as the forward
constant tap fills it. Similarly, the browser’s reserve can ac-
cumulate up to 7000 mJ while being forced to share unused
energy with other applications.

5.2.2 Hoarding and Resource Decay
Backward proportional taps alone are insufficient for pre-
venting malicious applications from hoarding. Threads can
sidestep taxation by creating a new reserve with no propor-
tional taps and periodically transferring resources to it. The
application could, over time, accumulate energy equal to the
battery and starve the rest of the system.

To prevent this, Cinder could provide a reserve clone()

rather than reserve create(). This call would take a re-
serve that an application has access to and create a new
reserve taking care to duplicate any backward proportional
taps that the application does not have the permission to re-
move. Additionally, Cinder would need to disallow system
calls that transfer resources from a fast-draining reserve to a
more slow-draining reserve unless the caller has proper per-
mission (that is, the permission to remove all the backward
taps from the source reserve that do not have a correspond-
ing backward tap at the target reserve).

These constraints eliminate hoarding, but complicate ap-
plications that are not malicious. Therefore, in practice, Cin-
der prevents hoarding by imposing a global, long-term decay
of resources across all reserves; every reserve has an implicit
proportional backward tap to the battery.

By default, Cinder is configured to leak 50% of reserve
resources after a period of 10 minutes. This long (but short
compared to the period between battery recharges) half-life
allows applications to accumulate and store energy for sig-
nificant periods, and permits the system to make large-scale
long-term hoarding impossible. ESX Server [Waldspurger
2002] successfully uses a similar “idle memory tax” to miti-
gate hoarding of unused memory between virtual machines.

Further experience with these abstractions is needed to
understand whether the trade-offs associated with the more
fundamental solution for hoarding are worth making.

5.3 Energy-Aware Applications
Using Cinder, developers can gain fine-grained control of
resources within their applications, providing a better expe-
rience to end users. This includes adaptive policies for pro-
grams where partial or degraded results are still useful, and

Figure 7. RSS is running in the foreground so the task manager
has set its tap to give it additional power. Mail is running in
the background, and can only draw energy from the background
reserve. This ensures that actual battery consumption matches the
user’s expectation that the visible application is responsible for
most energy consumption.

offer a compromise between battery life and user experi-
ence. For example, smart applications may scale the quality
of streaming video or reduce texture quality in a game when
available energy is low, since the user can still watch a video
or play a game when insufficient resources are available to
run at full fidelity.

As a concrete example, we have implemented an energy-
aware network picture gallery. The application has a sepa-
rate thread for downloading images, using an energy reserve
distinct from the main thread. The rate the application con-
sumes energy from this reserve depends on the frequency of
image requests and the requested image sizes. The applica-
tion checks the levels in the reserve periodically. A drop in
the reserve level indicates that the downloader is consuming
energy too quickly and will be throttled if it cannot curb con-
sumption. In this case, the downloader only requests partial
data from the remote interlaced PNG images, which yields
a lower quality image in exchange for reduced data trans-
fer over the network (and lower consumption by the device).
Section 6.2 evaluates the effectiveness of these adaptations.

5.4 Background Applications
Background applications complicate resource management.
Despite being invisible to the user, an application may be
using resources. This discontinuity between reality and user
perception makes the user suspicious of foreground applica-
tions they have used frequently, which may not be responsi-
ble. Cinder provides not only a means to understand which
applications are using resources, but also a means to man-
age those resources to meet user expectations. Since the user
naturally suspects foreground applications of using energy,
he can easily manage his use of those applications. Cinder’s
job, then, is to manage background applications to prevent
them from interfering with the user’s natural intuition.

Figure 7 shows how Cinder accomplishes this. Each ap-
plication has a reserve from which it draws energy. Each
such application’s reserve is then connected to two other re-
serves via taps. The first is the foreground reserve, which
is connected to the battery via a high rate tap. The second
is a low rate reserve connected to the battery via a low rate
tap. An application’s tap to the background reserve always

allows energy to flow; however, the foreground tap is set
to a rate of 0 while the application is running in the back-
ground, and is set to a high value when the application is
running in the foreground. The task manager is the creator
of the tap connecting the application to the foreground re-
serve and, by default, is the only thread privileged to modify
the parameters on the tap. Since programs are confined to
low power while in the background, the user’s expectations
are respected. Section 6.3 evaluates this configuration.

5.5 Cooperative Network Stack
Some of the most energy-hungry devices on a mobile plat-
form have complex, non-linear power models (e.g. the data
path and the GPS). Careful control over how applications use
such devices can result in energy savings. Section 4 shows
that the radio has a high initial cost and a much smaller amor-
tized price for bulk transfers. This power profile is a prob-
lem for some periodic background applications like email
checkers, RSS feed downloaders, weather widgets, and time
synchronization daemons. Cinder’s network stack, netd, im-
proves energy efficiency for this typical class of applications
through using two mechanisms: precise resource accounting
across process boundaries and flexible sharing and resource
transfer control.

5.5.1 Accurate Accounting via Gates
To accurately track which threads cause resource consump-
tion, Cinder uses HiStar’s gates, which form the basis of
inter-process communication. A gate is a named entry point
in an address space, typically corresponding to a daemon or
system service available over IPC. Unlike traditional IPC,
in which a thread in a client process sends a message to a
thread in a server process, here the calling thread itself en-
ters the server’s address space.

Since Cinder tracks resource consumption by the active
reserve of a thread, the caller of a system-wide service, like
netd, is billed for resource consumption it causes, even while
executing in the other address space. Other systems, such as
Linux, would need some form of message tracking during
inter-process communication in order to heuristically bill the
principals for resource consumption, whereas Cinder pro-
vides accurate accounting naturally. Section 7.1 details the
complications that arose in reproducing Cinder atop Linux.

5.5.2 Encouraging Cooperation
To facilitate sharing, netd contains a reserve where threads
cooperatively save up energy for a radio power up event. For
each thread that makes a network system call, if the sum of
its own reserve and netd’s reserve are not sufficient for the
power on, the call blocks, contributes the energy acquired
by its taps to the netd reserve, and sleeps to accumulate
more. When there is sufficient energy to turn the radio on and
perform the transmissions requested by the waiting threads,
Cinder debits the reserve and permits the threads to proceed.
The netd reserve is not subject to the system global half-

Figure 8. The mail checker and RSS feed downloader are con-
strained to use up to 37.5 mW apiece. When making network re-
quests, netd explicitly transfers energy from their reserves into its
own reserve. Once the requesting application’s reserve, combined
with the netd reserve, has enough energy, the radio will turn on.
This simple policy helps synchronize applications’ network access,
reducing active radio time and saving energy.

life, as the process is trusted not to hoard energy and, by
construction, only stores enough energy to activate the radio
before being expended.

Cinder estimates the cost of radio access by tracking
when network transmit and receive events occur. For in-
stance, if the radio has been idle for 20 seconds or more,
threads wishing to use the network must contribute enough
energy to turn the radio on and maintain the active power
state until it idles again (§4). Once the radio is on, back-to-
back actions are cheaper than ones with more delay between
them because they extend the active period (delay the next
idle period) less significantly.

For example, if the radio has been active for one second,
it will automatically idle again 19 seconds later, so transmit-
ting now only extends the active period by 1 second. How-
ever, if the radio is active but no packets have been sent or
received for 15 seconds, transmitting now will extend the
active period by an additional 15 seconds – the same action
becomes much more expensive.

This leaves the problem of how to charge for incoming
packets since energy has already been spent to receive them.
To facilitate this, threads can debit their own reserves up to
or into debt even if the cost can only be determined after-
the-fact. This allows user space accounting; for example, in
this case the receiving thread under the control of netd’s send
gate debits its own reserve when packets are delivered to it.

Section 6.4 evaluates the effectiveness of netd in aiding
cooperation between applications to increase the responsive-
ness of services while retaining their energy budget.

6. Evaluation
Using the applications described in §5, we evaluate whether
Cinder meets the requirements described in Sections 1 and
2: can it control energy, provide visibility into the energy of a
running system, and provide subdivision, delegation, as well
as isolation? Furthermore, we evaluate whether Cinder can
facilitate dynamic energy-aware applications and improve
a system’s energy efficiency by managing complex devices
with non-linear power consumption.

Time (s)

0 10 20 30 40 50 60

E
s
t.
 P

o
w

e
r

(m
W

)

0

20

40

60

80

100

120

140

160

180

A

B

B1

B2

B forks B1

B forks B2

Figure 9. Stacked graph of Cinder’s CPU energy accounting
estimates during isolated process execution. Process A’s energy
consumption is isolated from other processes’ energy use despite
B’s periodic spawning of child processes (B1 and B2). The sum
of the estimated power of the individual processes closely matches
the measured true power consumption of the CPU of about 139
mW during this experiment.

All experiments exception the image viewer of §6.2 use
Cinder running on an HTC Dream. The image viewer evalu-
ation was performed on a Lenovo T60p laptop. To measure
power draw, we connect the Dream to the Agilent E3644A
DC power supply. To monitor reserve energy levels we use
the Dream’s serial port output.

6.1 Isolation, Subdivision, and Delegation: Buggy and
Malicious Applications

We first show how a simple use case – protecting the system
from a buggy or malicious energy hog – requires isolation,
subdivision, and delegation. Figure 9 shows a stacked plot
of Cinder’s energy accounting estimates of two processes,
A and B. In this experiment, the system is configured to
evenly subdivide and delegate enough power to fully utilize
the CPU between the two processes (about 68 mW to each
process since running the CPU costs 137 mW).

Process B spawns a new child process at about 5 seconds
(B1) and again at about 10 seconds (B2). Without reserves
and taps, these additional processes would cause A to receive
a smaller share of the CPU. Here, however, Process A is
isolated from these forks and still consumes about 50% of
the CPU (and power share).

This experiment highlights the fine-grained nature of Cin-
der’s control: not only is A isolated from B, but B is also able
to protect itself from its own children, B1 and B2. Rather
than have its children draw from B’s own reserve, B cre-
ates two new reserves subdividing and delegating its power
to each using two taps. Each of the taps has one-quarter the
power of B’s tap, such that after spawning both they are us-
ing half of B’s power. Figure 9 shows that both A and B’s
policies are composed and enforced in the expected way.

6.2 Subdivision and Delegation: Image Viewer
To demonstrate the practicality of energy-aware applications
in Cinder, we used our image viewer described in §5.3,

 0

 50000

 100000

 150000

 200000

 0 500 1000 1500 2000 2500
 0
 100
 200
 300
 400
 500
 600
 700
 800

R
e
s
e
rv

e
 L

e
v
e
l
(µ

J
)

T
ra

n
s
fe

r
ra

te
 (

K
iB

)

Time (seconds)

Reserve Level without Application Scaling

Figure 10. The same image viewer application as in §5.3, but
without dynamic scaling of image quality. The line represents
energy in the downloader’s reserve while the bars represent the
amount of data downloaded per image.

 0

 50000

 100000

 150000

 200000

 0 50 100 150 200 250 300 350 400 450
 0
 100
 200
 300
 400
 500
 600
 700
 800

R
e
s
e
rv

e
 L

e
v
e
l
(µ

J
)

T
ra

n
s
fe

r
ra

te
 (

K
iB

)

Time (seconds)

Reserve Level with Application Scaling

Figure 11. Image viewer with energy-aware scaling of image
quality enabled. As energy becomes scarce, quality is lowered and
less data is downloaded per image. The experiment takes less than
one-fifth the time to complete within the energy budget versus the
non-adaptive viewer due to adaptation to reduced available energy.

tested with and without energy-aware image scaling. The
tests mimic a user loading a page of images, pausing to view
the images, and then requesting more. We tracked the energy
reserve levels, the amount of data transferred over the net-
work interface, the download time for each batch of images,
and the average bytes transferred per image over time. Each
image was of similar size (∼2.7 MiB) and each batch con-
tained the same number of images. Pausing between batches
allowed the energy reserve for the downloader thread to fill
at a constant rate. The first pause lasted for 40 seconds, with
each successive pause being 5 seconds shorter than the pre-
vious pause, so a smaller amount of energy built up in the
reserve after each batch was downloaded.

When image download sizes are not scaled back as in
Figure 10, the amount of data transferred stays constant per
batch. With each successive batch, the amount of energy in
the reserve at the start of the batch decreases since the user
pauses more briefly after downloading. Thus the reserve runs
out soon after the start of each batch in this case, with the
image transfers stalling until enough energy is available for
the thread to continue, causing a long run time.

When image requests use energy-aware scaling as in Fig-
ure 11, the quality of images and bytes transferred for each
image drops as the energy level dips, and the transfer time
per image decreases with the smaller image data. Over the
course of the test, the level of energy present in the reserve
dropped below the threshold, but never to zero. The images

downloaded 5 times more quickly than the viewer which
does not scale the images.

6.3 Delegation and Subdivision: Background
Applications

Section 5.4 presented a configuration where system power is
subdivided into a highly powered task manager reserve and
a low powered background reserve. These reserves delegate
their energy to applications running in the foreground and
background, respectively, allowing background applications
to continue to make slow forward progress, but keeping
foreground applications responsive. This experiment uses a
configuration identical to Figure 7.

Figure 12a shows two processes spinning on the CPU,
initially in the background. The background tap provides the
two of them 14 mW, enough to keep the 137 mW CPU at
10% utilization. At about 10 seconds, the task manager se-
lects Process A as the foreground process, granting it enough
energy to fully utilize the CPU (137 mW). Process B con-
tinues to run according to its background power share of
14 mW. At the 20 second mark, the task manager retires
Process A to the background by setting its foreground tap
rate to 0 mW. At 30 seconds, the task manager gives Process
B access to the foreground resources and, similarly, returns
it to the background at 40 seconds.

Figure 12b highlights the need for Cinder to prevent
large-scale hoarding. The configuration is the same ex-
cept the foreground tap gives 300 mW of power. Because
300 mW is greater than the CPU cost of 137 mW, applica-
tions in the foreground can accumulate excess energy. The
two processes move in and out of the foreground as before,
but this accumulated energy changes their behavior. When B
is moved to the foreground, A still has plenty of energy, and
so competes with B for the CPU such that each receives a
50% share. After A exhausts its energy, it returns to its orig-
inal 14 mW. Shortly thereafter, B moves to the background
as well. But just as A did, B accumulated energy during its
time in the foreground and so is able to use ∼90% of the
CPU until it exhausts its reserve.

The system-wide half-life both caps the total energy
hoarding possible during foreground operation and returns
applications to the natural background power over a 10
minute period. This allows a process to perform an elevated
amount of work briefly after returning to background status
if it underutilized its resources while in the foreground.

6.4 Delegation: Cooperative Network Stack
We demonstrate the effectiveness of Cinder’s modified netd
(shown in Figure 8), comparing it to an energy-unrestricted
network stack. In both experiments, an RSS feed downloader
starts with a poll interval of 60 seconds. Fifteen seconds
later, a mail fetcher daemon starts, also with a 60 second
poll interval. Both applications are provided enough power
to start the radio every 60 seconds, if they work in unison.

Time (s)

0 10 20 30 40 50 60

E
s
t.
 P
o
w
e
r
(m

W
)

0

40

80

120

160

A B

A in foreground
B in foreground

(a)

Time (s)

0 10 20 30 40 50 60

E
s
t.
 P
o
w
e
r
(m

W
)

0

40

80

120

160

A
B

A in foreground
B in foreground

(b)

Figure 12. Stacked graph of Cinder’s CPU energy accounting
estimates as processes A and B spin on the CPU. Together, they
are allowed 14 mW while in the background. The task manager
runs A in the foreground in the 10 - 20 second interval and B in the
foreground during the 30 - 40 second interval. (a) shows the results
for the foreground tap providing the process with 137 mW (the
precise cost of using the CPU at 100%). (b) shows the foreground
tap providing the process with 300 mW. The dotted line shows
actual power measurements compensated for baseline power draw
with an idle CPU and averaged over 1 second intervals.

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

W
a

tt
s

Seconds

Uncooperative Radio Access

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

W
a

tt
s

Seconds

Cooperative Radio Access Using Reserves and Limits

Figure 13. Two background applications, a pop3 mail and an
RSS fetcher, each poll every sixty seconds. a) Since they are not
coordinated, their use of the radio is staggered, resulting in in-
creased power consumption. Each application uses the radio for at
most a few seconds, but neither takes advantage of the other hav-
ing brought the radio out of the low power idle state. b) The same
mail and RSS background applications using reserves and limits to
coordinate their access to the radio data path. Enough energy is al-
located to each application to turn the radio on every two minutes.
By pooling their resources, they are able to turn the radio on at most
every sixty seconds.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200

J
o

u
le

s

Seconds

netd Reserve Level Over Time

Figure 14. The level of the reserve into which the two back-
ground applications transfer their allotted joules. When the reserve
reaches a level sufficient to pay for the cost of transitioning the ra-
dio to the active state, it is debited, the radio is turned on, and the
processes proceed to use the network. Although Figure 4 showed
an average 9.5 J cost to power up the radio, netd requires 125%
of this level before turning the radio on, essentially mandating that
applications have extra energy to transmit and receive subsequent
packets. Therefore, the reserve does not empty to 0.

Non-Coop Coop Improv
Total Time 1201s 1201s N/A

Total Energy 1238J 1083J 12.5%
Active Time 949s 510s 46.3%

Active Energy 1064J 594J 44.2%

Table 1. Improvements in energy consumption and active radio
time using cooperative resource sharing in Cinder. Energy use due
to the radio is reduced, resulting in a 12.5% total system power
reduction over the 20 minute experiment.

Figure 13a shows the uncooperative applications wasting
energy – running when the radio is idle and powering it up
independently. Neither combines efforts to amortize costs.

In comparison, Figure 13b shows what happens with the
modified netd. Each application still only receives enough
energy to activate the radio every two minutes; however,
when they initiate network operations, their threads block
and contribute acquired energy to the netd reserve (Fig-
ure 14). Since the two threads combine their power in the
netd reserve, every 60 seconds enough energy is saved to
use the radio and both applications proceed simultaneously.

Using delegation, independent applications in Cinder au-
tomatically collaborate, improving quality of service. In this
case, the improved quality of service is increasing the fre-
quency of mail and news checks by a factor of two, using
the same energy budget. Table 1 shows the energy savings of
the modified netd. In total, 12.5% less energy is used in the
same time interval for an equivalent amount of work. While
significant, we stress that our baseline power consumption
is artificially dominant, as Cinder does nothing to place the
hardware into lower power states while idle in contrast to
Linux. We expect Cinder to provide greater improvement on
a mature mobile platform that makes full use of power sav-
ing features.

Figure 15. Cinder may only indirectly access many hardware
features, such as the radio and GPS, by passing messages to a
secure ARM9 coprocessor.

Figure 16. The user-level smdd daemon manages the shared
memory interface on the ARM11 and exports interfaces to the ra-
dio, GPS, battery sensor, and so on via gate calls. Consumers of this
interface, such as the radio daemon, rild, may also export their own
gate calls. netd, for example, implements gates for libOS TCP/IP
sockets. Gates are used by both user applications (browser, dialer)
and OS daemons (netd, etc.).

7. Experience Developing on a Mobile
Platform

We ported Cinder to the HTC Dream mobile phone. Because
developing a kernel for a mobile phone platform is a non-
trivial task that is rarely attempted, we describe our process
here in detail.

To run Cinder on the HTC Dream, we first ported the ker-
nel to the generic ARM architecture (2,380 additional lines
of C and assembly). MSM7201A-specific kernel device sup-
port for timers, serial ports, framebuffer, interrupts, GPIO
pins, and keypad required another 1,690 lines of C. Cin-
der implements the GSM/GPRS/EDGE radio functionality
in userspace with Android driver ports.

Implementing radio functionality is particularly difficult,
as it requires access to secure and undocumented hard-
ware that is not directly accessible from the processor.
For instance, the MSM7201A chipset includes two cores:
the ARM11 runs application code (Cinder), while a se-
cure ARM9 controls the radio and other sensitive features
(Figure 15). Accessing these features requires communi-
cating between the cores using a combination of shared
memory and interrupt lines. We first mapped the shared
memory segment into a privileged user-level process and
ported the Android Linux kernel’s shared memory device
to userspace (Figure 16). This daemon, smdd (4,756 lines),

exports ARM9 services via gate calls to other consumers,
including the radio interface library (RIL). The RIL gener-
ates and consumes messages between cores that initiate and
respond to radio events, such as dialing a number or being
notified of an incoming call.

In Android, the radio interface library consists of two
parts: an open source generic interface library that pro-
vides common radio functions across different hardware
platforms, and a device-specific, Android-centric shared ob-
ject that interfaces with specific modem hardware (libril.so).
Unfortunately, libril.so is closed-source and precompiled for
Android: this makes it excessively difficult to incorporate
into another operating system. Without hardware documen-
tation or tremendous reverse engineering, using the radio
requires running this shared object in Cinder. To do so, we
wrote a compatibility shim layer to emulate both Android’s
“bionic” libc interface, as well as the various /dev devices
it normally uses to talk to the ARM9 (1,302 lines of C). We
rewrote the library’s symbol table to link against our com-
patibility calls, rather than the binary-incompatible uClibc
functions and syscalls that regular Cinder applications use.
Finally, we wrote a port of the radio interface library front-
end that provides gates to service radio requests from appli-
cations needing network access.

Cinder currently supports the radio data path (IP), and
can send and receive SMS text messages. Cinder can also
initiate and receive voice calls, but as it does not yet have a
port of the audio library, calls are silent. In retrospect, since
hardware documentation is unavailable, basing our solution
on Android, rather than HiStar, would have been far simpler
from a device support perspective. Crucially, however, our
implementation atop Linux trades the simple and accurate
IPC resource accounting needed in energy management for
device drivers (§7.1). We felt that a cleaner slate justified the
additional tedium as well as the reduced hardware support
present in our prototype.

In summary, even trivial radio operation is quite compli-
cated, requiring about 12,000 lines of userspace code along
with the 263 KiB closed libril.so. In comparison, the entire
Cinder kernel consists of about 27,000 lines of C for all four
CPU architectures and all device drivers. The kernel is only
644 KiB – less than 2.5 times the size of libril.so.

7.1 Cinder-Linux versus Cinder-HiStar
Cinder was initially implemented on HiStar because several
key behaviors of the platform are naturally expressible using
HiStar’s abstractions.

One such feature of Cinder is resource delegation be-
tween principals. Consider a common situation where a
client process P requires work to be performed on its be-
half by a daemon process D. A real world example is the
radio interface layer daemon on the Android platform. Cin-
der must ensure P is charged for any work D performs on
its behalf – or, equivalently, it must ensure that P provides
the resources that D’s code uses to run.

HiStar’s abstractions achieve this behavior cleanly and
simply. A process in HiStar is a container, containing an
address space and one or more threads. IPC is performed
through special gates defined by the process – a thread be-
longing to process P can enter a gate defined by process
D, after which the thread has access to D’s address space,
though while under control of D’s code text. When process
P requires service from daemon D a thread, T , belonging
to P enters D’s address space via a gate. Cinder debits T
for work it performs as usual even though it executes under
the control of D’s code, correctly billing consumption to P .
This way, HiStar’s IPC mechanism easily achieves the de-
sired delegation behavior.

Linux, on the other hand, uses several different facili-
ties to provide IPC, many of which are based upon message
passing between processes. A few examples are pipes, Unix
domain sockets, message queues, and semaphores. These
forms of IPC occur without any resource sharing or attribu-
tion between processes. This subverts delegation since pro-
cess P may elicit work by daemon D on its behalf without
providing the resources for the work.

To compensate, Linux needs to verify that the calling pro-
cess has provided adequate resources to perform the desired
request. However, existing IPC mechanisms in Linux are not
built with the goal of discovering the identity of the caller
in mind. Consider a daemon D that reads requests from a
named pipe in the filesystem. When D reads from the pipe,
it only knows the writing process has permissions to access
the pipe. In general, it cannot identify which process in the
system made the request, and thus does not know which pro-
cess to debit.

To mitigate this problem, Cinder-Linux needs a way for
the daemon to determine the identity of the calling process.
One possibility is to have a user level protocol in which a
calling process P encodes both its identity and a description
of how D can access resources that P has set aside for D
within the request. For example, it could format a request
as a triple: 〈pid, reserve id, request〉. D accesses the
reserve named in the request, and only performs work once
it ensures the caller has provided sufficient resources in pay-
ment. Since a user level process can lie abouts it creden-
tials, the protocol is not robust against malicious applica-
tions. A more robust mechanism would require new kernel
IPC mechanisms.

Both Cinder-HiStar and Cinder-Linux must prevent re-
source misuse. In particular, D must not co-opt P ’s re-
sources for performing unrelated tasks, and process P must
provide resources for work performed by D on its behalf.
Providing these guarantees on Linux requires either a fine
grained permissions system or, alternatively, some form of
information flow control or tracking (with which the daemon
could determine which process sent a given request). In con-
trast, HiStar’s existing information flow control mechanisms
easily provide the necessary protection.

Linux has the benefit of being an established operating
system with vast device driver support and the entire An-
droid platform. As a result, it is easier to write real-world
applications. Consequently, we have written an initial im-
plementation of Cinder that runs on top of the Linux and the
Android platform on the Dream. The basics of Cinder-Linux
remain the same as Cinder-HiStar aside from resource at-
tribution issues for IPC and fine-grained permissions. Most
implementation of the Cinder abstractions are independent
of the underlying operating system and similar on HiStar
and Linux. Some differences in the implementation do ex-
ist, however. For example, Cinder-HiStar flows taps during
scheduler timer interrupts, while Cinder-Linux uses a kernel
thread. One area of future work is further testing the con-
cepts and features of Cinder on the Cinder-Linux platform.

8. Related Work
We group related work into three categories: resource man-
agement, energy accounting, and energy efficiency.

8.1 Resource Management
Cinder’s taps and reserves build on the abstraction of re-
source containers [Banga 1999]. Like resource containers,
they provide a platform for attributing resource consump-
tion to a specific principal. By separating resource manage-
ment into rates and quantities, however, Cinder allows ap-
plications to delegate with reserves, yet reclaim unused re-
sources. This separation also makes policy decisions much
easier. Since resource containers serve both as limits and
reservations, hierarchical composition either requires a sin-
gle policy (limit or reserve) or ad hoc rules (a guaranteed
CPU slot cannot be the child of a CPU usage limit).

Linux has recently incorporated “cgroups” [Menage
2008] into the mainline kernel, which are similar to resource
containers, but group processes rather than threads. They are
hierarchical and rely on “subsystem” modules that schedule
particular resources (CPU time, CPU cores, memory).

ECOSystem [Zeng 2002, 2003] presents an abstraction
for energy, “currentcy”, which unifies a system’s device
power states. It represents logical tasks using a flat form
of resource containers [Banga 1999] by grouping related
processes in the same container. This flat approach makes it
impossible for an application to delegate, as it must either
share its container with a child or put it in a new container
that competes for resources. Like ECOSystem, Cinder esti-
mates energy consumption with a software-based model that
ties runtime power states to power draw.

ECOSystem achieves pooling similar to Cinder’s netd

for devices with non-linear power consumption (disk and
network access), using unique cost models for each device.
Cinder simplifies construction of these policies using its
fine-grained protection mechanism and reserves to provide
the same result in userspace.

8.2 Measurement, Modeling, and Accounting
Accurately estimating a device’s energy consumption is an
ongoing area of research. Early systems, such as ECOSys-
tem [Zeng 2002], use a simple linear combination of device
states. Most modern phone operating systems, such as Sym-
bian and OS X, follow this approach.

PowerScope improves CPU energy accuracy by correlat-
ing instrumented traces of basic blocks with program ex-
ecution [Flinn 1999b]. A more recent system, Koala, ex-
plores how modern architectures can have counter-intuitive
energy/performance tradeoffs, presenting a model based on
performance counters and other state [Snowdon 2009]. A
Koala-enabled system can use these estimates to specify a
range of policies, including minimizing energy, maximizing
performance, and minimizing the energy-delay product. The
Mantis system achieves similar measurement accuracy to
Koala using CPU performance counters [Economou 2006].

Quanto [Fonseca 2008] extends the TinyOS operating
system to support fine-grained energy accounting across ac-
tivities. Using a custom measurement circuit, Quanto gener-
ates an energy model of a device and its peripherals using
a linear regression of power measurements. By monitoring
the power state of each peripheral and dynamically tracking
which activity is active, Quanto can give precise breakdowns
of where a device is spending energy.

PowerBooter and PowerTutor [Zhang 2010] explore the
generation of detailed power models for a full-featured
smartphone (the HTC Magic) providing application power
consumption estimation and feedback for tuning.

Cinder complements this work on modeling and account-
ing. Improved hardware support to determine where energy
is going would make its accounting and resource control
more accurate. On top of these models, Cinder provides a
pair of abstractions that allow applications to flexibly and
easily enforce a range of policies.

8.3 Energy Efficiency
There is rich prior work on improving the energy efficiency
of individual components, such as CPU voltage and fre-
quency scaling [Flautner 2002; Govil 1995], spinning down
disks [Douglis 1995; Helmbold 1996], or carefully select-
ing memory pages [Lebeck 2000]. Phone operating systems
today tend to depend on much simpler, but still effective
optimization schemes than in the research literature, such
as hard timeouts for turning off devices. The exact mod-
els or mechanisms used for energy efficiency are orthogonal
to Cinder: they allow applications to complete more work
within a given power budget. The image viewer described in
§5.3 is an example of an energy-adaptive application, as is
typical in the Odyssey system [Flinn 1999a].

9. Future Work
We believe that the reserve and tap abstractions may be fruit-
fully applied to other resource allocation problems beyond

energy consumption. For instance, the high cost of mobile
data plans makes network bits a precious resource. Applica-
tions should not be able to run up a user’s bill due to expen-
sive data tariffs, just as they should not be able to run down
the battery unexpectedly. Since data plans are frequently of-
fered in terms of megabyte quotas, Cinder’s mechanisms
could be repurposed to limit application network access by
replacing the logical battery with a pool of network bytes.
Similarly, reserves could also be used to enforce SMS text
message quotas.

Using the HTC Dream’s limited battery level information
Cinder could adapt its energy model based on past compo-
nent and application usage, dynamically refining its costs.
Though Cinder can facilitate this, and we have made some
adjustments to test this, evaluating the complex and dynamic
system this would yield will require additional research.

10. Conclusion
Cinder is an operating system for modern mobile devices. It
uses techniques similar to existing systems to model device
energy use, while going beyond the capabilities of current
operating systems by providing an IPC system that funda-
mentally accounts for resource usage on behalf of principals.
It extends this accounting to add subdivision and delegation,
using its reserve and tap abstractions. We have described and
applied this system to a variety of applications demonstrat-
ing, in particular, their ability to partition applications to en-
ergy bounds even with complex policies. Additionally, we
showed Cinder facilitates policies which enable efficient use
of expensive peripherals despite non-linear power models.

Acknowledgments
We thank John Ousterhout, the anonymous reviewers, and
our shepherd, Liuba Shrira, for their feedback. This work
was supported by generous gifts from DoCoMo Capital,
the National Science Foundation under grants #0831163,
#0846014, and #0832820 POMI (Programmable Open Mo-
bile Internet) 2020 Expedition Grant, the King Abdullah
University of Science and Technology (KAUST), Microsoft
Research, T-Mobile, NSF Cybertrust award CNS-0716806,
and an NSERC Post Graduate Scholarship. This research
was performed under an appointment to the U.S. Department
of Homeland Security (DHS) Scholarship and Fellowship
Program, administered by the Oak Ridge Institute for Sci-
ence and Education (ORISE) through an interagency agree-
ment between the U.S. Department of Energy (DOE) and
DHS. ORISE is managed by Oak Ridge Associated Uni-
versities (ORAU) under DOE contract number DE-AC05-
06OR23100. All opinions expressed in this paper are the au-
thors’ and do not necessarily reflect the policies and views
of DHS, DOE, or ORAU/ORISE.

References
[Com 1988] THE EXECUTIVE COMPUTER; Compaq Finally

Makes a Laptop. http://www.nytimes.com/1988/10/23/

business/the-executive-computer-compaq-finally-

makes-a-laptop.html, 1988.

[Fla 2009] Adobe and HTC Bring Flash Platform to Android, June
2009. http://www.adobe.com/aboutadobe/pressroom/

pressreleases/pdfs/200906/062409AdobeandHTC.pdf.

[App 2010] Apple Previews iPhone OS 4, April 2010. http://

www.apple.com/pr/library/2010/04/08iphoneos.html.

[Banga 1999] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul.
Resource containers: a new facility for resource management
in server systems. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation, pages 45–58,
New Orleans, LA, 1999.

[Douglis 1995] Fred Douglis, P. Krishnan, and Brian N. Bershad.
Adaptive Disk Spin-down Policies for Mobile Computers. In
Proceedings of the 2nd Symposium on Mobile and Location-
Independent Computing, pages 121–137, 1995.

[Economou 2006] Dimitris Economou, Suzanne Rivoire, and
Christos Kozyrakis. Full-system power analysis and modeling
for server environments. In Proceedings of the 2nd Workshop on
Modeling, Benchmarking and Simulation, Boston, MA, 2006.

[Flautner 2002] Krisztian Flautner and Trevor Mudge. Vertigo: au-
tomatic performance-setting for linux. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation,
pages 105–116, Boston, MA, 2002.

[Flinn 1999a] Jason Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles, pages 48–
63, Charleston, SC, 1999.

[Flinn 1999b] Jason Flinn and M. Satyanarayanan. PowerScope:
A Tool for Profiling the Energy Usage of Mobile Applications.
In Proceedings of the 2nd IEEE Workshop on Mobile Computer
Systems and Applications, New Orleans, LA, 1999.

[Fonseca 2008] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and
Ion Stoica. Quanto: Tracking Energy in Networked Embedded
Systems. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation, pages 323–338, 2008.

[Govil 1995] Kinshuk Govil, Edwin Chan, and Hal Wasserman.
Comparing algorithm for dynamic speed-setting of a low-power
CPU. In Proceedings of the 1st Conference on Mobile Comput-
ing and Networking, pages 13–25, Berkeley, CA, 1995.

[Helmbold 1996] David P. Helmbold, Darrell D. E. Long, and
Bruce Sherrod. A dynamic disk spin-down technique for mobile
computing. In Proceedings of the 2nd Conference on Mobile
Computing and Networking, pages 130–142, Rye, NY, 1996.

[Lebeck 2000] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and
Carla Ellis. Power aware page allocation. In Proceedings of
the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 105–
116, Cambridge, MA, 2000.

[Menage 2008] Paul Menage. cgroups, Octo-
ber 2008. http://git.kernel.org/?p=linux/

kernel/git/torvalds/linux-2.6.git;a=blob;

f=Documentation/cgroups/cgroups.txt;hb=

b851ee7921fabdd7dfc96ffc4e9609f5062bd12.

[Snowdon 2009] David C. Snowdon, Etienne Le Sueur, Stefan M.
Petters, and Gernot Heiser. Koala: a platform for OS-level
power management. In Proceedings of the 4th ACM European
Conference on Computer Systems, pages 289–302, Nuremberg,
Germany, 2009.

[Waldspurger 2002] Carl A. Waldspurger. Memory resource man-
agement in VMware ESX server. SIGOPS Oper. Syst. Rev., 36:
181–194, December 2002. ISSN 0163-5980.

[Zeldovich 2006] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazières. Making information flow explicit
in HiStar. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, pages 263–278, Seattle,
WA, 2006.

[Zeng 2002] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin
Vahdat. ECOSystem: managing energy as a first class operating
system resource. In Proceedings of the 10th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 123–132, San Jose, CA, 2002.

[Zeng 2003] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin
Vahdat. Currentcy: A unifying abstraction for expressing energy
management policies. In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 43–56, San Antonio, TX,
2003.

[Zhang 2010] Lide Zhang, Birjodh Tiwana, Zhiyun Qian,
Zhaoguang Wang, Robert P. Dick, Zhuoqing Morley Mao, and
Lei Yang. Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones.
In Proceedings of the eighth IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis,
CODES/ISSS ’10, pages 105–114, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-905-3.

