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ABSTRACT
Operators of 3G data networks need to distinguish the performance
of each geographic area in their 3G networks to detect and resolve
local network problems. This is because the quality of the “last
mile” radio link between 3G base stations and end-user devices is
a crucial factor in the end-to-end performance that each user expe-
riences. It is relatively straightforward to measure the performance
of all IP traffic in the 3G network from a small number of van-
tage points in the core network. However, the location information
available about each mobile device (e.g., the cell sector/site that
it is in) is often too stale to be accurate because of user mobility.
Moreover, very costly infrastructure deployment and maintenance
of custom equipment would be required to collect fine-grained lo-
cation information about all mobile devices on an on-going basis
in large 3G networks. Thus, it is a challenge to accurately assign
IP performance measurements to fine-grained geographic regions
of the 3G network using existing standard network components.
Fortunately, previous studies have observed that human mobility
patterns are very predictable. In this paper, we exploit this pre-
dictability to develop a novel clustering algorithm grouping related
cell sectors that accurately assigns IP performance measurements
to fine-grained geographic regions. We present results froma pro-
totype in a real 3G network that shows our approach provides more
accurate performance localization than existing approaches. Even-
tually, we can either narrow down individual IP performancemea-
surements into only 4 candidate cell sectors consistently with the
accuracy of 70% over one week based on a one-day snapshot of
fine-grained 3GPP events, or increase the accuracy 20% compar-
ing with site-level accuracy through lightweight handoverstatis-
tics hourly collected at RNCs. Using our approach, we improve
anomaly detection based on IP performance measurements by re-
ducing the number of false positives and false negatives. Our study
also sheds light on the mobility patterns of 3G devices.
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1. INTRODUCTION
Mobile applications over 3G networks are among the fastest grow-

ing classes of network applications today. Network operators thus
have a substantial interest in monitoring the performance of IP data
traffic on their 3G data networks. In particular, operators would
like to continuously monitor which geographical regions intheir
3G networks are performing well and which ones are performing
poorly. This is because the quality of the “last mile” radio link be-
tween 3G base stations and end-user devices is a crucial factor in
the end-to-end performance that each user experiences. Unfortu-
nately, due to protocol, equipment, capacity, and cost limitations,
it is not trivial to accurately associate an end-to-end performance
measurement to the 3G network path that it traversed. We redress
this problem in this paper by developing a novel clustering algo-
rithm and evaluating a prototype system in a real 3G wirelessnet-
work.

The collection of IP-level statistics, such as packet or flowrecords,
is crucial for an operator to understand the end-to-end performance
of its users because they are basic to compute metrics such asend-
to-end throughput, RTT, and loss. Due to the standard organization
of 3G data networks, such as the UMTS network shown in Fig-
ure 1, it is impractical for operators of large 3G networks tocollect
IP-level statistics for all users that can readily be associated with the
geographical regions where they are located. Vendor equipment in
a 3G network does not typically support the capture of IP-level flow
statistics because IP packets are carried in an opaque lower-layer
tunnel from the end-user device all the way to the Gateway GRPS
Support Node (GGSN). Since the capital and labor costs associated
with deploying additional monitoring equipment and backhaul ca-
pacity at all Radio Network Controller (RNC) or Serving Gateway
Support Node (SGSN) locations is prohibitive, monitoring of IP-
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Figure 1: Logical architecture of a UMTS network.

level statistics is only practically performed at the GGSNs, which
are located in only a handful of different locations. However, from
the perspective of a GGSN, it is not possible to determine when a
mobile device moves from one cell sector to another because han-
dover signaling information is not propagated up. The GGSN only
observes the cell sector where the user began his session, the cell
sector when the user moves far enough away from his original loca-
tion that his network path traverses a different SGSN (each SGSN
generally covers an entire metro area), or when the device changes
from 3G to 2.5G coverage. Because users are often mobile, han-
dovers are frequent and the GGSN will often have a stale view of
where users are currently located. This staleness makes it non-
trivial to associate current IP-level performance measurements to
the cell sectors that they are associated with using only information
collected at the GGSN.

RNCs, which observe all handovers that users experience, can
collect accurate information about which cell sector each user is
using at all times. However, not all equipment supports suchfine-
grained user tracking. Moreover, because RNCs are geographi-
cally distributed, significant additional long-haul capacity would
be needed to collect all handover events in a centralized location.
Thus, in large 3G networks, it is only practical to collect such infor-
mation infrequently or in aggregate form. For example, the RNCs
in the UMTS network that we study in this paper only collect hourly
handover statistics per cell sector, rather than real-timecell sector
information per user. This information indicates how many users
move from cell sector to cell sector in aggregate, but not where any
user is at any point in time.

In this paper, we develop a system calledAccuLoc that takes
these two sources of 3G network data — IP-level flow records col-
lected at GGSNs and aggregate handover statistics at RNCs — and
accurately associates end-to-end metrics to different fine-grained
regions of the 3G network.AccuLoc leverages the observation that
human mobility patterns are typically predictable and mostusers
do not tend to move long distances at short time scales. Thus,it
is possible to cluster related cell sectors together using aggregate
handover information. By associating end-to-end measurements to
the cluster in which a user began his session, we can accurately
associate these measurements with fine-grained geographicareas
covered by the 3G network. To evaluateAccuLoc’s accuracy in
associating the end-to-end metrics to fine-grained regions, we have
developed a prototype system in a real 3G wireless network and
evaluate it on data from a large metropolitan area. We show that by
clustering based on aggregate handover statistics,AccuLoc is more
accurate than naïve forms of clustering, such as clusteringpurely
by geographic proximity.

To our best knowledge, our study is the first one quantifying the

localization inaccuracy of IP-level statistics at GGSNs due to stale
views. and leveraging human mobility patterns for cellularopera-
tors to achieve better localization. Through the design anddevel-
opment ofAccuLoc, we make the following five contributions:

• We characterize the localization inaccuracy for mapping the
IP-level statistics at the GGSN to different fine-grained net-
work elements,i.e., cell sectors, base stations, RNCs, and
LACs. The localization accuracy is around 20% at the gran-
ularity of cell sector level. Even if at higher aggregation lev-
els, the accuracy is only around 50% at the cell-site level
and 70% at the RNC level. The low accuracy is because us-
ing cell sites and RNCs to determine which cell sectors are
related cannot capture the dynamics of user moving behav-
iors, which motivates us to obtain human mobility patterns
in advance and leverage it for locating IP-level statisticsac-
cordingly.

• We propose two measurement-driven solutions forAccuLoc
to build human mobility patterns in the terms of which cell
sectors are strongly related,i.e., identifying clusters of re-
lated cell sectors that subscribers have very high probabil-
ity commuting within individual clusters, and leverage the
mobility knowledge to accurately localize IP-level statistics.
The two solutions have different advantages and complement
each other from aspects of the localization accuracy and the
overhead for conducting human mobility patterns. Since hu-
man mobility patterns are dynamic, capturing the variability
of mobility patterns is critical forAccuLoc to outperform
other naïve solutions.

• Our first solution,i.e., BIGRAPH , requires a snapshot of
3GPP signaling events at RNCs which is expensive for long-
term collection. In order to construct the human mobility
patterns,BIGRAPH groups related cell sectors into small
clusters.BIGRAPH can locate IP-level statistics into only 4
cell sectors with the accuracy of 70% over one week and 50%
after the snapshot of 3GPP signaling events is 5.5-month old.
Note that the mapping IP-level statistics to the correct RNC
is around 70%, but one RNC usually contains 200 – 300 cell
sectors, which is significantly larger thanBIGRAPH ’s clus-
ters.

• Our second solution,i.e., HANDOVER , relies on hourly ag-
gregate handover statistics at cell sectors instead of expensive
3GPP signaling events at RNCs.HANDOVER performs as
an alternative toBIGRAPH on condition that the collection
of 3GPP signaling events is not supported or is restricted.
Since it is an inherit tradeoff between the overhead of mea-
surement and localization accuracy.HANDOVER is not
as accurate asBIGRAPH . However, inferring the mobility
patterns from lightweight handover statistics,HANDOVER
still achieves reasonable localization accuracy. Compared
with intuitive solutions such as grouping sectors purely by
cell sites,HANDOVER can overall increase the accuracy
20%.

• We demonstrate thatAccuLoc improves the accuracy of per-
formance anomaly detection, a critical application for net-
work operators. Based on the information inferred from ei-
ther BIGRAPH or HANDOVER of which cell sectors are
related,AccuLoc re-assign the measured IP-level statistics
in order to accurately associate the end-to-end performance
metrics to the correct fine-grained network elements,i.e.,
cell sectors, cell sites, RNCs. Through the re-assignment,



the performance metrics observed at GGSNs are more close
to the ground truth ones directly measured at RNCs. Ap-
plying BIGRAPH in performance anomaly detection,Ac-
cuLoc achieves both the lowest false positive and negative
compared with solutions based on other forms of clustering
sectors.

The rest of this paper is organized as follows: §2 describes the ar-
chitecture of cellular networks and associated protocols,followed
by §3 explaining the main data sources for the input, the ground
truth, and the evaluation. §4 proposes the two solutions,BIGRAPH
andHANDOVER adopted byAccuLoc to build the knowledge of
human mobility patterns. §5 quantifies the performance ofAccu-
Loc in associating metrics to fine-grained network locations. We
discuss the generalizability ofAccuLoc on other types of networks
in §6. Related work is discussed in §7 and we conclude our study
in §8.

2. UMTS BACKGROUND
In order to understand the difficulty in locating IP performance

measurements in UMTS networks, it is useful to have an under-
standing of how a UMTS data network is structured.
Network Elements and Architecture. Figure 1 shows the logi-
cal architecture of a UMTS data network according to the 3GPP
standard. As depicted, a UMTS network is hierarchical. At the
root of the network is a Gateway GRPS Support Node (GGSN). In
practice, there are multiple GGSNs, but they are located in only a
handful of locations [25]. Due to their limited number of physi-
cal locations, it is relatively straightforward to monitorall IP traffic
in the UMTS network at these locations. At the leaves are mobile
devices (user equipment (UE), in 3GPP parlance), which connect
to the UMTS network in a particular cell sector. Each base sta-
tion (NodeB or cell site, in 3GPP parlance) has multiple cellsec-
tors, one for each antenna attached to its cell tower. Typically these
point in different directions and/or operate on different frequencies.
Base stations send their data traffic to Radio Network Controllers
(RNCs), which forward traffic to Serving GPRS Support Nodes
(SGSNs), which, in turn, send the traffic to GGSNs. The GGSN
sends and receives traffic from the Internet.
IP Tunneling. An important characteristic of UMTS networks is
that IP traffic sent by mobile devices is tunneled to the GGSN using
lower layer 3GPP tunneling protocols. As a consequence, none of
the intermediary nodes in the UMTS network can directly inspect
the sent IP packets and a mobile device’s IP address is “anchored”
to the GGSN, regardless of where it moves in the network. This
characteristic ensures that the mobile device can maintainits IP ad-
dress (and thus, its IP connections) even as it is mobile. In this pa-
per, we will focus on the tunnel between the SGSN and the GGSN,
which is called a PDP Context and uses the GPRS Tunneling Pro-
tocol (GTP) (GTP-U to carry data traffic and GTP-C for signaling
control messages).
Session Establishment and Mobility.When a mobile device first
connects to the UMTS network, the PDP Context that carries its
IP traffic is set up. At this point, the originating cell sector and
RNC is reported to the GGSN via GTP-C protocol. When a mobile
device moves to a different sector, the path its data takes through
the UMTS network changes.1 RNCs manage the operation of han-

1In practice, a device can be connected to multiple nearby sectors
at the same time. This set of sectors, typically 1 to 4 in size,is
called the active set. While all sectors in the active set coordinate
to receive uplink data sent by the device, only one, the serving cell,
transmits downlink data to the device at a given time. This istyp-
ically the sector with the highest signal-to-noise ratio. Since the

dovers when a mobile device moves from one sector to another
(e.g., by coordinating base stations and other RNCs). However, to
avoid unnecessary signaling overhead, the change of cell sectors is
not reported to the higher in the hierarchy. Thus, the GGSN isnot
informed that a mobile device has moved unless the SGSN in its
network path changes. This can occur for two reasons: (1) it moves
far enough away that the SGSN changes — typically into a differ-
ent metro area; or (2) the device changes from 3G to 2.5G, WiFi,or
vice versa. The second scenario causes an SGSN change because
the 2.5G hierarchy is different from the 3G hierarchy. This scenario
typically occurs if a device moves from 3G areas that cover primary
urban and suburban areas to 2.5G areas that cover less populated
areas. In addition, the PDP Context is destroyed after an inactivity
period of 2–4 hours or if the device is turned off. Note that the PDP
Context remains alive even if the device is idle. Since smartphone
applications may send periodic keep-alives or “push” notifications,
a PDP Context may persist for hours or even days. Therefore, the
initial cell sector reported to the GGSN when a device first sets up
the PDP Context often is not the sector in which the device cur-
rently is connected.

3. DATA SOURCES
There are several sources of data in a UMTS network that we

can utilize to measure the end-to-end performance experience of
each cell sector. In this section, we describe these sourcesand the
data sets we use to evaluate our prototype system. Note that due to
privacy concerns, all user and device identifiers are anonymized be-
fore any data analysis (e.g., IMSI and IMEI). Anonymization does
not compromise the usefulness of our results.

3.1 Continuously Available Data Sets
We are primarily interested in the performance of IP data traffic

— e.g., the throughput, RTT, loss, etc. of IP data flows. These met-
rics can be extracted from statistics captured about each IPflow [7,
10, 20]. Ideally, we would like to be able to collect IP flow data
such that each IP flow can be mapped to the cell sector where it
originates from or is destined to. Unfortunately, as described in
Section 2, this is not trivial due to lack of available data sources.
This section describes the data sources that can be available on a
regular basis in practice.
Real-time IP Flow Records.It is relatively straightforward to cap-
ture IP flow data from all 3G traffic at all GGSNs because they are
few in number. In the large UMTS network that we study, mea-
surement infrastructure [9] is in place to capture IP flow records
similar to NetFlow records [8] in near real time. GTP-C signaling
messages, described in the next paragraph, are used to map each
IP flow to the originating or destination device, which is identified
by its anonymized IMSI and IMEI. Hereafter, we call these IP flow
recordsIPFlowRecords.
PDP Context Setup Messages.Similarly, it is straightforward for
the same infrastructure to capture the signaling messages sent be-
tween SGSNs and GGSNs via the GTP-C protocol. Most impor-
tantly, PDP Context Setup messages that are exchanged when a
device initially establishes a PDP Context indicate the initial sector
that the device communicates with. PDP Context Update messages
may also indicate a device’s sector when it moves far enough away
from the original sector so that the SGSN changes. Without any
information collected outside the GGSN locations, these are the
best estimates of device location that are available. Hereafter, we

vast majority of data is downlink traffic, in this paper we areonly
concerned with identifying the serving cell correctly.



dataset availability duration description
IPFlowRecords continuously 1 day real-time IP flow records collected at theGGSN
PDPSetupLocations continuously 1 week sector information in PDP Context Setupmessages collected at the GGSN
HandoverCounters continuously 1 week hourly aggregate handover counters foreach sector pair reported by RNCs
RNCGroundTruth infrequently 1 week ground truth sector information for each device from 3GPP events collected at RNCs

Table 1: Datasets used in the evaluation of AccuLoc.

call the estimates of device location derived from these messages
PDPSetupLocations.
Aggregate Handover Counters. Each RNC keeps track of the
current cell a device is using as part of normal operation. However,
due to vendor limitations and resource constraints, this information
is not recorded. Instead, it is typically only practical to keep ag-
gregate statistics about each sector. For example, the total number
of connections, total number of disconnects, etc. One aggregate
statistic that we can leverage is the total number of handovers be-
tween two sectors. In other words, for each pair of sectors(A,B),
a counter is kept that indicates the number of handovers fromA to
B processed per hour. From these handover statistics, we can infer
the aggregate mobility behavior of devices. Hereafter, we call this
set of handover countersHandoverCounters.

3.2 Ground Truth Data
Some RNC equipment can record the current sector that each

device is using at fine time scales. More specifically, some equip-
ment can capture all 3GPP signaling events at the RNC level, such
as handover events. However, this recording places additional load
on RNC equipment that can interfere with normal operation, as the
CPU, memory, and storage constraints of RNC equipment are not
designed for continuous operation of such recording. Recording is
typically only enabled for troubleshooting. In addition, the volume
of such data is substantial (tens of GB per day for a single RNC),
so backhauling the data to a central data collector for correlation
with IPFlowRecords requires investment of additional resources.
Finally, not all RNC vendors support such recording. Therefore,
although it is possible to collect such data from a small number of
RNCs periodically (e.g., once every few days), continuous collec-
tion to support real-time performance localization is not possible.

In order to evaluate different approaches to our localization prob-
lem, we collect a sample of this “ground truth” data. Hereafter, we
refer to this data asRNCGroundTruth .

3.3 Evaluation Data Sets
To evaluate our prototype and other approaches to the localiza-

tion problem, we use one contiguous week of data in July 2010
for each of these datasets:PDPSetupLocations, HandoverCoun-
ters, RNCGroundTruth . To evaluate the accuracy of performance
measurements based on these localization approaches, we use one
day of IPFlowRecordsdata during this week. The data we exam-
ine covers all 3G sectors in the greater Los Angeles area. We note
that not all areas have 3G coverage (some only have 2.5G cover-
age). However, since our focus is on 3G performance, we do not
consider data from 2.5G sectors.

The datasets are summarized in Table 1.

4. LOCALIZATION
As we described in the previous section, the originating cell sec-

tor/cell site/RNC of performance measurements is not captured at
the GGSN, so it is difficult to collect fine-grained location infor-

mation about all mobile devices on an on-going basis in large3G
networks.

In this section, we first characterize the localization inaccuracy
based uponRNCGroundTruth . Then we propose two solutions
adopted byAccuLoc to group related sectors together that take ad-
vantage of the predictability of human mobility patterns. Finally,
we evaluate the performance ofAccuLoc in terms of localization
accuracy at the end of this section.

4.1 Characterizing the Inaccuracy of Initial
Sectors

Understanding the duration of PDP Contexts, frequency of han-
dovers, and their relationship to each other is important both for
understanding the performance localization problem we address in
this paper and to shed light on user mobility patterns in cellular net-
works. For example, the persistence of the same location in aPDP
Context suggests how long modern smartphones are active andre-
main in the same metro area, as PDP Contexts only change if a
user changes SGSN due to travel to another metro area, or depar-
ture from the 3G coverage area. Frequency of handovers suggests
how often user mobility and environmental changes cause local ra-
dio characteristics to change substantially (within 1-2 km), as they
typically occur only when the sector with the best signal-to-noise
ratio changes. These characteristics are important for a range of
cellular applications so we study them in detail in this section.

GTP-C signaling messages,i.e., PDPSetupLocations, during
the initial PDP Context Setup provide the location of mobilede-
vices at the time a device is turned on or after several hours of inac-
tivity. 3GPP events collected from RNCs,i.e., RNCGroundTruth ,
provide the location of the mobile devices every 2 seconds interms
of the cell sector where each device is located. By comparingthe
location information ofPDPSetupLocationswith that of RNC-
GroundTruth , we can evaluate how accuratelyPDPSetupLoca-
tions estimates where mobile devices currently are.
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Figure 2: Interval between two consecutive handovers on de-
vice.

One type of 3GPP events inRNCGroundTruth record the oc-
currences of handover. Figure 2 depicts the CDF of the interval
between two consecutive handovers on individual devices. 80% of
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Figure 3: Age of PDP Context age of RNCGroundTruth
records.

handovers happen within 10 seconds after the last handover.Fig-
ure 3 shows the CDF of the age of PDP Contexts of theRNC-
GroundTruth records. Given aRNCGroundTruth record, we
can discover the beginning of its corresponding PDP Contextfrom
PDPSetupLocationsvia the anonymized device identifier. The
timestamp ofRNCGroundTruth record minus the timestamp of
the PDP Context gives us the age of PDP Context. The major-
ity of PDP Contexts fall in the range of 1 hour – 1 day. Given the
presence of such frequent handovers and the longevity of PDPCon-
texts, GGSNs will inevitably miss many sector changes in a single
PDP Context. As a consequence, there is a high probability that the
current cell sector differs from the sector where the PDP Context
Setup starts.

Operators are interested in determining the network path that
each IP flow takes through the UMTS network. This is so that
when IP flows exhibit problems, the problems can be isolated to a
particular cell sector, cell site, or RNC. As a device moves away
from its initial cell sector, the cell site and RNC through which its
IP packets traverse will change. To understand how quickly device
mobility causes the network path to change, we examine how ac-
curately the initial cell sector represents the current network path at
each level of the UMTS network hierarchy.

We define the accuracy of a particular level of the hierarchy cell
sector/cell site/RNC as the percentage of time that the initial ele-
ment the path traverses is the same as the actual element thatthe
path traverses. For example, if the current sector is the same as the
initial sector 20% of the cases, the accuracy at the cell sector level
is 20%. We expect that accuracy at higher levels of the hierarchy
(e.g., RNC) will have higher accuracy, as a device has to move a
greater distance before the path its packets take no longer traverse
that element. Since devices are likely to move farther away from
their initial locations over time, the older a PDP Context is, the
more likely its setup location is inaccurate. Thus, we evaluate the
inaccuracy ofPDPSetupLocationswith PDP Context age.

We evaluate the accuracy at each level of the UMTS network hi-
erarchy: cell sector, cell site, and RNC. In addition, we evaluate
the accuracy of each location area code (LAC). A LAC is the setof
sectors that are paged when a mobile is idle and the network must
search for it (e.g., for an incoming call). Since a device must wake
up when moving from one LAC or another to update its status, net-
work planners attempt to group sectors in a LAC so that inter-LAC
movement is rare. However, this also means that a LAC typically
covers a large number of sectors and is not granular enough topin-
point geographically constrained performance problems. For the
elements in each aggregation level, cell sites cover 3 – 6 sectors,
and RNCs and LACs cover about hundreds of sectors.

Figure 4 shows the accuracy over the PDP Context age at differ-
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Figure 4: Accuracy over PDP Context age / BIGRAPH’s accu-
racy over PDP Context age.

ent levels of hierarchy. As mentioned, we can obtain the PDP Con-
text age for eachRNCGroundTruth record. AggregatingRNC-
GroundTruth records of the same PDP Context age together, we
can identify the probability that the current cell sector isthe same
as the initial cell sector during PDP Context Setup,i.e., accuracy,
for each value of PDP Context age. It is expected that the accuracy
is reasonably high if the PDP Context age is less than 1 minute.
However, the sector-level accuracy decreases very fast as the PDP
Context age increases, which verifies our previous inference from
Figures 2 3. After the PDP Context has been activated for hours, the
accuracy at the sector level is around 20% to 30%, which implies
that 70% to 80% of the end-to-end performance measurements at
the GGSN are assigned to incorrect cell sectors. As expected, the
site-/RNC-/LAC-level accuracy is higher than the sector-level ac-
curacy. However, the site-level accuracy is only 50% to 60% after
the PDP age rises to hours, which means mobile devices have better
than even odds of moving out of its current cell site several hours
after the PDP Context starts. The RNC-level accuracy is 70% to
80% and the LAC-level accuracy is around 90%. Note that a typ-
ical cell site includes 3 – 6 sectors. Each RNC and LAC contains
hundreds of sectors. Thus, it is too coarse-grained to use these ag-
gregations to locate a device to a very granular geographic region.

However, just because these hierarchical clusters of sector, i.e.,
cell site, RNC, or LAC, are not very accurate in locating measure-
ments, it doesn’t mean we cannot discover a better manner of ag-
gregating related sectors. For example, perhaps sectors from two
neighboring sites form a good cluster because they cover twoareas
to which subscribers frequently commute back and forth. In gen-
eral, if movement patterns are common amongst many subscribers,
then we expect that we can learn the patterns and group related
sectors into clusters accordingly.

One way movement patterns can be similar is if users do not
move very far away from the sector in which they started. The ge-
ographic distance between the base station recorded byPDPSetu-
pLocationsand the ground truth base station byRNCGroundTruth
estimates the distance a user has moved. If these distances are gen-
erally small, then human mobility patterns are revealed to some
degree. Figure 5 shows the physical distance between cell site by
thePDPSetupLocationsand the cell site byRNCGroundTruth .
Even if the time after the PDP Context has been initialized one day,
the median distance is still small. The maximum median errordis-
tance is 1.65km although some subscribers can still move away for
more than 10km. This consistently short distance implies that most
subscribers only move within a small geographic area. So if we can
discover which set of sectors are always related (i.e., those between
which users frequently move), we can group them together so that



if we want to predict the current sector of performance measure-
ments inIPFlowRecords based onPDPSetupLocations, we can
have a small set of candidate sectors but in very high confidence.
This technique can be beneficial for detecting performance anoma-
lies and narrowing down problems into a small number of sectors.

Note that Figure 4 shows that the site-level accuracy is poor,
which means subscribers often move in an area served by more
than one cell site. However, subscribers moving across sites do not
necessarily means they moving across many sectors. Subscribers
may always move across a few sectors but these sectors may be in
different cell sites. In the next section, we describe how wecan
learn these small clusters of related sectors, regardless of cell site.
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4.2 Practical Localization Solutions
As we observed in the previous section, using only static infor-

mation to cluster sectors (e.g., by the cell site each sector belongs
to) is not accurate because they do not capture mobility patterns.
We expect that a good heuristic is to learn common movement be-
havior of users and leverage this knowledge to predict the current
sector more accurately.

As mentioned in Section 3, there are two available sources of
data collected at RNCs in addition to theIPFlowRecordsandPDPSe-
tupLocations data collected at the GGSN:HandoverCounters
andRNCGroundTruth . HandoverCounters, aggregate counters
of handovers between each sector, are collected continuously. RNC-
GroundTruth , precise location information based on RNC event
information, cannot be collected continuously, but can be sampled
from small segments of the network every few days. In this section,
we propose two algorithms to build mobility models using these
data sources, given their collection and granularity constraints:BI-
GRAPH andHANDOVER . UsingRNCGroundTruth , BIGRAPH
has higher data collection overhead and is more accurate. However,
we find that the algorithm usingHandoverCounters, i.e., HAN-
DOVER, also provides acceptable accuracy. Both solutions can
be formulated as a version of the sparsest cut of a graph cut prob-
lem [14], so we first describe how to formulate each graph. The
practical algorithm to solve the sparsest cut problem on each graph
is the same.

4.2.1 BIGRAPH : a solution based on one-time snap-
shot of RNCGroundTruth

Since there are often common travel routes between areas that
most people follow, we conjecture that subscribers that begin their
PDP Contexts in the same sector tend to move to similar sectors.
In addition, as we see in Figure 5, most devices do not move very
far away from their initial sector. Based on these observations, we

expect that there will be small clusters of sectors close to each other
that can be grouped together. Subscribers have high probability of
moving within the sectors in the same cluster.

BIGRAPH requires (i) a snapshot ofRNCGroundTruth , and
(ii) the corresponding snapshot ofPDPSetupLocationswhose PDP
Contexts covers the records in the snapshot ofRNCGroundTruth .
BIGRAPH attempts to learn these clusters by creating a graph
of the relationships between the initial sectors inPDPSetupLo-
cationsand the current sectors where devices are located inRNC-
GroundTruth . SinceRNCGroundTruth can only be collected
infrequently,BIGRAPH builds a model of these clusters based on
a set of training data (e.g., collected over one day from all RNCs in
a greater metro area), then the model can be used to predict rela-
tionships in future data whenRNCGroundTruth is not available.

sector
A

sector
B

sector
A

sector
C

sector
B

sector
C

initial sectors
(in PDPSetupLocations)

actual sectors
(in RNCGroundTruth)

w(B,C) =  # RNCGroundTruth measurements
such that initial location is B but actual is C

Figure 6: BIGRAPH constructing the bipartite graph.

As shown by Figure 6, theBIGRAPH builds a bipartite graph
connectingRNCGroundTruth andPDPSetupLocations. Let us
denote the graph asG = (U,V,E), where vertexu in U repre-
sents a sector inPDPSetupLocationsandv in V represents a sec-
tor in RNCGroundTruth . Let w(u,v) be the number ofRNC-
GroundTruth records (once every 2 seconds when a user is ac-
tive) such thatRNCGroundTruth reports a subscriber is inv and
PDPSetupLocationssays the subscriber is inu. M(u) returns the
vertices inV that corresponds to the sector thatu represents inU .
Edges inG that have high weights are strongly related (i.e., lots of
users move from those source sectors to those other sectors). Thus,
we would like to cluster strongly related nodes inV together.

Let a clusteringC1,C2, ...,Cn each be a disjoint subset ofV .
The accuracy of a clustering of sectors (for any clustering method)

is computed as1−E(C1,C2,...,Cn)
N , whereN is the number ofRNC-

GroundTruth records, andE(C1,C2, ...,Cn) is the sum ofw(u,v)
for all (u,v) such thatM(u) is in one clusterCi andM(v) is in an-
other clusterC j, i.e., this sum counts the number ofRNCGroundTruth
records that get assigned to the incorrect cluster. Location accuracy
is thus maximized whenE(C1,C2, ...,Cn) is minimized.

Therefore, given constraints on the size of clusters, the goal is to
minimize the weight of edges that cross clusters. For example, if
we want to clusters to be of size 4, then we want to cut the graph
such that each connected component is only size 4 and the weight
of the edges that cross connected components is minimized. We can
merge the verticesu andM(u) to make the problem be a sparsest
cut problem. We describe how to solve the sparsest cut problem
below in §4.2.3



4.2.2 HANDOVER : a solution based on hourly Han-
doverCounters

Some RNC equipment is incapable of buildingRNCGroundTruth ,
and in some cases, it is imprudent to do so because it may inter-
rupt normal operation. Thus, we formulate a second solutionas
an alternative toBIGRAPH , HANDOVER that uses onlyHan-
doverCounters, the aggregate handover counters. The motivation
behindHANDOVER is that the handover counts between different
sectors represents how frequently subscribers move between those
sectors. Thus a graph with edges weighted by handover countsap-
proximates the degree of movement between sectors.

sector
A

sector
B

sector
C

w(B,C) = Pr[handover from B to C]
w(C,B) = Pr[handover from C to B]

Figure 7: HANDOVER constructing the graph.

Similar toBIGRAPH , HANDOVER also refers to a graph (shown
by Figure 7) to keep the relationship between sectors via weighted
edges. However,HANDOVER does not requireRNCGroundTruth
which is hard to collect continuously. Instead,HANDOVER re-
quires onlyHandoverCounters, the aggregated handover coun-
ters from RNCs which are already collected continuously. Each
edge in the graph reflects the probability for subscribers from the
source sector moving to the destination sector based on these coun-
ters (i.e., Pr[handover fromA to B] = the ratio of handovers from
A to B and the number of devices that enteredA, either by starting
there or via a handover). As withHANDOVER , our goal is to cut
the graph into clusters with minimum edge cut given the constraint
on the cluster size.

We note thatHANDOVER may not perform as well asBI-
GRAPH because it does not distinguish sectors where devices be-
gin PDP Contexts and sectors where they move into. In addition,
it does not take into account the duration that users spend ineach
sector. For example, suppose we want a cluster size of 2. If there
is a high likelihood of handovers betweenA andB, andB andC,
but devices spend very little time active inB (e.g., because it is a
highway sector), then we will be more accurate clusteringA and
C together withoutB, as even though there is frequent movement
betweenA andC to B, there will not often be activity (i.e., mea-
surements). In terms of performance monitoring, we do not care
where users are when they are not active.

4.2.3 Solving the sparsest-cut problems
Once the graph containing the information of mobility patterns

is constructed, bothBIGRAPH andHANDOVER will be formu-
lated as a sparest cut problem,i.e., cutting the graph into connected
components (clusters) of at most a particular size. In practice, we
want the size of clusters to be as small as possible because wewant
to quickly identify the right sector for isolated performance prob-
lems. However, the smaller the cluster, the more information will

be lost since we end up with ignoring the movement between sec-
tors across clusters. We formulate our clustering into a recursive
sparsest cut process. The sparest cut process is a bi-partition of the
vertices in the graph that minimizes the ratio of the weight of edges
across the cut and keeps the two halves balanced. We recursively
apply the sparest cut algorithm on both subgraphs until the size
of these subgraphs hits the constraint on the cluster size. As the
sparest cut is known to be a NP hard problem, we use an existing
approximation algorithm (Kernighan-Lin [14]) to split thegraph
into two and recursively repeat it on both subgraphs until the size
of the subgraphs satisfies the constraint on the predefined cluster
size.

4.3 Localization Accuracy of Clustering Solu-
tions

In order to evaluate the performance of our two solutions, we
measure their accuracy,i.e., the fraction of measurements inRNC-
GroundTruth whose locations agree with each performance mea-
surement’s cluster assignment.

4.3.1 BIGRAPH ’s accuracy in one-time snapshot
As mentioned in §4.2.1,BIGRAPH ’s accuracy can be obtained

by comparing the location of each measurement inRNCGroundTruth
against the initial location of the corresponding records reported by
PDPSetupLocations. Note that the location is at the granularity of
BIGRAPH ’s clusters.

First,BIGRAPH computes the clusters via recursive sparest cut
on a training data set whoseRNCGroundTruth and PDPSetu-
pLocations records were collected on July 21. Eventually, the re-
cursive sparest cut will end with a set of clusters whose sizeare
pre-decided. Second, we evaluate the accuracy on a evaluation data
set with the clusters from the training set. TheRNCGroundTruth
andPDPSetupLocationsrecords on July 22 serve as the evalua-
tion data set. The training data set and the evaluation data set are
very close to each other in time, so the human mobility patterns are
up-to-date. We expectBIGRAPH to achieve its best performance
when our record of human mobility patterns is most up-to-date.

Figure 4 comparesBIGRAPH ’s accuracy with site-/RNC-/LAC-
level accuracy over the PDP Context age. The site-/RNC-/LAC-
level accuracy is the accuracy at the granularity network elements
of site/RNC/LAC. We can observe thatBIGRAPH ’s accuracy is
significantly better than the site-level accuracy. In this compari-
son, the cluster size ofBIGRAPH is 4, while the average number
of sectors for all cell sites is 3 – 6. So,BIGRAPH uses smaller
cluster size but achieve much better accuracy than using cell site to
predict candidate sectors.BIGRAPH ’s accuracy is even compa-
rable to the RNC-level accuracy, but one RNC usually consists of
200 – 300 sectors.

As we mentioned in §4.2.3, cluster size is a constraint on the
recursive sparest cut. The smaller the cluster size, the more infor-
mation is lost by the cutting. However, a smaller cluster size is
beneficial in practice as it reduces the overhead to narrow down
the candidate sectors,i.e., it improves the localization granularity.
Figure 8 shows the impact of cluster size on the accuracy. We can
imagine that if the cluster size is∞, the accuracy will be close to
1. When the cluster size is 1, which is equal to the sector-level
accuracy. When the cluster size is 4, 8, or 16, the accuracy rises
significantly, which confirms our expectation that subscribers usu-
ally move within a small number of sectors.

Figure 9 explains why our small clusters perform better thancell
sites, or even RNCs under some scenarios. We count the numberof
unique cell sites that a singleBIGRAPH ’s cluster includes. From
Figure 9, we can observe that each cluster covers 2 cell sitesin
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Figure 8: BIGRAPH’s and HANDOVER’s accuracy over clus-
ter size.

average when the cluster size is 4. So, the reason for the highac-
curacy ofBIGRAPH is thatBIGRAPH can flexibly capture the
dynamics of human mobility patterns without being restricted by
static network topology,e.g., cell sites.
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Now we consider some issues regarding the deployment ofBI-
GRAPH in 3G networks. In the deployment ofBIGRAPH algo-
rithm, there are 3 important dimensions: accuracy, clustersize, and
number of measurements. The “number of measurements” is im-
portant because more measurements will generally result inhigher
confidence in the summarized value (e.g., average RTT, throughput,
etc.). Figure 10 shows the accuracy under change over the other two
dimensions: number of measurements and cluster size. In this fig-
ure, the “number of measurements” just relabels and rescales the
“PDP Context age” in Figure 4 —i.e., the x-axis varies the PDP
Context age and shows the number of measurements that are at
most each PDP Context age.

4.3.2 BIGRAPH ’s accuracy over short term
Since the evaluation data set of July 22 and training data setof

July 21 are close to each other in time, it is still uncertain how BI-
GRAPH performs if training data were collected less frequently.
Note that being accurate over longer time periods is essential for
BIGRAPH because collectingRNCGroundTruth is expensive and,
consequently, building the training data set is must be infrequent to
be practical. Ideally,BIGRAPH ’s snapshot clusters remain rea-
sonably accurate for a long time.

Although Figure 4 shows thatBIGRAPH ’s accuracy is still sta-
ble over large PDP Context ages, we have to investigateBIGRAPH ’s
performance over time even longer than typical PDP Context ages.
In practice, we believe we can collect one snapshot ofRNCGroundTruth
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once a week. So, in this section, we evaluateBIGRAPH ’s accu-
racy over the week of July 21. We compare the similarity of clusters
over different days in the week. Similarly to §4.3.1, we still use the
same training data set, but have the separated evaluation data sets
from July 18th to July 23 (excluding July 21 and July 22). From
Figure 11, we observe consistently high accuracy after we apply
the clusters from the training data set on the 4 separated evalua-
tion date sets in that week. When the cluster size is limited to 4,
the accuracy can be consistent around 70% over one week. Thus,
we conclude that accuracy does not degrade even if the training for
BIGRAPH is done only once per week.
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Figure 11: BIGRAPH’s accuracy over one week.

4.3.3 BIGRAPH ’s accuracy over large time-scales
In §4.3.2, we observe thatBIGRAPH is able to perform consis-

tently well over a week. To determine whether it would be feasi-
ble to train even less frequently and have less overhead, we push
the time difference between the training data set and the evaluation
data set even longer.

We collect the data sets ofRNCGroundTruth andPDPSetu-
pLocations again on Dec 5, 2010 and serve them as an evaluation
data set, which is 5.5 months later after the training data set on
July 21. Then we check the accuracy by applying the clusters of
the training data set on the evaluation data set. Figure 12 shows
that the accuracy is still reasonable. When the cluster sizeis 4,
BIGRAPH ’s accuracy is higher than site-level accuracy. Using
clusters of 32 sectors,BIGRAPH can achieve the accuracy com-
parable to RNC-level accuracy. Therefore, althoughBIGRAPH
requires expensive overhead inRNCGroundTruth collection, one
snapshot ofRNCGroundTruth can be still acceptable after several
months.

4.3.4 HANDOVER ’s accuracy in real time
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HANDOVER is an alternative ofBIGRAPH on condition that
RNCGroundTruth is not available, since it computes clusters in
real time based on lightweightHandoverCounters. Once per hour,
HANDOVER updates its graph, computes the sparest cut for the
graph, and ends up with a set of clusters. This section evaluates
HANDOVER ’s accuracy.

Figure 13 showsHANDOVER ’s real-time accuracy. Similar as
BIGRAPH ’s accuracy,HANDOVER ’s accuracy is the probability
that the current locations of a measurement ofRNCGroundTruth
agrees with the corresponding initial location byPDPSetupLoca-
tions at the granularity ofHANDOVER ’s clusters. We observe
thatHANDOVER is consistently and significantly better then the
site-level accuracy. Also, we can see that the accuracy is always
higher in the earlier hours of day, which is probably due to users
less movement during the early morning.

Previous Figure 8 shows thatHANDOVER ’s performance is
worse thanBIGRAPH , which is expected becauseRNCGroundTruth
in BIGRAPH captures more information thanHandoverCounters
in HANDOVER such as the start of PDP Contexts. Figure 9 also
confirms thatHANDOVER ’s clusters have slightly smaller cover-
age over the number of cell sites thanBIGRAPH ’s clusters.
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Figure 13: HANDOVER’s accuracy over hours.

The impact of cluster size onHANDOVER is reflected by pre-
vious Figure 8. As withBIGRAPH , the smallerHANDOVER ’s
cluster size is, the more information is lost by the cut. Figure 8
shows that the accuracy degradation ifHANDOVER serves as an
alternative ofBIGRAPH . BIGRAPH ’s accuracy is 20% higher
thanHANDOVER ’s when cluster size is between 2 – 8.

4.4 Naïve Heuristics Perform Poorly
BesidesBIGRAPH andHANDOVER , we investigate another

three solutions based on some straightforward heuristics.These
solutions are potential solutions under extreme cases, such as when

BIGRAPH ’s or HANDOVER ’s prerequisites at RNCs are com-
pletely unavailable.
MAX. This approach is based on eitherBIGRAPH ’s bipartite graph
or HANDOVER ’s graph. Before the approach starts, each sector
itself is a cluster. Once started, each cluster repeatedly absorbs the
neighboring sector that has the maximum edge cost with the sectors
inside this cluster. One cluster stops from growing as soon as it hits
the constraint on cluster size. The whole absorbing processstops if
all clusters are determined.
CLOSE. This approach is similar toMAX , but does not depend
on any knowledge except the latitude and longitude of cell sectors.
Since cell sectors are geographic areas directionally covered by cell
sites, we use the (latitude, longitude) of the corresponding cell sites
to estimate the geographic coverage of cell sectors. Each cluster
repeatedly absorbs the sector with the closest physical distance to
it until it hits the restricted the size.
THRE. This approach is based on eitherBIGRAPH ’s or HAN-
DOVER’s graph. It directly filters out those edges whose weight
are smaller than a predefined threshold. The filtering will poten-
tially leave the graph a set of disjoint clusters. The average cluster
size, the maximum cluster size, and the accuracy is affectedby the
threshold. Note that one disadvantage of this approach is the un-
certainty on the cluster size: the size could be very different across
clusters as shown by Figure 14.THRE ’s maximum cluster size is
much larger than the average cluster size, which indicates the im-
balance of the graph is a natural phenomena. Larger cluster sizes
make it more difficult to assign performance to fine-grained net-
work locations. Increasing the threshold on the minimum cost can
reduce the maximum cluster size, but it results in high inaccuracy
as well.
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Figure 14: THRE’s accuracy and average/maximum cluster
size over threshold.

4.5 Pros and Cons
Figure 15 shows the accuracy of all five solutions as we vary

the cluster size. Comparing the accuracy,BIGRAPH > HAN-
DOVER > MAX ≈ CLOSE ≈ THRE . When the cluster size is 1,
all five solutions have the same accuracy as the sector-levelaccu-
racy. BIGRAPH performs better than site-level accuracy when its
cluster contains more than two cell sectors. With the cluster size is
4, HANDOVER can perform as good as site-level accuracy. The
accuracy ofMAX , CLOSE, andTHRE is not sensitive to cluster
size. Even if the cluster size is 64, these three solutions still cannot
achieve the RNC-level accuracy.

Table 2 summarizes the properties of the five solutions.BI-
GRAPH has the best accuracy, but has the highest measurement
overhead. In order to reduce the overhead, we can create snap-
shot ofRNCGroundTruth periodically. As we discussed before,
a one-day snapshot can perform very well without accuracy degra-
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solution overhead accuracy1 stability
BIGRAPH RNCGroundTruth 70% 1 week – 5 months
HANDOVER HandoverCounters 53% real-time
MAX RNCGroundTruth /

HandoverCounters
41% 1 week – 5 months /

real-time
CLOSE sectors’ GPS 31% static
THRE RNCGroundTruth /

HandoverCounters
<48% 1 week – 5 months /

real-time
LAC - 83% static
RNC - 67% static
site - 51% static
1: the accuracy if the cluster size == 4 is applicable.

Table 2: Pros and Cons of the five solutions.

dation over one week. Even after 5 months,BIGRAPH ’s accuracy
is still better than the site-level accuracy when the cluster size is
4. Thus, we believeBIGRAPH is a stable solution.HANDOVER
requires onlyHandoverCounterswhich is lightweight and contin-
uously available. We expect thatHANDOVER is a complementary
solution toBIGRAPH . AlthoughHANDOVER ’s accuracy is only
slightly better than the site-level accuracy when the cluster size is 4,
we still believe thatHANDOVER still has value (ifBIGRAPH is
not possible) becauseHANDOVER captures the dynamics of com-
mon mobility patterns, which is the main reason thatBIGRAPH
and HANDOVER beat other solutions. If problems arise in the
network, we can take both the sectors inHANDOVER ’s clusters
and the sectors in cell sites into consideration when tryingto locate
the problems. The overhead and stability ofMAX andTHRE de-
pends on the input graph, eitherBIGRAPH ’s or HANDOVER ’s
graph.CLOSE and site-/RNC-level estimations do not require any
dynamic information.

5. PERFORMANCE RE-ASSIGNMENT
Once we have the knowledge of which sectors are related by

clustering, we have high confidence on the traversed networkele-
ments for performance measurements logged byIPFlowRecords.
In this section, we want to associate end-to-end performance met-
rics captured byIPFlowRecordsto different network elements with
high accuracy based on the clusters obtained fromBIGRAPH or
HANDOVER .

5.1 Performance Inference
Since the performance metrics captured byIPFlowRecordscan

be assigned to incorrect locations due to localization inaccuracy,
our observation of which parts within networks are performing well
and which parts have poor performance may be incorrect. We want
to leverage the knowledge of related sectors and infer the actual
performance of each network element by associating the measured

end-to-end performance metrics with all cell sectors in thesame
cluster.
Measured Performance. IPFlowRecordsmonitors end-to-end
performance,e.g., RTT, loss, throughput,etc., at GGSNs for each
IP flow. In this measurement infrastructure, although the reported
network location byIPFlowRecordscan be inaccurate, end-to-end
performance is comprehensively recorded at GGSNs.
Ground Truth Performance. In order to quantify how inaccurate
the measured metrics could be and how much benefit can be ob-
tained from our performance re-assignment, we first have to build
a ground truth of the performance of each cell sector over time.
Similar to the correlating approach in §4.2.1, we search thecor-
rect sector for each measurement inIPFlowRecords from RNC-
GroundTruth based on the anonymized subscriber identifier and
timestamp. Although theIPFlowRecords’s reported sector can be
inaccurate, viaRNCGroundTruth , we can still label the measured
metrics to where they are.
Re-assigned Performance.In §4, we have already proposed clus-
tering solutionsBIGRAPH andHANDOVER for discovering re-
lated sectors. At timeT , let M(s1) be the measured performance
of s1, G(s1) be the ground truth performance ofs1, P(s1) be the re-
assigned performance ofs1, ands2, s3, ands4 be the sectors in the
same cluster withs1. We re-assign sectors1 the performanceP(s1)
with the average ofM(s1), M(s2), M(s3), andM(s4). Therefore,
for each sector, at any time, we can re-assign performance tothe
sector based on the measured performance of sectors in its clusters.

To evaluate the benefit of performance re-assignment, we com-
pare the measured RTT and the re-assigned RTT with the ground
truth RTT in Figure 16. Figure 16 shows the relative difference
from the ground truth. In the re-assigning, we investigate the re-
assigned RTT across different forms of clusters,i.e., cell site,BI-
GRAPH’s clusters,HANDOVER ’s clusters. Because the mea-
sured RTT can be considered as the re-assigned RTT when each
sector itself is a single cluster, to make our presentation consistent
with that in §4, hereafter, we label the measured performance as
“sector”-level re-assigned performance in legends.

According to Figure 16, the measured RTT can be very differ-
ent from the ground truth RTT. More than 20% sectors have the
error difference of more than 40%, which encourages us to locate
the measured performance better. After the re-assignment,the dif-
ference from the ground truth RTT becomes smaller. The median
RTT difference decreases by 10% from 16%. UsingBIGRAPH ’s
or HANDOVER ’s clusters, the RTT difference is very close to the
one using cell sites, but bothBIGRAPH ’s and HANDOVER ’s
clusters have only 4 clusters while the average size of cell sites
is larger.
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5.2 Anomaly Detection
The relative difference of RTT is only one dimension for evalu-

ating the performance re-assignment. The accuracy with which the
re-assignment reflects performance changes is of particular interest
as well because monitoring exceptional performance increases or
decreases is one way for cellular operators to detect anomalies.

Figure 17 shows an example that re-assignment does well in cap-
turing RTT spikes by comparing the re-assigned RTT and the mea-
sured RTT with the ground truth one over a few hours. Figure 17(a)
depicts the relative RTT difference over time, which confirms the
observation from Figure 16: before the re-assignment, the relative
difference has many outliers larger than 40%, but the RTT is mostly
within +/-20% ground truth RTT after the re-assignment.

Instead of the relative difference, Figure 17(b) compares the ab-
solute RTT over Figure 17(a). Most of the time, RTT spikes in
the ground truth are well captured by the re-assigned RTT based
on BIGRAPH ’s clusters, but not by the measured performance
and the re-assigned one based on cell sites. The measured per-
formance is erratic and may have significant inaccuracy. Hereafter,
for brevity, we do not include the re-assigned performance based
onHANDOVER ’s clusters if it has similar patterns toBIGRAPH .

Given that the re-assigned performance is fairly close to the ground
truth and also captures the RTT spikes well, we expect that itcan
play an important role in anomaly detection in practice where anomaly
alerts occur when the performance observed in real time drops or
increases significantly,e.g., 25%. AssumingX is a reasonable
threshold to determine anomalies, if we observe the performance
is above 100% +X or below 100% -X of the last performance
update, we consider some anomaly has occurred. Then we quan-
tify and compare the false positive and false negative rate of us-
ing the re-assigned performance and the measured performance for
anomaly detection. Note that theX is the threshold for the ground
truth performance, but for the re-assigned and the measuredones,
we can tune the threshold for each in practices.

Figure 18 illustrates the false positive/negative over thethreshold
of using re-assigned performance to detect performance anomalies.
In terms of false positives, using cell sites andBIGRAPH ’s clus-
ters to re-assign the performance have similar false positive, but
BIGRAPH ’s clusters have slightly lower false positives. In terms
of false negatives, both the re-assigned performance basedon BI-
GRAPH’s clusters and the measured performance have the lowest
false negative rate, which is significantly lower than the false neg-
ative rate of the performance re-assigned based on cell sites. The
re-assigned performance based onBIGRAPH ’s clusters is much
better than the one re-assigned based on cell sites althoughboth are
based on related sectors. It is becauseBIGRAPH ’s clusters can
locate subscribers more accurately and leverages human mobility
patterns better.

In summary, re-assigning the performance based onBIGRAPH ’s
clusters achieves the lowest false positive and false negative rates
of all the solutions we examine.

6. GENERALIZABILITY
The split between the radio network where fine-grain location in-

formation is known (RNCs and base stations) and the core network
where IP-level metrics are easily collected (SGSNs and GGSNs)
is fundamental in UMTS networks. This is because the RNC is
designed to handle all device mobility. While infrequent sector in-
formation is reported to the core network when a device moves
into a new location area and for accounting purposes (e.g., those in
CDR records used for billing), this information is typically similar
to the accuracy of that in PDP Context Setup messages: they may
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only be able to distinguish an RNC or LAC (which can cover hun-
dreds of sectors in a metro area). Partly, this is because it is not
efficient to propagate all the cell switch signaling information to
the core network and the radio network control and data planes are
coupled together. HSPA devices (the majority of smartphones and
data cards today) may change their serving cell every 2 – 20 ms
in order to prevent degradation due to fast-fading in the wireless
channel.

The deployment of Long Term Evolution (LTE) networks may
alleviate the problem discussed in this paper to some extent. In
LTE networks, the control plane signaling that was performed by
the RNC in UMTS is instead performed by a new entity called the
Mobility Management Entity (MME). User data, rather than being
routed through the MME, is sent directly from the base station to
the core network. This is made possible by LTE’s all-IP architec-
ture and a decoupling of the radio network control and data planes.
Thus, IP measurements collected in an LTE core network can, in
principle, be easily correlated with the base station that originated
the traffic. Nonetheless, sector level information is stillnot avail-
able to the core network and, as we have seen in our study, related
sectors may not belong to the same base station. Furthermore, LTE
core networks are still logically hierarchical like UMTS networks:
base stations send data to a Serving Gateway which in turn forward
it it to a Packet Data Network Gateway before it exits to exter-
nal networks such the Internet. Thus, if the Serving Gateways are
distributed physically, the cost of deploying IP measurement in-
frastructure at all ingress points of the core network may still be
prohibitive. For example, in the UMTS network we studied in this
paper, the number of physical locations housing GGSNs is twoor-
ders of magnitude smaller than the number of physical locations
housing RNCs so that signaling and handover latencies are accept-
able. It remains to be seen how large-scale LTE networks willbe
deployed.

7. RELATED WORK
Studies of human localization have strong motivations yielding

insights into our society from perspectives such as urban planning,
traffic forecasting,etc. [11, 22]. Particularly, in the mobile comput-
ing community, localization is critical in designing content delivery
services, context-aware applications,etc. [16, 17, 21].

In location-aware studies, one critical issue is how to collect the
ground truth for end-user locations. Some positioning systems such
as GPS and SkyHook [1] are among the most well-known solutions
for mobile users. However, these solutions do have limitations,e.g.,
GPS is not necessarily available for all mobile devices, andSky-
Hook does not work well for tracking cellular users [5]. Moreover,
getting GPS information requires user permission most of the time
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and cannot work for indoor localization. There are some localiza-
tion techniques targeting individual users [2, 4, 6], whilecellular
network operational records are very helpful in investigating a large
and representative set of cellular users [11, 3, 13, 23, 12].

Overall, previous location-aware studies can be classifiedinto
three categories:
Characterization. Characterizing the relationship between a user’s
interests and his mobility properties,e.g., the real-time location, is
critical for location-based services. Based on the IP flow traces
from a cellular operator, Keralapuraet al. investigated if there ex-
ists distinct behavior patterns among mobile users in web browsing
behavior [13]. Trestianet al. characterized the relationship be-
tween user application interests and their mobility properties [23].
Via extensive field tests under different movement scenarios, Tsoet
al. presented an empirical study on the performance of mobile
HSPA networks in Hong Kong [24]. Using aggregate statisticsof
hundreds of thousands of subscribers, Isaacmanet al. demonstrated
different mobility patterns in Los Angeles and New York City[12].
Modeling. Context-aware applications can benefit from location
forecasting if there exists mobility patterns for individual users and
the future locations are predictable from their mobility models.
Kim et al. presented a method to estimate the physical location
by associating it with access points in a wireless network [15]. Ea-
gle et al. monitored the cell towers transitions on hundreds of sub-
jects and built a network for cell towers. Through clustering on
cell towers and discovering strongly related cell towers, they can
predict each subject’s subsequent movement [18].

More than merely modeling the mobility patterns accurately, the
overhead of building the mobility patterns has been considered by
Sohnet al.. [22]. They explored how coarse-grained GSM data
from mobile phones can be used to discover high-level properties
of user mobility properties.
Application. Achieving accurate localization is the prerequisite
for location-based services. Among the studies related to provid-
ing such services, Nicholsonet al. and Panget al. generated the
connectivity forecasts beyond the location prediction [19, 21]. Tak-
ing energy saving into consideration, Ananthanarayananet al. pro-
posed the solution of associating energy efficient bluetooth hotspots
with the locations of WiFi access points to enhance WiFi perfor-
mance.

Compared with all these studies, our study has the followingtwo
major differences. First, from the perspective of cellularoperators,
we focus on the performance metrics in cellular networks. There-
fore, we are interested in accurately localizing subscribers to their
correct network locations, rather than their physical locations. Sec-
ond, designed for cellular operators, our system has to reduce the

overhead for characterizing mobility patterns of all usersin the tar-
get network. We face the challenge due to the inherent trade-off
between the fine-grained measurement and measuring overhead.

8. CONCLUSIONS
Our work is motivated by an important problem faced by cel-

lular network operators: to determine the end-to-end performance
characteristics of fine-grain areas of their 3G networks.

Our work is the first to quantify the location inaccuracy of map-
ping the IP-level flow records at GGSNs to different fine-grained
aggregation levels, and the first to leverage common mobility pat-
terns to achieve better performance localization. We developed
clustering algorithms to group related clusters together,re-assigned
the measured performance metrics to more accurately reflectthe
actual ones, and eventually captured performance anomalies with
lower false positive and false negative rates compared withother
forms of clusters.

During the clustering, in order to balance the tradeoff between
localization accuracy and measurement overhead, we proposed two
solutions for clustering related sectors. One solution canlocate a
subscriber into only 4 cell sectors with the accuracy of 70% over 5
consecutive days, while the other one can update the knowledge of
mobility patterns hourly, and increase the accuracy by at least 20%
compared to solutions such as clustering purely by cell sites.

We believe that our work can be an important utility for cellu-
lar operators for the purpose of performance monitoring, network
maintenance, and anomaly detection.
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