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ABSTRACT

Operators of 3G data networks need to distinguish the peeoce
of each geographic area in their 3G networks to detect amivees
local network problems. This is because the quality of thaest|
mile” radio link between 3G base stations and end-user devi
a crucial factor in the end-to-end performance that eachexgee-
riences. It is relatively straightforward to measure thégenance
of all IP traffic in the 3G network from a small number of van-
tage points in the core network. However, the location imf@tion
available about each mobile deviced, the cell sector/site that
it is in) is often too stale to be accurate because of user lityobi
Moreover, very costly infrastructure deployment and n&iance
of custom equipment would be required to collect fine-graitoe
cation information about all mobile devices on an on-goiagié
in large 3G networks. Thus, it is a challenge to accuratetjgas
IP performance measurements to fine-grained geographiaonseg
of the 3G network using existing standard network compaent
Fortunately, previous studies have observed that humarilitgob
patterns are very predictable. In this paper, we explog frie-
dictability to develop a novel clustering algorithm groupirelated
cell sectors that accurately assigns IP performance measuts
to fine-grained geographic regions. We present results &qmo-
totype in a real 3G network that shows our approach provideagm
accurate performance localization than existing apprescBEven-
tually, we can either narrow down individual IP performamncea-
surements into only 4 candidate cell sectors consistently the
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1. INTRODUCTION

Mobile applications over 3G networks are among the fastest-g
ing classes of network applications today. Network opesatiaus
have a substantial interest in monitoring the performari¢e data
traffic on their 3G data networks. In particular, operatosuld
like to continuously monitor which geographical regionstheir
3G networks are performing well and which ones are perfogmin
poorly. This is because the quality of the “last mile” raditklbe-
tween 3G base stations and end-user devices is a cruciat fact
the end-to-end performance that each user experiencesrtUnf
nately, due to protocol, equipment, capacity, and costéitions,
it is not trivial to accurately associate an end-to-end grenfince

accuracy of 70% over one week based on a one-day snapshot oineasurement to the 3G network path that it traversed. Wesedr
fine-grained 3GPP events, or increase the accuracy 20% compa this problem in this paper by developing a novel clusterilgpa

ing with site-level accuracy through lightweight handosggatis-
tics hourly collected at RNCs. Using our approach, we improv
anomaly detection based on IP performance measurements by r
ducing the number of false positives and false negatives sty
also sheds light on the mobility patterns of 3G devices.
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rithm and evaluating a prototype system in a real 3G wirehess
work.

The collection of IP-level statistics, such as packet or flewords,
is crucial for an operator to understand the end-to-endpadnce
of its users because they are basic to compute metrics sw@idas
to-end throughput, RTT, and loss. Due to the standard azgtian
of 3G data networks, such as the UMTS network shown in Fig-
ure[d, it is impractical for operators of large 3G networksabect
IP-level statistics for all users that can readily be asgediwith the
geographical regions where they are located. Vendor eqnpm
a 3G network does not typically support the capture of IR{léow
statistics because IP packets are carried in an opaque-layer
tunnel from the end-user device all the way to the Gateway &RP
Support Node (GGSN). Since the capital and labor costs egsdc
with deploying additional monitoring equipment and baakhza-
pacity at all Radio Network Controller (RNC) or Serving Gassy
Support Node (SGSN) locations is prohibitive, monitorirfg®-
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Figure 1: Logical architecture of a UMTS network.

level statistics is only practically performed at the GGSiNkich

are located in only a handful of different locations. Howe¥em

the perspective of a GGSN, it is not possible to determinenvehe
mobile device moves from one cell sector to another becaaise h
dover signaling information is not propagated up. The GG8N o
observes the cell sector where the user began his sessiocelth
sector when the user moves far enough away from his origicat|
tion that his network path traverses a different SGSN (ed&8$
generally covers an entire metro area), or when the deviaeges
from 3G to 2.5G coverage. Because users are often mobile, han
dovers are frequent and the GGSN will often have a stale view o
where users are currently located. This staleness makemit n
trivial to associate current IP-level performance measerds to
the cell sectors that they are associated with using onyimdtion
collected at the GGSN.

RNCs, which observe all handovers that users experience, ca
collect accurate information about which cell sector easér us
using at all times. However, not all equipment supports e
grained user tracking. Moreover, because RNCs are gedgraph
cally distributed, significant additional long-haul caitaavould
be needed to collect all handover events in a centralizeatitot
Thus, in large 3G networks, itis only practical to colleatlsinfor-
mation infrequently or in aggregate form. For example, theCR
in the UMTS network that we study in this paper only collecttp
handover statistics per cell sector, rather than real-tiellesector
information per user. This information indicates how masgns
move from cell sector to cell sector in aggregate, but notre/bey
user is at any point in time.

In this paper, we develop a system callkdcuLoc that takes
these two sources of 3G network data — IP-level flow recordis co
lected at GGSNs and aggregate handover statistics at RNG&l— a
accurately associates end-to-end metrics to differentdgiaged
regions of the 3G networkAcculoc leverages the observation that
human mobility patterns are typically predictable and mgstrs
do not tend to move long distances at short time scales. Thus,
is possible to cluster related cell sectors together usjugemate
handover information. By associating end-to-end measeinesrto
the cluster in which a user began his session, we can aclyurate
associate these measurements with fine-grained geograggas
covered by the 3G network. To evaluakeculoc’s accuracy in
associating the end-to-end metrics to fine-grained regigadiave
developed a prototype system in a real 3G wireless netwodk an
evaluate it on data from a large metropolitan area. We shanth
clustering based on aggregate handover statigtmsjLoc is more
accurate than naive forms of clustering, such as clustguimgly
by geographic proximity.

To our best knowledge, our study is the first one quantifyirey t

localization inaccuracy of IP-level statistics at GGSNs tlustale
views. and leveraging human mobility patterns for celldpera-
tors to achieve better localization. Through the designaeetl-
opment ofAcculLoc, we make the following five contributions:

e \We characterize the localization inaccuracy for mappirgg th
IP-level statistics at the GGSN to different fine-grainett ne
work elementsj.e., cell sectors, base stations, RNCs, and
LACs. The localization accuracy is around 20% at the gran-
ularity of cell sector level. Even if at higher aggregatiew-|
els, the accuracy is only around 50% at the cell-site level
and 70% at the RNC level. The low accuracy is because us-
ing cell sites and RNCs to determine which cell sectors are
related cannot capture the dynamics of user moving behav-
iors, which motivates us to obtain human mobility patterns
in advance and leverage it for locating IP-level statistics
cordingly.

We propose two measurement-driven solutionsMcculoc

to build human mobility patterns in the terms of which cell
sectors are strongly relatede., identifying clusters of re-
lated cell sectors that subscribers have very high probabil
ity commuting within individual clusters, and leverage the
mobility knowledge to accurately localize IP-level statis.

The two solutions have different advantages and complement
each other from aspects of the localization accuracy and the
overhead for conducting human mobility patterns. Since hu-
man mobility patterns are dynamic, capturing the varigbili

of mobility patterns is critical forAcculLoc to outperform
other naive solutions.

Our first solution,i.e., BIGRAPH, requires a snapshot of
3GPP signaling events at RNCs which is expensive for long-
term collection. In order to construct the human mobility
patterns,BIGRAPH groups related cell sectors into small
clusters.BIGRAPH can locate IP-level statistics into only 4
cell sectors with the accuracy of 70% over one week and 50%
after the snapshot of 3GPP signaling events is 5.5-month old
Note that the mapping IP-level statistics to the correct RNC
is around 70%, but one RNC usually contains 200 — 300 cell
sectors, which is significantly larger th8d«GRAPH’s clus-
ters.

Our second solution,e.,, HANDOVER, relies on hourly ag-
gregate handover statistics at cell sectors instead ohsime
3GPP signaling events at RNG4dANDOVER performs as

an alternative t8IGRAPH on condition that the collection

of 3GPP signaling events is not supported or is restricted.
Since it is an inherit tradeoff between the overhead of mea-
surement and localization accuracHANDOVER is not

as accurate aBIGRAPH . However, inferring the mobility
patterns from lightweight handover statistitFEANDOVER

still achieves reasonable localization accuracy. Contpare
with intuitive solutions such as grouping sectors purely by
cell sites, HANDOVER can overall increase the accuracy
20%.

We demonstrate thdtccuLoc improves the accuracy of per-
formance anomaly detection, a critical application for-net
work operators. Based on the information inferred from ei-
ther BIGRAPH or HANDOVER of which cell sectors are
related,AcculLoc re-assign the measured IP-level statistics
in order to accurately associate the end-to-end perforenanc
metrics to the correct fine-grained network elemeints,

cell sectors, cell sites, RNCs. Through the re-assignment,



the performance metrics observed at GGSNs are more closedovers when a mobile device moves from one sector to another
to the ground truth ones directly measured at RNCs. Ap- (eg., by coordinating base stations and other RNCs). However, to
plying BIGRAPH in performance anomaly detectioAc- avoid unnecessary signaling overhead, the change of cétirsds
cuLoc achieves both the lowest false positive and negative not reported to the higher in the hierarchy. Thus, the GGStbis
compared with solutions based on other forms of clustering informed that a mobile device has moved unless the SGSN in its

sectors. network path changes. This can occur for two reasons: (19ves
far enough away that the SGSN changes — typically into ardiffe
The rest of this paper is organized as follows: §2 descriear- ent metro area; or (2) the device changes from 3G to 2.5G,, WviFi
chitecture of cellular networks and associated protodolikwed vice versa. The second scenario causes an SGSN changeeecaus
by &3 explaining the main data sources for the input, themgfou  the 2.5G hierarchy is different from the 3G hierarchy. Thisrsario
truth, and the evaluation[ 84 proposes the two solutiBfGRAPH typically occurs if a device moves from 3G areas that coviengry
andHANDOVER adopted byAccuLoc to build the knowledge of urban and suburban areas to 2.5G areas that cover less {gopula
human mobility patterns.[85 quantifies the performancAafu- areas. In addition, the PDP Context is destroyed after artivitsy

Loc in associating metrics to fine-grained network locationse W  period of 2—4 hours or if the device is turned off. Note that #DP
discuss the generalizability &fccuLoc on other types of networks ~ Context remains alive even if the device is idle. Since spiame
in §8. Related work is discussed i1 §7 and we conclude ouystud applications may send periodic keep-alives or “push” rmitfons,

in €8. a PDP Context may persist for hours or even days. Therefoee, t
initial cell sector reported to the GGSN when a device firtt s@
2. UMTS BACKGROUND the PDP Context often is not the sector in which the device cur

- . . rently is connected.
In order to understand the difficulty in locating IP perfoma y

measurements in UMTS networks, it is useful to have an under-

standing of how a UMTS data network is structured. DATA RCE

Network Elements and Architecture. Figure[1 shows the logi- 3. SOURCES .

cal architecture of a UMTS data network according to the 3GPp 1 Nere are several sources of data in a UMTS network that we
standard. As depicted, a UMTS network is hierarchical. At th Ccan utilize to measure the end-to-end performance exmerieh

root of the network is a Gateway GRPS Support Node (GGSN). In each cell sector. In this section, we describe these soarmkthe
practice, there are multiple GGSNs, but they are locatedhip @ data sets we use to evaluate our prototype system. Noteubdod

handful of locations[[25]. Due to their limited number of sy privacy concerns, aII.user and device identifiers are.ani.m;drbe-
cal locations, it is relatively straightforward to monitlt IP traffic fore any data analysi®g., IMSI and IMEI). Anonymization does
in the UMTS network at these locations. At the leaves are kaobi N0t compromise the usefulness of our results.

devices (user equipment (UE), in 3GPP parlance), whichecnn . .
to the UMTS network in a particular cell sector. Each base sta 3.1 Continuously Available Data Sets

tion (NodeB or cell site, in 3GPP parlance) has multiple selt- We are primarily interested in the performance of IP datficra
tors, one for each antenna attached to its cell tower. Tipitwese — eg., the throughput, RTT, loss, etc. of IP data flows. These met-
point in different directions and/or operate on differeetjuencies. rics can be extracted from statistics captured about eattbvH7]

Base stations send their data traffic to Radio Network Ctatso [10,[20]. Ideally, we would like to be able to collect IP flow aat
(RNCs), which forward traffic to Serving GPRS Support Nodes such that each IP flow can be mapped to the cell sector where it
(SGSNSs), which, in turn, send the traffic to GGSNs. The GGSN originates from or is destined to. Unfortunately, as désctiin
sends and receives traffic from the Internet. Section2, this is not trivial due to lack of available datarses.

IP Tunneling. An important characteristic of UMTS networks is  This section describes the data sources that can be aeadaldh
that IP traffic sent by mobile devices is tunneled to the GGSiNg! regular basis in practice.

lower layer 3GPP tunneling protocols. As a consequence nbn Real-time IP Flow Records.lt is relatively straightforward to cap-
the intermediary nodes in the UMTS network can directly éwp ture IP flow data from all 3G traffic at all GGSNs because they ar
the sent IP packets and a mobile device’s IP address is “e@d¢ho  few in number. In the large UMTS network that we study, mea-
to the GGSN, regardless of where it moves in the network. This surement infrastructuré][9] is in place to capture IP flonords
characteristic ensures that the mobile device can maiittaiR ad- similar to NetFlow records[8] in near real time. GTP-C sigmga
dress (and thus, its IP connections) even as it is mobilehispia- messages, described in the next paragraph, are used to cfap ea
per, we will focus on the tunnel between the SGSN and the GGSN, IP flow to the originating or destination device, which isntiéed
which is called a PDP Context and uses the GPRS Tunneling Pro-by its anonymized IMSI and IMEI. Hereafter, we call these thvil
tocol (GTP) (GTP-U to carry data traffic and GTP-C for signgli recordslPFlowRecords

control messages). PDP Context Setup MessagesSimilarly, it is straightforward for
Session Establishment and MobilityWhen a mobile device first  the same infrastructure to capture the signaling messagess-
connects to the UMTS network, the PDP Context that carries it tween SGSNs and GGSNs via the GTP-C protocol. Most impor-

IP traffic is set up. At this point, the originating cell sectnd tantly, PDP Context Setup messages that are exchanged when a
RNC is reported to the GGSN via GTP-C protocol. When a mobile device initially establishes a PDP Context indicate théshsector
device moves to a different sector, the path its data takesigh that the device communicates with. PDP Context Update rgessa

the UMTS network chang@RNCs manage the operation of han- may also indicate a device’s sector when it moves far enougly a
from the original sector so that the SGSN changes. Withoyt an
information collected outside the GGSN locations, thesethe
best estimates of device location that are available. Htereave

1in practice, a device can be connected to multiple nearbiysec
at the same time. This set of sectors, typically 1 to 4 in size,
called the active set. While all sectors in the active setdioate
to receive uplink data sent by the device, only one, the sgrell,
transmits downlink data to the device at a given time. Thiyjs vast majority of data is downlink traffic, in this paper we ardy
ically the sector with the highest signal-to-noise ratiancg the concerned with identifying the serving cell correctly.




dataset | availability  duration description

IPFlowRecords continuously 1 day real-time IP flow records collected at@@&SN

PDPSetupLocations| continuously 1 week sector information in PDP Context Setessages collected at the GGSN
HandoverCounters | continuously 1 week hourly aggregate handover countersdon sector pair reported by RNCs
RNCGroundTruth infrequently 1 week ground truth sector information fortedevice from 3GPP events collected at RNCs

Table 1: Datasets used in the evaluation of AcculLoc.

call the estimates of device location derived from thesesagss
PDPSetupLocations

Aggregate Handover Counters. Each RNC keeps track of the
current cell a device is using as part of normal operatiorwél@r,
due to vendor limitations and resource constraints, thicsmation
is not recorded. Instead, it is typically only practical teep ag-
gregate statistics about each sector. For example, tHentatgber
of connections, total number of disconnects, etc. One ggige
statistic that we can leverage is the total number of handdve-
tween two sectors. In other words, for each pair of sedtarB),

a counter is kept that indicates the number of handovers &am
B processed per hour. From these handover statistics, wefan i
the aggregate mobility behavior of devices. Hereafter, alkthis
set of handover counteksandoverCounters

3.2 Ground Truth Data

mation about all mobile devices on an on-going basis in |18@e
networks.

In this section, we first characterize the localization tuaacy
based uporRNCGroundTruth . Then we propose two solutions
adopted byAccuLoc to group related sectors together that take ad-
vantage of the predictability of human mobility patternsnefly,
we evaluate the performance AtcuLoc in terms of localization
accuracy at the end of this section.

4.1 Characterizing the Inaccuracy of Initial
Sectors

Understanding the duration of PDP Contexts, frequency of ha
dovers, and their relationship to each other is importari hor
understanding the performance localization problem weesddn
this paper and to shed light on user mobility patterns irutaiinet-
works. For example, the persistence of the same locatiorPiDRA

Some RNC equipment can record the current sector that eachContext suggests how long modern smartphones are activeeand

device is using at fine time scales. More specifically, somapeq
ment can capture all 3GPP signaling events at the RNC lavel, s
as handover events. However, this recording places additioad
on RNC equipment that can interfere with normal operatisrtha
CPU, memory, and storage constraints of RNC equipment dre no
designed for continuous operation of such recording. Rixegris
typically only enabled for troubleshooting. In additiohetvolume
of such data is substantial (tens of GB per day for a single RNC
so backhauling the data to a central data collector for tairos
with IPFlowRecordsrequires investment of additional resources.
Finally, not all RNC vendors support such recording. Thenef
although it is possible to collect such data from a small nend$
RNCs periodically €.g., once every few days), continuous collec-
tion to support real-time performance localization is naggible.

In order to evaluate different approaches to our localirepirob-
lem, we collect a sample of this “ground truth” data. Hereafive
refer to this data aRNCGroundTruth .

3.3 Evaluation Data Sets

To evaluate our prototype and other approaches to the aeali
tion problem, we use one contiguous week of data in July 2010
for each of these dataseBDPSetupLocationsHandoverCoun-
ters, RNCGroundTruth . To evaluate the accuracy of performance
measurements based on these localization approachesgvoaels
day of IPFlowRecordsdata during this week. The data we exam-
ine covers all 3G sectors in the greater Los Angeles area.di¢e n
that not all areas have 3G coverage (some only have 2.5G-cover
age). However, since our focus is on 3G performance, we do not
consider data from 2.5G sectors.

The datasets are summarized in Téble 1.

4. LOCALIZATION

As we described in the previous section, the originatingsea-
tor/cell site/RNC of performance measurements is not cagtat
the GGSN, so it is difficult to collect fine-grained locatiarfar-

main in the same metro area, as PDP Contexts only change if a
user changes SGSN due to travel to another metro area, ordepa
ture from the 3G coverage area. Frequency of handovers sisgge
how often user mobility and environmental changes caus® tae
dio characteristics to change substantially (within 1-2 kas they
typically occur only when the sector with the best signahtise
ratio changes. These characteristics are important fongeraf
cellular applications so we study them in detail in this et

GTP-C signaling messagese.,, PDPSetuplLocations during
the initial PDP Context Setup provide the location of moloiee
vices at the time a device is turned on or after several hdunso-
tivity. 3GPP events collected from RNGs., RNCGroundTruth ,
provide the location of the mobile devices every 2 secondsrins
of the cell sector where each device is located. By compdtiag
location information ofPDPSetupLocationswith that of RNC-
GroundTruth , we can evaluate how accuratdhDPSetuplLoca-
tions estimates where mobile devices currently are.
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Figure 2: Interval between two consecutive handovers on de-
vice.

One type of 3GPP events RNCGroundTruth record the oc-
currences of handover. Figuré 2 depicts the CDF of the iaterv
between two consecutive handovers on individual deviceé%o &f
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Figure 3: Age of PDP Context age of RNCGroundTruth
records.

handovers happen within 10 seconds after the last handBigr.
ure[3 shows the CDF of the age of PDP Contexts of RINC-
GroundTruth records. Given &NCGroundTruth record, we
can discover the beginning of its corresponding PDP Coriitert
PDPSetupLocationsvia the anonymized device identifier. The
timestamp ofRNCGroundTruth record minus the timestamp of
the PDP Context gives us the age of PDP Context. The major-
ity of PDP Contexts fall in the range of 1 hour — 1 day. Given the
presence of such frequent handovers and the longevity ofGRiDP
texts, GGSNs will inevitably miss many sector changes imglsi
PDP Context. As a consequence, there is a high probabittyttle
current cell sector differs from the sector where the PDPt€&dn
Setup starts.

Operators are interested in determining the network padh th
each IP flow takes through the UMTS network. This is so that
when IP flows exhibit problems, the problems can be isolaiea t
particular cell sector, cell site, or RNC. As a device movwesya
from its initial cell sector, the cell site and RNC throughiefhits
IP packets traverse will change. To understand how quicklyoe:
mobility causes the network path to change, we examine hew ac
curately the initial cell sector represents the currenivogt path at
each level of the UMTS network hierarchy.

We define the accuracy of a particular level of the hieraraily c
sector/cell site/RNC as the percentage of time that thalréte-
ment the path traverses is the same as the actual elemenieéhat
path traverses. For example, if the current sector is the senthe
initial sector 20% of the cases, the accuracy at the celbsémtel
is 20%. We expect that accuracy at higher levels of the tghyar
(e.g., RNC) will have higher accuracy, as a device has to move a
greater distance before the path its packets take no lorgerse
that element. Since devices are likely to move farther awam f
their initial locations over time, the older a PDP Contexttlse
more likely its setup location is inaccurate. Thus, we ex@dithe
inaccuracy oPDPSetupLocationsvith PDP Context age.

We evaluate the accuracy at each level of the UMTS network hi-
erarchy: cell sector, cell site, and RNC. In addition, welexte
the accuracy of each location area code (LAC). A LAC is theoet
sectors that are paged when a mobile is idle and the netwosk mu
search for it €g., for an incoming call). Since a device must wake
up when moving from one LAC or another to update its status, ne
work planners attempt to group sectors in a LAC so that ibfst-
movement is rare. However, this also means that a LAC tylpical
covers a large number of sectors and is not granular enoygih-to
point geographically constrained performance problemsr:. the
elements in each aggregation level, cell sites cover 3 — ®rsec
and RNCs and LACs cover about hundreds of sectors.

Figure[4 shows the accuracy over the PDP Context age at-differ
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Figure 4: Accuracy over PDP Context age / BIGRAPH's accu-
racy over PDP Context age.

ent levels of hierarchy. As mentioned, we can obtain the PBi C
text age for eaclRNCGroundTruth record. AggregatindRNC-
GroundTruth records of the same PDP Context age together, we
can identify the probability that the current cell sectottis same

as the initial cell sector during PDP Context Setug, accuracy,

for each value of PDP Context age. It is expected that theracgu

is reasonably high if the PDP Context age is less than 1 minute
However, the sector-level accuracy decreases very fabeaBDP
Context age increases, which verifies our previous inferdram
Figure$Z B. After the PDP Context has been activated forshthe
accuracy at the sector level is around 20% to 30%, which espli
that 70% to 80% of the end-to-end performance measurements a
the GGSN are assigned to incorrect cell sectors. As expettted
site-/RNC-/LAC-level accuracy is higher than the secewel ac-
curacy. However, the site-level accuracy is only 50% to 668 a
the PDP age rises to hours, which means mobile devices httee be
than even odds of moving out of its current cell site seveoalré
after the PDP Context starts. The RNC-level accuracy is 7®% t
80% and the LAC-level accuracy is around 90%. Note that a typ-
ical cell site includes 3 — 6 sectors. Each RNC and LAC costain
hundreds of sectors. Thus, it is too coarse-grained to esethg-
gregations to locate a device to a very granular geograghionm.

However, just because these hierarchical clusters of e
cell site, RNC, or LAC, are not very accurate in locating nees
ments, it doesn't mean we cannot discover a better manneg-of a
gregating related sectors. For example, perhaps sectorstivo
neighboring sites form a good cluster because they coveataas
to which subscribers frequently commute back and forth. en-g
eral, if movement patterns are common amongst many sulssrib
then we expect that we can learn the patterns and group delate
sectors into clusters accordingly.

One way movement patterns can be similar is if users do not
move very far away from the sector in which they started. Téne g
ographic distance between the base station record@®DiRSetu-
pLocationsand the ground truth base stationRMCGroundTruth
estimates the distance a user has moved. If these distaiecgsra
erally small, then human mobility patterns are revealedotmes
degree. FigurE]l5 shows the physical distance between tebgi
the PDPSetupLocationsand the cell site b RNCGroundTruth .
Even if the time after the PDP Context has been initializez aey,
the median distance is still small. The maximum median efi®r
tance is 1.65km although some subscribers can still movg oa
more than 10km. This consistently short distance impliasiost
subscribers only move within a small geographic area. Seitan
discover which set of sectors are always relategl those between
which users frequently move), we can group them togethenato t



if we want to predict the current sector of performance mesasu
ments inlPFlowRecords based orPDPSetuplLocations we can
have a small set of candidate sectors but in very high corfelen
This technique can be beneficial for detecting performancena-
lies and narrowing down problems into a small number of gscto
Note that Figurd1l4 shows that the site-level accuracy is,poor

expect that there will be small clusters of sectors closath®ther
that can be grouped together. Subscribers have high piipaibi
moving within the sectors in the same cluster.

BIGRAPH requires (i) a snapshot &®NCGroundTruth , and
(ii) the corresponding snapshot®bPSetupLocationsvhose PDP
Contexts covers the records in the snapsh&MEGroundTruth .

which means subscribers often move in an area served by moreBIGRAPH attempts to learn these clusters by creating a graph

than one cell site. However, subscribers moving across gaenot
necessarily means they moving across many sectors. Soascri

of the relationships between the initial sectorsPBPSetupLo-
cationsand the current sectors where devices are locat&iNG-

may always move across a few sectors but these sectors may be i GroundTruth . SinceRNCGroundTruth can only be collected

different cell sites. In the next section, we describe howcar
learn these small clusters of related sectors, regardiesd| site.
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Figure 5: Distance from the site by PDPSetupLocations to the
site by RNCGroundTruth.

4.2 Practical Localization Solutions

As we observed in the previous section, using only statiarinf
mation to cluster sectore.(., by the cell site each sector belongs
to) is not accurate because they do not capture mobilityepet
We expect that a good heuristic is to learn common movement be
havior of users and leverage this knowledge to predict theenti
sector more accurately.

infrequently,BIGRAPH builds a model of these clusters based on
a set of training datae(g., collected over one day from all RNCs in
a greater metro area), then the model can be used to preldiet re
tionships in future data wheRNCGroundTruth is not available.

initial sectors
(in PDPSetuplLocations)

actual sectors
(in RNCGroundTruth)

w(B,C) = # RNCGroundTruth measurements
such that initial location is B but actual is C

Figure 6: BIGRAPH constructing the bipartite graph.

As shown by Figurgl6, thBIGRAPH builds a bipartite graph
connectingRNCGroundTruth andPDPSetupLocations Let us

As mentioned in Sectiof] 3, there are two available sources of denote the graph a6 = (U,V,E), where vertexu in U repre-

data collected at RNCs in addition to tii-lowRecordsandPDPSe-
tupLocations data collected at the GGSNHandoverCounters
andRNCGroundTruth . HandoverCounters, aggregate counters
of handovers between each sector, are collected contilyud®ISC-
GroundTruth , precise location information based on RNC event
information, cannot be collected continuously, but candraed
from small segments of the network every few days. In thiseec

we propose two algorithms to build mobility models usingstne
data sources, given their collection and granularity caists: BI-
GRAPH andHANDOVER . UsingRNCGroundTruth , BIGRAPH
has higher data collection overhead and is more accuraigeVo,

we find that the algorithm usinglandoverCounters i.e,, HAN-
DOVER, also provides acceptable accuracy. Both solutions can
be formulated as a version of the sparsest cut of a graph oht pr
lem [14], so we first describe how to formulate each graph. The
practical algorithm to solve the sparsest cut problem oh gaaph

is the same.

4.2.1 BIGRAPH: a solution based on one-time snap-
shot of RNCGroundTruth

sents a sector iRDPSetuplLocationsandv in V represents a sec-
tor in RNCGroundTruth . Let w(u,v) be the number oRNC-
GroundTruth records (once every 2 seconds when a user is ac-
tive) such thaRNCGroundTruth reports a subscriber is inand
PDPSetupLocationssays the subscriber is in M(u) returns the
vertices inV that corresponds to the sector thatepresents itU.
Edges inG that have high weights are strongly relatee.(lots of
users move from those source sectors to those other sectbrs,
we would like to cluster strongly related noded/riogether.

Let a clusteringCy,Cy,...,Cy each be a disjoint subset df.
The accuracy of a clustering of sectors (for any clusterieghod)

is computed a *E(Clﬁz"““'c”), whereN is the number oRNC-
GroundTruth records, and(Cy,Cy,...,Cp) is the sum ofw(u,v)
for all (u,v) such thatM(u) is in one cluste€; andM(v) is in an-
other clusteC;j, i.e., this sum counts the numberRNCGroundTruth
records that get assigned to the incorrect cluster. Lataiicuracy
is thus maximized wheRk(C1,Cy, ...,Cy) is minimized.

Therefore, given constraints on the size of clusters, tla¢igdo
minimize the weight of edges that cross clusters. For exenipl
we want to clusters to be of size 4, then we want to cut the graph

Since there are often common travel routes between ares thasuch that each connected component is only size 4 and thétweig

most people follow, we conjecture that subscribers thairbebgir

of the edges that cross connected components is minimizedaw

PDP Contexts in the same sector tend to move to similar sector merge the vertices andM(u) to make the problem be a sparsest
In addition, as we see in Figuré 5, most devices do not move ver cut problem. We describe how to solve the sparsest cut proble
far away from their initial sector. Based on these obseowati we below in §4.2.8



4.2.2 HANDOVER: a solution based on hourly Han-
doverCounters

Some RNC equipment is incapable of buildRYCGroundTruth ,

be lost since we end up with ignoring the movement between sec
tors across clusters. We formulate our clustering into arsdee
sparsest cut process. The sparest cut process is a bigpasfithe

and in some cases, it is imprudent to do so because it may inter Vertices in the graph that minimizes the ratio of the weidtedges

rupt normal operation. Thus, we formulate a second soluti®n
an alternative tIGRAPH , HANDOVER that uses onlHan-

across the cut and keeps the two halves balanced. We rezdyrsiv
apply the sparest cut algorithm on both subgraphs until the s

doverCounters the aggregate handover counters. The motivation Of these subgraphs hits the constraint on the cluster sizethé
behindHANDOVER is that the handover counts between different SParest cut is known to be a NP hard problem, we use an existing

sectors represents how frequently subscribers move betiiese
sectors. Thus a graph with edges weighted by handover capnts
proximates the degree of movement between sectors.

sector ,
-~ 4

w(B,C) = Pr[handbver from B to C]
w(C,B) = Pr[handover from C to B]

Figure 7: HANDOVER constructing the graph.

approximation algorithm (Kernighan-Lin_[14]) to split tlygaph
into two and recursively repeat it on both subgraphs unéldize
of the subgraphs satisfies the constraint on the predefinestecl
size.

4.3 Localization Accuracy of Clustering Solu-
tions

In order to evaluate the performance of our two solutions, we
measure their accuradye,, the fraction of measurementsRNC-
GroundTruth whose locations agree with each performance mea-
surement’s cluster assignment.

4.3.1 BIGRAPH s accuracy in one-time snapshot

As mentioned in[84.2] BIGRAPH s accuracy can be obtained
by comparing the location of each measuremeRNCGroundTruth
against the initial location of the corresponding recoggsmorted by
PDPSetupLocations Note that the location is at the granularity of
BIGRAPH s clusters.

First, BIGRAPH computes the clusters via recursive sparest cut
on a training data set whos®NCGroundTruth and PDPSetu-
pLocations records were collected on July 21. Eventually, the re-

Similar toBIGRAPH , HANDOVER also refers to a graph (shown cursive sparest cut will end with a set of clusters whose aiee

by FigureT) to keep the relationship between sectors vighted
edges. HoweveHHANDOVER does not requirR@NCGroundTruth
which is hard to collect continuously. InsteddANDOVER re-
quires onlyHandoverCounters, the aggregated handover coun-
ters from RNCs which are already collected continuouslychEa
edge in the graph reflects the probability for subscribesmfthe
source sector moving to the destination sector based oe toes-
ters {.e,, Prlhandover fromA to B] = the ratio of handovers from
Ato B and the number of devices that entefecither by starting
there or via a handover). As witHANDOVER, our goal is to cut
the graph into clusters with minimum edge cut given the cairst
on the cluster size.

We note thatHANDOVER may not perform as well aBl-

pre-decided. Second, we evaluate the accuracy on a ealutztia
set with the clusters from the training set. TRCGroundTruth
and PDPSetupLocationsrecords on July 22 serve as the evalua-
tion data set. The training data set and the evaluation @atare
very close to each other in time, so the human mobility pastere
up-to-date. We expe@IGRAPH to achieve its best performance
when our record of human mobility patterns is most up-t@dat
Figure[4 compareBIGRAPH 's accuracy with site-/RNC-/LAC-
level accuracy over the PDP Context age. The site-/RNC-A.AC
level accuracy is the accuracy at the granularity netwoeknehnts
of site/RNC/LAC. We can observe thBIGRAPH's accuracy is
significantly better than the site-level accuracy. In thesnpari-
son, the cluster size &IGRAPH is 4, while the average number

GRAPH because it does not distinguish sectors where devices be-of sectors for all cell sites is 3 — 6. SBJGRAPH uses smaller

gin PDP Contexts and sectors where they move into. In additio
it does not take into account the duration that users speeddh
sector. For example, suppose we want a cluster size of 2eiéth
is a high likelihood of handovers betwednand B, andB andC,
but devices spend very little time active Bh(e.g., because it is a
highway sector), then we will be more accurate clusteAnand

cluster size but achieve much better accuracy than usihgitzeto
predict candidate sector®IGRAPH s accuracy is even compa-
rable to the RNC-level accuracy, but one RNC usually consist
200 - 300 sectors.

As we mentioned in[§4.2.3, cluster size is a constraint on the
recursive sparest cut. The smaller the cluster size, the iméor-

C together withouB, as even though there is frequent movement mation is lost by the cutting. However, a smaller clustee s&

betweenA andC to B, there will not often be activityi(e., mea-
surements). In terms of performance monitoring, we do no ca
where users are when they are not active.

4.2.3 Solving the sparsest-cut problems

Once the graph containing the information of mobility patte
is constructed, botBIGRAPH andHANDOVER will be formu-
lated as a sparest cut probleine,, cutting the graph into connected
components (clusters) of at most a particular size. In macive
want the size of clusters to be as small as possible becausante
to quickly identify the right sector for isolated perforncanprob-
lems. However, the smaller the cluster, the more infornmatid|

beneficial in practice as it reduces the overhead to narramndo
the candidate sectorse,, it improves the localization granularity.
Figure[8 shows the impact of cluster size on the accuracy. akle ¢
imagine that if the cluster size s, the accuracy will be close to
1. When the cluster size is 1, which is equal to the sectatlev
accuracy. When the cluster size is 4, 8, or 16, the accuraeg ri
significantly, which confirms our expectation that subsersbusu-
ally move within a small number of sectors.

Figure[® explains why our small clusters perform better ttelh
sites, or even RNCs under some scenarios. We count the naiber
unique cell sites that a singgiGRAPH s cluster includes. From
Figure[9, we can observe that each cluster covers 2 cell isites
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Figure 8: BIGRAPH'’s and HANDOVER's accuracy over clus- Figure 10: BIGRAPH: # measurements, accuracy, cluster size
ter size.

once a week. So, in this section, we evaluBt&RAPH s accu-
average when the cluster size is 4. So, the reason for thedlasigh  racy over the week of July 21. We compare the similarity otus
curacy ofBIGRAPH is thatBIGRAPH can flexibly capture the over different days in the week. Similarly to §413.1, wel stile the
dynamics of human mobility patterns without being restdcby same training data set, but have the separated evaluatiarsels
static network topology.g., cell sites. from July 18th to July 23 (excluding July 21 and July 22). From
Figure[11, we observe consistently high accuracy after vpdyap
the clusters from the training data set on the 4 separatddaeva
tion date sets in that week. When the cluster size is limited, t
the accuracy can be consistent around 70% over one week, Thus
we conclude that accuracy does not degrade even if theriggiar
BIGRAPH is done only once per week.
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Now we consider some issues regarding the deploymeBt-of 07/18 07/19 07/20 07/23

GRAPH in 3G networks. In the deployment BiGRAPH algo- date (MM/DD)
rithm, there are 3 important dimensions: accuracy, clusrey, and
number of measurements. The “number of measurements” is im- Figure 11: BIGRAPH's accuracy over one week.

portant because more measurements will generally reshigirer

confidence in the summarized valesy(, average RTT, throughput, .

etc.). Figur€D shows the accuracy under change over thetoth 4.3.3 BIGRAPH’saccuracy over largetime-scales
dimensions: number of measurements and cluster size.dfighi In §4.3.2, we observe th8GRAPH is able to perform consis-
ure, the “number of measurements” just relabels and restaée tently well over a week. To determine whether it would be ifeas
“PDP Context age” in Figurgl4 —e, the x-axis varies the PDP  ble to train even less frequently and have less overhead,usle p
Context age and shows the number of measurements that are athe time difference between the training data set and tHeaien

most each PDP Context age. data set even longer.
, We collect the data sets ®&NCGroundTruth and PDPSetu-
4.3.2 BIGRAPH’saccuracy over short term pLocations again on Dec 5, 2010 and serve them as an evaluation
Since the evaluation data set of July 22 and training datafset data set, which is 5.5 months later after the training dataose
July 21 are close to each other in time, it is still uncertaiwBl- July 21. Then we check the accuracy by applying the clusters o
GRAPH performs if training data were collected less frequently. the training data set on the evaluation data set. Figure @®ssh
Note that being accurate over longer time periods is esdebti that the accuracy is still reasonable. When the clusterisize

BIGRAPH because collectinBNCGroundTruth is expensive and, BIGRAPH's accuracy is higher than site-level accuracy. Using

consequently, building the training data set is must bemqfent to clusters of 32 sector8IGRAPH can achieve the accuracy com-

be practical. IdeallyBIGRAPH's snapshot clusters remain rea- parable to RNC-level accuracy. Therefore, althoBiGRAPH

sonably accurate for a long time. requires expensive overheadRINCGroundTruth collection, one
Although Figurd# shows th&IGRAPH ’s accuracy is still sta- snapshot oRNCGroundTruth can be still acceptable after several

ble over large PDP Context ages, we have to investigss&RAPH 's months.

performance over time even longer than typical PDP Conigas.a , . .

In practice, we believe we can collect one snapsh&€GroundTruth 4-3-4 HANDOVER's accuracy in real time
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HANDOVER is an alternative oBIGRAPH on condition that
RNCGroundTruth is not available, since it computes clusters in
real time based on lightweightandoverCounters Once per hour,
HANDOVER updates its graph, computes the sparest cut for the
graph, and ends up with a set of clusters. This section eesua
HANDOVER s accuracy.

Figure[I3 shows/ANDOVER s real-time accuracy. Similar as
BIGRAPH s accuracyHANDOVER ’s accuracy is the probability
that the current locations of a measuremerRBCGroundTruth
agrees with the corresponding initial location BRpPSetupLoca-
tions at the granularity oHANDOVER'’s clusters. We observe
thatHANDOVER is consistently and significantly better then the
site-level accuracy. Also, we can see that the accuracyniayal
higher in the earlier hours of day, which is probably due tersis
less movement during the early morning.

Previous Figur¢l18 shows th&tANDOVER''s performance is
worse tharBIGRAPH , which is expected becauBR&NCGroundTruth
in BIGRAPH captures more information th&tandoverCounters
in HANDOVER such as the start of PDP Contexts. Fiddre 9 also
confirms thaHANDOVER ’s clusters have slightly smaller cover-
age over the number of cell sites tHABIGRAPH’s clusters.

100
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accuracy (%)

time (hour)

Figure 13: HANDOVER's accuracy over hours.

The impact of cluster size dHANDOVER is reflected by pre-
vious Figurd B. As witlBBIGRAPH , the smalleHANDOVER’s
cluster size is, the more information is lost by the cut. Fed8
shows that the accuracy degradatiol ANDOVER serves as an
alternative ofBIGRAPH . BIGRAPH's accuracy is 20% higher
thanHANDOVER ’s when cluster size is between 2 — 8.

4.4 Naive Heuristics Perform Poorly

BesidesBIGRAPH andHANDOVER, we investigate another
three solutions based on some straightforward heurisfidgese
solutions are potential solutions under extreme caseh,asiahen

BIGRAPH's or HANDOVER''s prerequisites at RNCs are com-
pletely unavailable.

MAX. This approach is based on eitlBd#GRAPH ’s bipartite graph
or HANDOVER'’s graph. Before the approach starts, each sector
itself is a cluster. Once started, each cluster repeatddigras the
neighboring sector that has the maximum edge cost with tterse
inside this cluster. One cluster stops from growing as seahhits
the constraint on cluster size. The whole absorbing prastegs if
all clusters are determined.

CLOSE. This approach is similar tMAX , but does not depend
on any knowledge except the latitude and longitude of celiss.
Since cell sectors are geographic areas directionallyreavay cell
sites, we use the (latitude, longitude) of the correspandeail sites
to estimate the geographic coverage of cell sectors. Earstec!
repeatedly absorbs the sector with the closest physiciintie to

it until it hits the restricted the size.

THRE. This approach is based on eitl@IGRAPH's or HAN-
DOVER'’s graph. It directly filters out those edges whose weight
are smaller than a predefined threshold. The filtering witepe
tially leave the graph a set of disjoint clusters. The avergster
size, the maximum cluster size, and the accuracy is affdmtéde
threshold. Note that one disadvantage of this approacheisith
certainty on the cluster size: the size could be very diffeagross
clusters as shown by Figure]1#HRE's maximum cluster size is
much larger than the average cluster size, which indicateant-
balance of the graph is a natural phenomena. Larger cluges s
make it more difficult to assign performance to fine-grainett n
work locations. Increasing the threshold on the minimunt cas
reduce the maximum cluster size, but it results in high inescy
as well.

accuracy *
avg. size
max. size

80

accuracy (%)
cluster size (# sectors)

0.14 0.16
edge threshold

Figure 14: THRE'’s accuracy and average/maximum cluster
size over threshold.

45 Pros and Cons

Figure[I% shows the accuracy of all five solutions as we vary
the cluster size. Comparing the accuraBySRAPH > HAN-
DOVER > MAX ~ CLOSE ~ THRE. When the cluster size is 1,
all five solutions have the same accuracy as the sectordecel
racy. BIGRAPH performs better than site-level accuracy when its
cluster contains more than two cell sectors. With the ctusize is
4, HANDOVER can perform as good as site-level accuracy. The
accuracy oMAX , CLOSE, andTHRE is not sensitive to cluster
size. Even if the cluster size is 64, these three solutiohsahnot
achieve the RNC-level accuracy.

Table[2 summarizes the properties of the five solutiois-
GRAPH has the best accuracy, but has the highest measurement
overhead. In order to reduce the overhead, we can create snap
shot of RNCGroundTruth periodically. As we discussed before,

a one-day snapshot can perform very well without accuragyade
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Figure 15: Accuracy of the five solutions.
solution overhead accuracy stability
BIGRAPH RNCGroundTruth 70% 1 week — 5 months
HANDOVER | HandoverCounters 53% real-time
MAX RNCGroundTruth/  41% 1 week — 5 months /
HandoverCounters real-time
CLOSE sectors’ GPS 31% static
THRE RNCGroundTruth/  <48% 1 week — 5 months /
HandoverCounters real-time
LAC - 83% static
RNC - 67% static
site - 51% static

1: the accuracy if the cluster size == 4 is applicable.

Table 2: Pros and Cons of the five solutions.

dation over one week. Even after 5 montBEGRAPH 's accuracy

is still better than the site-level accuracy when the clusize is

4. Thus, we believBIGRAPH is a stable solutiondANDOVER
requires onlyHandoverCounterswhich is lightweight and contin-
uously available. We expect thdANDOVER is a complementary
solution toBIGRAPH . AlthoughHANDOVER ’s accuracy is only
slightly better than the site-level accuracy when the elusize is 4,
we still believe thaHANDOVER still has value (iBIGRAPH is
not possible) becaus$ANDOVER captures the dynamics of com-
mon mobility patterns, which is the main reason tB«6RAPH
and HANDOVER beat other solutions. If problems arise in the
network, we can take both the sectorsHANDOVER ’s clusters
and the sectors in cell sites into consideration when triarigcate
the problems. The overhead and stabilityAX andTHRE de-
pends on the input graph, eithBFGRAPH'’s or HANDOVER’s
graph.CLOSE and site-/RNC-level estimations do not require any
dynamic information.

5. PERFORMANCE RE-ASSIGNMENT

Once we have the knowledge of which sectors are related by
clustering, we have high confidence on the traversed netelerk
ments for performance measurements loggetPBfowRecords
In this section, we want to associate end-to-end performanet-
rics captured byPFlowRecordsto different network elements with
high accuracy based on the clusters obtained fBI®GRAPH or
HANDOVER.

5.1 Performance Inference

Since the performance metrics capturedBllowRecordscan
be assigned to incorrect locations due to localizationdneacy,
our observation of which parts within networks are perfargnivell
and which parts have poor performance may be incorrect. \Wié wa
to leverage the knowledge of related sectors and infer theahc
performance of each network element by associating theures

end-to-end performance metrics with all cell sectors ingame
cluster.

Measured Performance. IPFlowRecordsmonitors end-to-end
performanceeg., RTT, loss, throughputgtc., at GGSNs for each
IP flow. In this measurement infrastructure, although thporeed
network location byPFlowRecordscan be inaccurate, end-to-end
performance is comprehensively recorded at GGSNSs.

Ground Truth Performance. In order to quantify how inaccurate
the measured metrics could be and how much benefit can be ob-
tained from our performance re-assignment, we first havesild b
a ground truth of the performance of each cell sector ovee.tim
Similar to the correlating approach i 84J2.1, we searchctire
rect sector for each measurementmilowRecords from RNC-
GroundTruth based on the anonymized subscriber identifier and
timestamp. Although théPFlowRecordss reported sector can be
inaccurate, vilRNCGroundTruth , we can still label the measured
metrics to where they are.

Re-assigned Performanceln §4, we have already proposed clus-
tering solution8BIGRAPH andHANDOVER for discovering re-
lated sectors. At timd, let M(s1) be the measured performance
of s1, G(s1) be the ground truth performancesaf P(s;) be the re-
assigned performance sf, ands,, s3, ands, be the sectors in the
same cluster witls;. We re-assign sectasf the performanc®(s;)
with the average oM(s1), M(s), M(s3), andM(s4). Therefore,
for each sector, at any time, we can re-assign performantieeto
sector based on the measured performance of sectors insterd.

To evaluate the benefit of performance re-assignment, we com
pare the measured RTT and the re-assigned RTT with the ground
truth RTT in Figurd_Ib. FigurE_16 shows the relative differen
from the ground truth. In the re-assigning, we investigate re-
assigned RTT across different forms of clustérs, cell site,BI-
GRAPH’s clusters,HANDOVER’s clusters. Because the mea-
sured RTT can be considered as the re-assigned RTT when each
sector itself is a single cluster, to make our presentatmrsistent
with that in &, hereafter, we label the measured performas
“sector”-level re-assigned performance in legends.

According to Figuré_16, the measured RTT can be very differ-
ent from the ground truth RTT. More than 20% sectors have the
error difference of more than 40%, which encourages us tatéoc
the measured performance better. After the re-assignrientlif-
ference from the ground truth RTT becomes smaller. The media
RTT difference decreases by 10% from 16%. USMiGRAPH's
or HANDOVER ’s clusters, the RTT difference is very close to the
one using cell sites, but botBIGRAPH’s and HANDOVER’s
clusters have only 4 clusters while the average size of del s
is larger.
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Figure 16: Difference across the re-assigned, measured, én
ground truth performance.



5.2 Anomaly Detection 1

. . i i ) site false+ —e—

The relative difference of RTT is only one dimension for ewval site false- REDS

. . . . 0.8 sector false+ —a
ating the performance re-assignment. The accuracy withiwthie sector false- m-
i i i BIGRAPH false+ —&—
re-assignment reflects performance changes is of parnticiéaest 06 | BIGRAPH falser oo

as well because monitoring exceptional performance ise®ar
decreases is one way for cellular operators to detect aiesnal

Figurd 1T shows an example that re-assignment does welbin ca
turing RTT spikes by comparing the re-assigned RTT and thee me
sured RTT with the ground truth one over a few hours. Fifufa)7
depicts the relative RTT difference over time, which confirthe
observation from Figurie_16: before the re-assignment, eledive
difference has many outliers larger than 40%, but the RT Taistin
within +/-20% ground truth RTT after the re-assignment.

Instead of the relative difference, Figlird 17(b) companesab-
solute RTT over Figure_17(a). Most of the time, RTT spikes in
the ground mfth are well captured by the re-assigned RT&das only be able to distinguish an RNC or LAC (which can cover hun-
on BIGRAPH's clusters, but not by the measured performance dreds of sectors in a metro area). Partly, this is becauseniot
and the re-assigned one based on cell sites. The measured per ) '

f . t d h ianificant i Bfte efficient to propagate all the cell switch signaling infotioa to
ormance is erralic and may have significant inaccuracyeaier, the core network and the radio network control and data glane
for brevity, we do not include the re-assigned performaresed

onHANDOVER ’s clusters if it has similar patterns RIGRAPH . coupled together. HSPA devices (the majority of smartph

. . . data cards today) may change their serving cell every 2 — 20 ms
Given that the re-assigned performance is fairly closeagtbund . ; A .
truth and also captures the RTT spikes well, we expect thrit in order to prevent degradation due to fast-fading in theslegs

play an important role in anomaly detection in practice weteromaly channel.
alerts occur when the performance observed in real timesdoop The deployment of Long Term Evolution (LTE) networks may

. L 0 . . alleviate the problem discussed in this paper to some extent
increases significantlye.g., 25%. AssumingX is a reasonable LTE networks, the control plane signaling that was perfatrbg
threshold to determine anomalies, if we observe the pedooa ’

h the RNC in UMTS is instead performed by a new entity called the
IS gbove 100% +>é or below lOO%I ﬁ of the Iastdperfk?rmance Mobility Management Entity (MME). User data, rather tharnige
e o e 2O gt MIE,  ent et fm the bese i
ing the re-assigned performance and the measured perfoerf the core network. _Thls is made_possuble by LTE's all-IP aexhi
anomaly detection. Note that tbeis the threshold for the ground ture and a decoupling of the radio n.etwork control and datags. .
truth performance.but for the re-assigned and the measures| Thus., P measur.ements COHECt?d inan LTE core net.vv.ork can, t
we can tune the th’reshol d for each in practices. pnnmplg, be easily correlated with the base st_atlo_n tlnl_@lmated
Figure[TB illustrates the false positive/negative ovetitheshold the traffic. Nonetheless, sector level information is stdt avail-

of using re-assianed performance to detect performanaaali able to the core network and, as we have seen in our studiedela
using '9 p . . P ; TEEE. sectors may not belong to the same base station. Furtherhidte
In terms of false positives, using cell sites @BIGRAPH s clus-

) o . core networks are still logically hierarchical like UMTStmerks:
ters to re-assign the performance have similar false pesibut

BIGRAPH s clusters h liahtly | fal it Int base stations send data to a Serving Gateway which in tunafdr
s clusters have slightly lower false posiives. In Lerms 4 4 5 packet Data Network Gateway before it exits to exter
of false negatives, both the re-assigned performance lmasBd

GRAPH's clusters and the measured performance have the Iowestgfsltrr;gfjvtveo (;kshsyif? aTI:]/e t'ﬂ;e::réitt' ;%;;L;?ﬁgslgvrrgagfm?
fa!se negative rate, which is significgntly lower than thedaneg- frastructure at all ing’ress points of the core network mai kst
?:_V;‘;%ﬁeﬂt tpheerfgflggan;:ntfaes(re%-gjsﬁs‘;llgX?DdHt’):S(':(Ie:s?enrscil r?:?fh prohibitive. For example, in the UMTS network we studiedhist
better than the one re-assigned based on cell sites alttmiltare paper, the number of physical locations housing GGSNS istwo

. ) ders of magnitude smaller than the number of physical lonati
based on rele_lted sectors. It is becaB$BRAPH's clusters_ can housing RNCs so that signaling and handover latencies aspgc
locate subscribers more accurately and leverages humaititgnob

able. It remains to be seen how large-scale LTE networkshsill
patterns better. deployed
In summary, re-assigning the performance baseBIGRAPH s '
clusters achieves the lowest false positive and false ivegattes

of all the solutions we examine. 7. RELATED WORK

Studies of human localization have strong motivationsdyig)
insights into our society from perspectives such as urbannphg,

false +/-

threshold

Figure 18: Anomaly detection via the re-assigned performace.

6. GENERALIZABILITY traffic forecastingetc. [11),[22]. Particularly, in the mobile comput-
The split between the radio network where fine-grain loceitie ing community, localization is critical in designing contelelivery

formation is known (RNCs and base stations) and the coreanktw  services, context-aware applicatios, [16],[17,[21].

where IP-level metrics are easily collected (SGSNs and Gs&3SN In location-aware studies, one critical issue is how toemtlthe

is fundamental in UMTS networks. This is because the RNC is ground truth for end-user locations. Some positioningesyistsuch

designed to handle all device mobility. While infrequenttsein- as GPS and SkyHook][1] are among the most well-known solsition

formation is reported to the core network when a device moves for mobile users. However, these solutions do have linaitetie.g.,

into a new location area and for accounting purposes (asgetin GPS is not necessarily available for all mobile devices, Sk

CDR records used for billing), this information is typigaflimilar Hook does not work well for tracking cellular users [5]. Mover,

to the accuracy of that in PDP Context Setup messages: thgy ma getting GPS information requires user permission mostefithe
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Figure 17: How the re-assigned performance reacts to perfenance changes over time.

and cannot work for indoor localization. There are somelipaa
tion technigues targeting individual users [2[4, 6], whitdlular
network operational records are very helpful in investigaa large
and representative set of cellular usérd [11. 8[ 1R, 23, 12].

Overall, previous location-aware studies can be classifitl
three categories:

Characterization. Characterizing the relationship between a user’s
interests and his mobility propertiesg., the real-time location, is
critical for location-based services. Based on the IP flacds
from a cellular operator, Keralapuehal. investigated if there ex-
ists distinct behavior patterns among mobile users in wetvéing
behavior [18]. Trestiaret al. characterized the relationship be-
tween user application interests and their mobility pripsi[23].

Via extensive field tests under different movement scesafisoet

al. presented an empirical study on the performance of mobile
HSPA networks in Hong Kond [24]. Using aggregate statistics
hundreds of thousands of subscribers, Isaacehan demonstrated
different mobility patterns in Los Angeles and New York (y].
Modeling. Context-aware applications can benefit from location
forecasting if there exists mobility patterns for indivadwsers and
the future locations are predictable from their mobility dets.
Kim et al. presented a method to estimate the physical location
by associating it with access points in a wireless netwob. [Ea-
gle et al. monitored the cell towers transitions on hundreds of sub-
jects and built a network for cell towers. Through clustgrom

cell towers and discovering strongly related cell towehgytcan
predict each subject’s subsequent movenienit [18].

More than merely modeling the mobility patterns accuratibly
overhead of building the mobility patterns has been comsitiby
Sohnet al.. [22]. They explored how coarse-grained GSM data
from mobile phones can be used to discover high-level ptaser
of user mobility properties.

Application. Achieving accurate localization is the prerequisite
for location-based services. Among the studies relateddaighr
ing such services, Nicholsast al. and Panget al. generated the
connectivity forecasts beyond the location predictior [PI. Tak-
ing energy saving into consideration, Ananthanarayahah pro-
posed the solution of associating energy efficient bluétbotspots
with the locations of WiFi access points to enhance WiFi qrerf
mance.

Compared with all these studies, our study has the followwira
major differences. First, from the perspective of celldperators,
we focus on the performance metrics in cellular networkseréh
fore, we are interested in accurately localizing subscsilbe their
correct network locations, rather than their physical timres. Sec-
ond, designed for cellular operators, our system has toceethe

overhead for characterizing mobility patterns of all useithe tar-
get network. We face the challenge due to the inherent toffde-
between the fine-grained measurement and measuring oderhea

8. CONCLUSIONS

Our work is motivated by an important problem faced by cel-
lular network operators: to determine the end-to-end perémce
characteristics of fine-grain areas of their 3G networks.

Our work is the first to quantify the location inaccuracy ofpna
ping the IP-level flow records at GGSNs to different fine-geal
aggregation levels, and the first to leverage common myplmét-
terns to achieve better performance localization. We dpezl
clustering algorithms to group related clusters togetieeassigned
the measured performance metrics to more accurately reflect
actual ones, and eventually captured performance ananailth
lower false positive and false negative rates compared ettibr
forms of clusters.

During the clustering, in order to balance the tradeoff leemv
localization accuracy and measurement overhead, we Edpo®
solutions for clustering related sectors. One solutionloaate a
subscriber into only 4 cell sectors with the accuracy of 7084 &
consecutive days, while the other one can update the kngelefl
mobility patterns hourly, and increase the accuracy byast|20%
compared to solutions such as clustering purely by cebsite

We believe that our work can be an important utility for cellu
lar operators for the purpose of performance monitoringywark
maintenance, and anomaly detection.
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