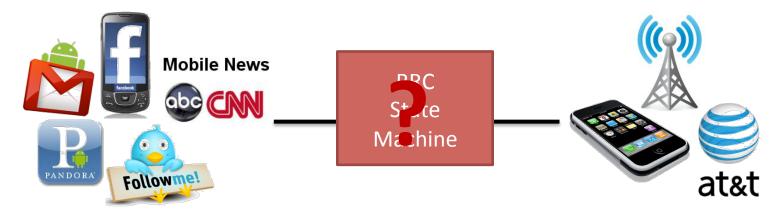
Cellular Networks and Mobile Computing COMS 6998-11, Fall 2012

Instructor: Li Erran Li

(lierranli@cs.columbia.edu)

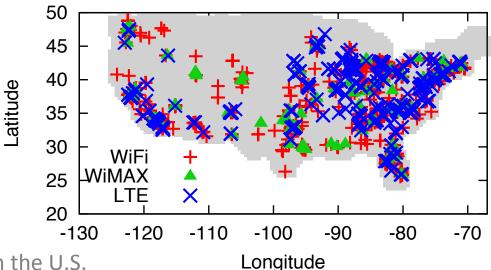
http://www.cs.columbia.edu/~lierranli/coms6998-11Fall2012/


10/2/2012: Radio Resource Usage Profiling and Optimization

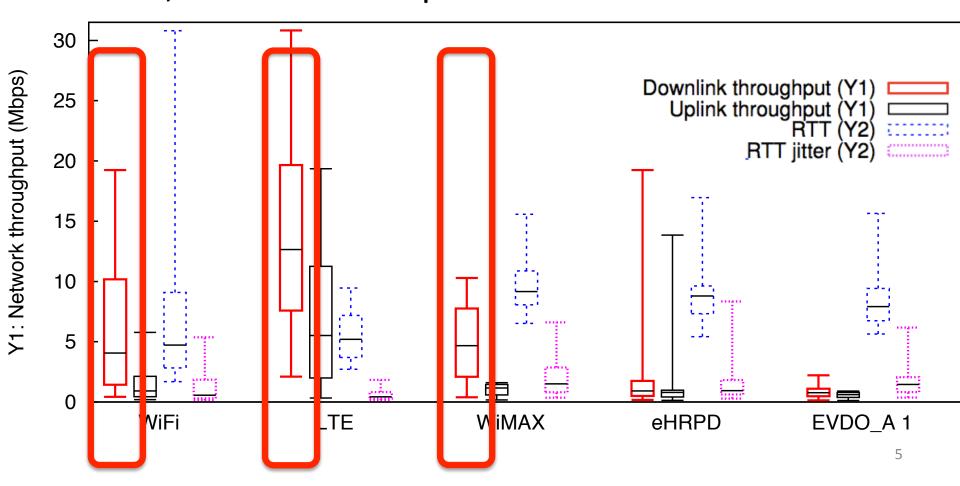
Outline

- Introduction
- Network Characteristics
- RRC State Inference
- Radio Resource Usage Profiling & Optimization
- Network RRC Parameters Optimization
- Conclusion

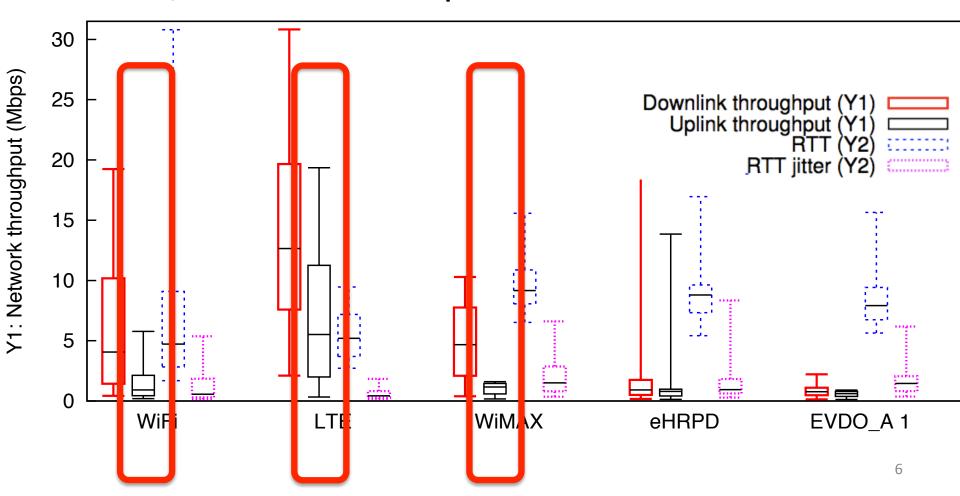
Introduction


Typical testing and optimization in cellular data network

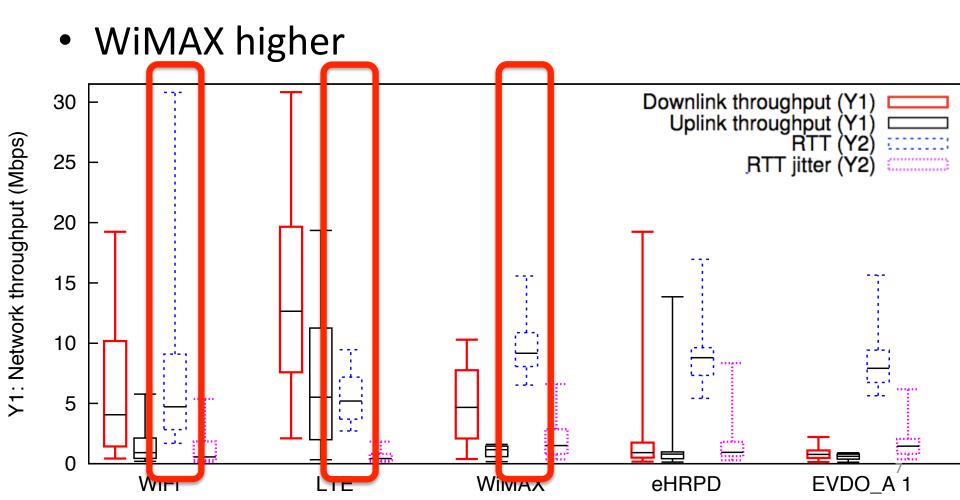
- Little focus has been put on their cross-layer interactions
 Many mobile applications are not cellular-friendly.
- The key coupling factor: the RRC State Machine
 - Application traffic patterns trigger state transitions
 - State transitions control radio resource utilization, end-user experience and device energy consumption (battery life)


Network characteristics

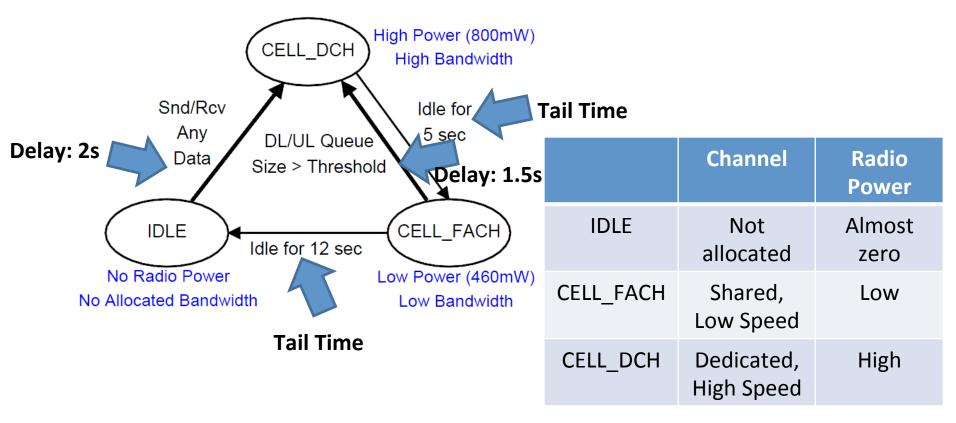
- 4GTest on Android
 - http://mobiperf.com/4g.html
 - Measures network performance with the help of 46 M-Lab nodes across the world
 - 3,300 users and 14,000 runs in 2 months 10/15/2011 ~ 12/15/2011


Downlink throughput

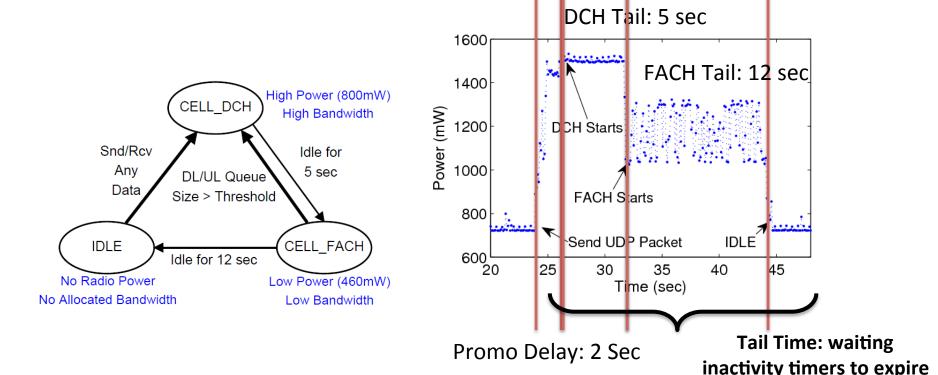
- LTE median is 13Mbps, up to 30Mbps
 - The LTE network is relatively unloaded
- WiFi, WiMAX < 5Mbps median


Uplink throughput

- LTE median is 5.6Mbps, up to 20Mbps
- WiFi, WiMAX < 2Mbps median


RTT

- LTE median 70ms
- WiFi similar to LTE


The RRC State Machine for UMTS Network

- State promotions have promotion delay
- State demotions incur tail times

Courtesy: Feng Qian et al.

Example: RRC State Machine for a Large Commercial 3G Network

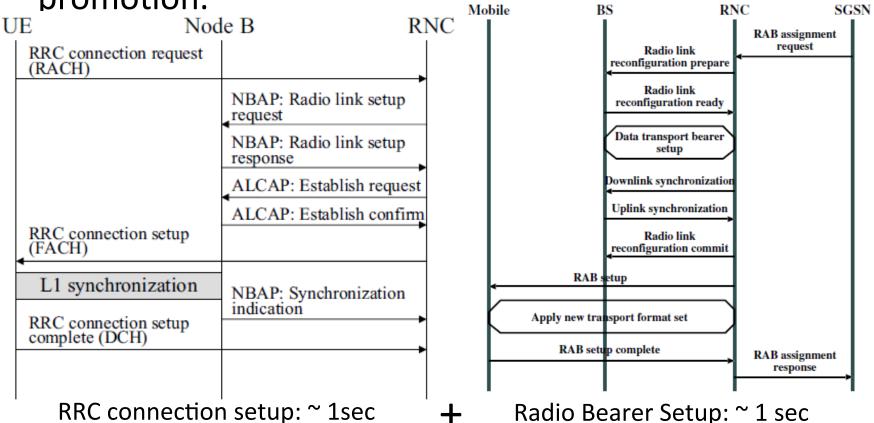
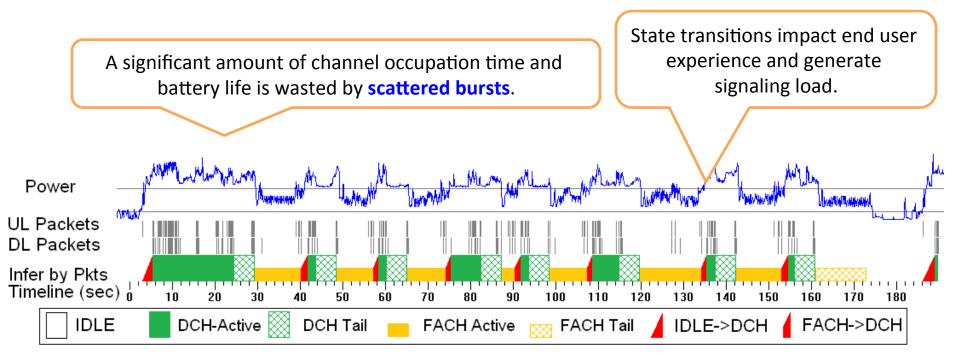
DCH: High Power State (high throughput and power consumption)

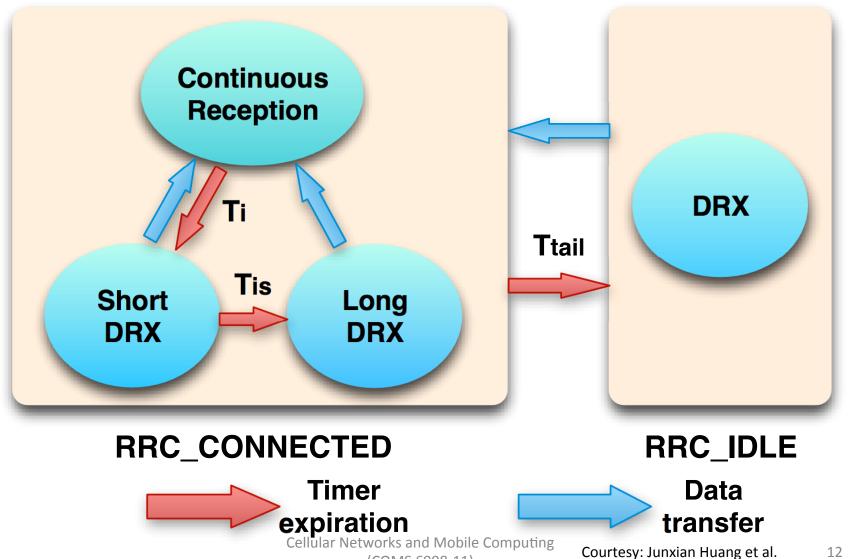
FACH: Low Power State (low throughput and power consumption)

IDLE: No radio resource allocated

Why State Promotion Slow?

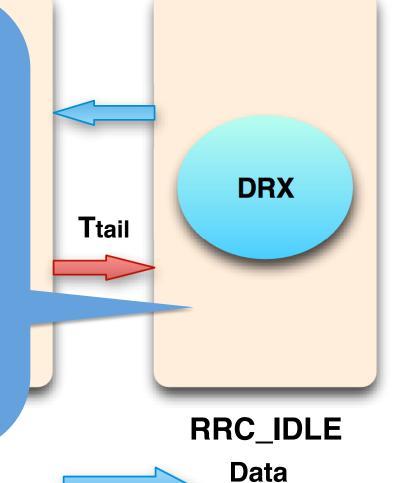
Tens of control messages are exchanged during a state promotion.


Figure source: HSDPA/HSUPA for UMTS: High Speed Radio Access for Mobile Communications. John Wiley and Sons, Inc., 2006.

Example of the State Machine Impact: Inefficient Resource Utilization

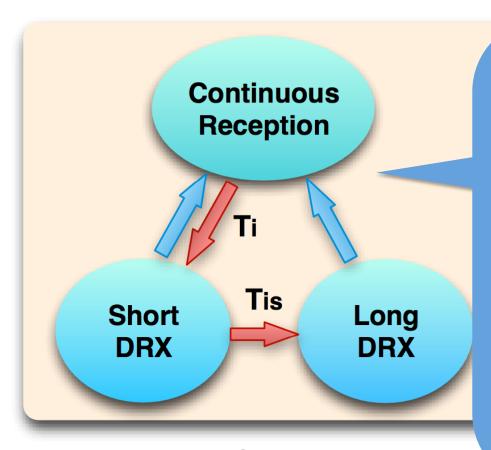
Analysis powered by the ARO tool


	FACH and DCH
Wasted Radio Energy	34%
Wasted Channel Occupation Time	33%

(COMS 6998-11)

RRC_IDLE

- No radio resource allocated
- Low power state: 11.36mW average power
- Promotion delay from RRC_IDLE to RRC_CONNECTED: 260ms

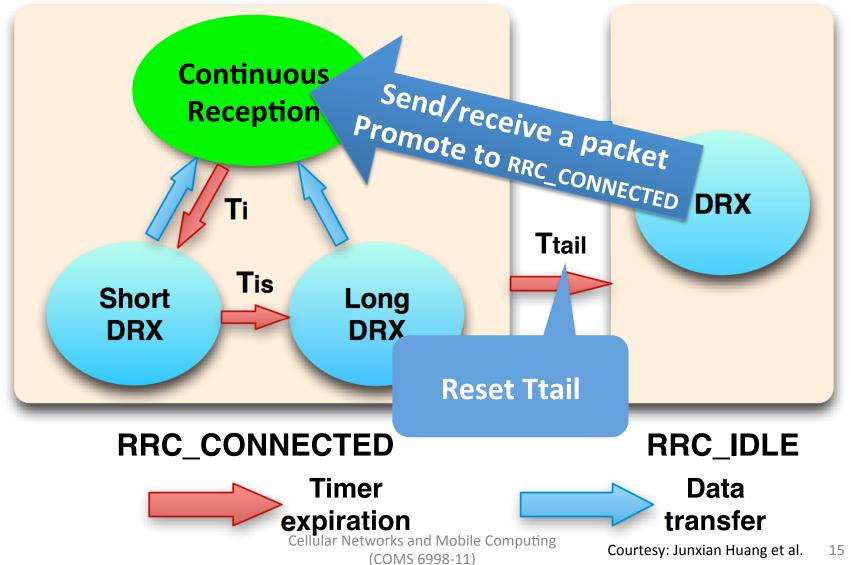


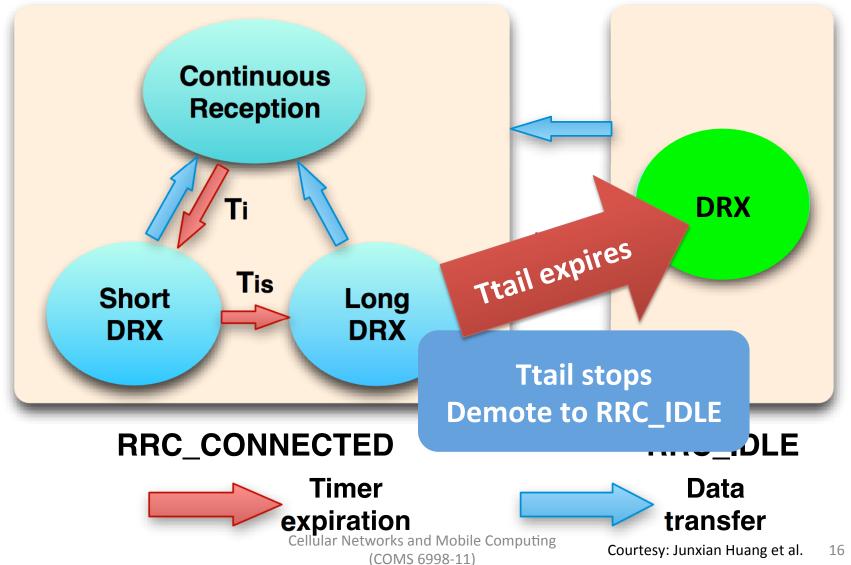
Cellular Networks and Mobile Computing (COMS 6998-11)

transfer

RRC_CONNECTED

- Radio resource allocated
- Power state is a function of data rate:
 - 1060mW is the base power consumption
 - Up to 3300mW transmitting at full speed


RRC_CONNECTED



Data transfer

Cellular Networks and Mobile Computing (COMS 6998-11)

Courtesy: Junxian Huang et al.

Tradeoffs of *Ttail* settings

Ttail setting	Energy Consumption	# of state transitions	Responsiveness
Long	High	Small	Fast
Short	Low	Large	Slow

Continuous

DRX: Discontinuous Reception

 Listens to downlink channel periodically for a short duration and sleeps for the rest time to save energy at the cost of responsiveness

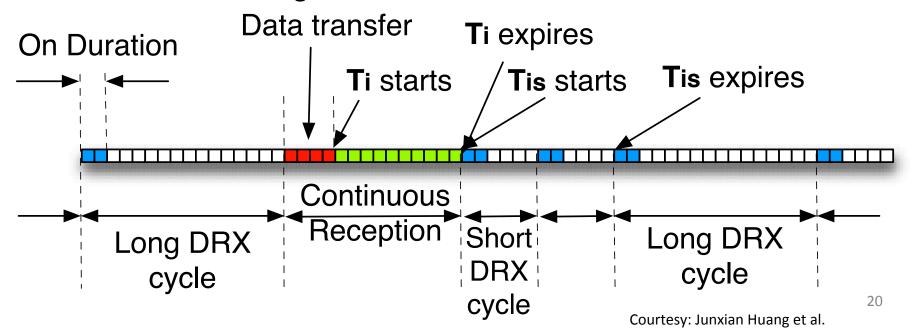
-11

RRC_CONNECTED

Timer expiration

RRC_IDLE

Cellular Networks and Mobile Computing (COMS 6998-11)


Courtesy: Junxian Huang et al. 18

Discontinuous Reception (DRX): micro-sleeps for energy saving

- In LTE 4G, DRX makes UE micro-sleep periodically in the RRC_CONNECTED state
 - Short DRX
 - Long DRX
- DRX incurs tradeoffs between energy usage and latency
 - Short DRX sleep less and respond faster
 - Long DRX sleep more and respond slower
- In contrast, in UMTS 3G, UE is always listening to the downlink control channel in the data transmission states

DRX in LTE

- A DRX cycle consists of
 - On Duration' UE monitors the downlink control channel (PDCCH)
 - 'Off Duration' skip reception of downlink channel
- T_i: Continuous reception inactivity timer
 - When to start Short DRX
- T_{is}: Short DRX inactivity timer
 - When to start Long DRX

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4±0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED	1000.2 ± 13.7	1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1±14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1060.1±14.3	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060.0 ± 3.3	T_{tail} :	N/A
in RRC_CONNECTED	1000.0±3.3	11576.0 ± 26.1	1 N/ A
LTE DRX On	594.3±8.7	T_{oni} :	T_{pi} :
in RRC_IDLE	J94.3±0.7	43.2±1.5	$1280.2 \pm 7_21$

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4+0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED	1000.2 ± 13.7	1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1 ± 14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1000.1 ± 14.3	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060 0 1 2 2	T_{tail} :	NI/A
in RRC_CONNECTED	1060.0 ± 3.3	11576.0 ± 26.1	N/A
LTE DRX On	594.3±8.7	T_{oni} :	T_{pi} :
in RRC_IDLE	394.3±0.7	43.2±1.5	1280.2 ± 721

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4±0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED	1000.2 ± 13.7	1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1±14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1000.1±14.3	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060.0 ± 3.3	T_{tail} :	N/A
in RRC_CONNECTED	1000.0±3.3	11576.0 ± 26.1	1W/A
LTE DRX On	594.3±8.7	T_{oni} :	T_{pi} :
in RRC_IDLE	<i>39</i> 4.3±6.7	43.2±1.5	1280.2 ± 72

	Power*	Duration	Periodicity
	(mW)	(ms)	(ms)
Screen off (base)	11.4±0.4	N/A	N/A
Screen 100% on	847.2±2.7	N/A	N/A
LTE promotion	1210.7±85.6	T_{pro} : 260.1 \pm 15.8	N/A
LTE Short DRX On	1680.2±15.7	T_{on} :	T_{ps} :
in RRC_CONNECTED	1000.2 ± 15.7	1.0 ± 0.1	20.0 ± 0.1
LTE Long DRX On	1680.1±14.3	T_{on} :	T_{pl} :
in RRC_CONNECTED	1000.1±14.3	1.0 ± 0.1	40.1 ± 0.1
LTE Off Duration	1060.0 ± 3.3	T_{tail} :	N/A
in RRC_CONNECTED	1000.0±3.3	11576.0 ± 26.1	11///
LTE DRX On	594.3±8.7	T_{oni} :	T_{pi} :
in RRC_IDLE	<i>39</i> 4.3±6.7	43.2±1.5	1280.2 ± 724

			_	-	-	
			Dower*	Duration	Periodicity	
					(ms)	
Scree	•	P(on) -	-P(off) = 62	OmW, DRX	J/A	
Scre		saves	36% energy	in	J/A	
LTE			ONNECTED		J/A	
LTE S	•	High power levels in both On and ps :				
in RRC	+0.1					
LTE L	Off durations in the DRX cycle of $\frac{10.1}{ p }$					
in RRC	and the state of the					
LTE (
in RRC _	Cor			110/0.0120.1	IN/A	
LTE	DR	X On	5042 97	T_{oni} :	T_{pi} :	
in R	RC_	IDLE	594.3±8.7	43.2±1.5	$1280.2 \pm 7_{2}$	

LTE consumes more instant power than 3G/WiFi in the high-power tail

- Average power for WiFi tail
 - 120 mW
- Average power for 3G tail
 - **800** mW
- Average power for LTE tail
 - **1080** mW

Power model for data transfer

- A linear model is used to quantify instant power level:
 - Downlink throughput t_d Mbps
 - Uplink throughput t_u Mbps

$$P = \alpha_u t_u + \alpha_d t_d + \beta$$

Data transfer power model

< 6% error rate in evaluations with real applications

Energy per bit comparison

 LTE's high throughput compensates for the promotion energy and tail energy

Transfer Size	LTE μJ/bit	WiFi μJ/bit	3G μJ/bit
10KB	170	6	100
10MB	0.3	0.1	4

Total energy per bit for downlink bulk data transfer

Energy per bit comparison

 LTE's high throughput compensates for the promotion energy and tail energy

Small data transfer, LTE wastes energy Large data transfer, LTE is energy efficient

10MB

0.3

0.1

4

Total energy per bit for downlink bulk data transfer

Example of the State Machine Impact: DNS timeout in UMTS networks

Start from CELL_DCH STATE (1 request / response) – Keep in DCH

240 11.806360	10.0.192.152	172.18.145.103	DNS	Standard query A www.eecs.umich.edu
241 11.991680	172.18.145.103	10.0.192.152	DNS	Standard query response A 141.212.113.110

Start from CELL_FACH STATE (1 request / response) – Keep in FACH

237 18.304116	10.0.192.152	172.18.145.103	DNS	Standard query A www.eecs.umich.edu
238 18.627700	172.18.145.103	10.0.192.152	DNS	Standard query response A 141.212.113.110

Start from IDLE STATE (2 $^{\sim}$ 3 requests / responses) – IDLE \rightarrow DCH

1884 221.958559	10.0.192.152	172.18.145.103	DNS	Standard query A www.eecs.umich.edu
1885 222.947858	10.0.192.152	172.18.145.103	DNS	Standard query A www.eecs.umich.edu
1886 223.947892	10.0.192.152	172.18.145.103	DNS	Standard query A www.eecs.umich.edu
1887 224.069453		10.0.192.152	DNS	Standard query response A 141.212.113.110
1888 224.070465	172.18.145.103	10.0.192.152	DNS	Standard query response A 141.212.113.110
1889 224.079463	172.18.145.103	10.0.192.152	DNS	Standard query response A 141.212.113.110

Starting from IDLE triggers at least one DNS timeout (default is 1 sec in WinXP)

2 second promotion delay because of the wireless state machine (see previous slide), but DNS timeout is 1 second!

=> Triple the volume of DNS requests...

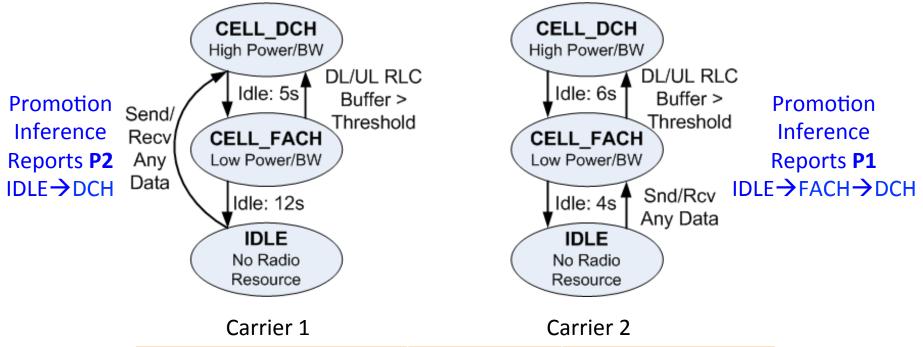
Cellular Networks and Mobile Computing (COMS 6998-11)

State Machine Inference

- State Promotion Inference
 - Determine one of the two promotion procedures
 - P1: IDLE → FACH → DCH; P2:IDLE → DCH

Algorithm 1 State promotion inference

- 1: Keep UE on IDLE.
- 2: UE sends min bytes. Server echoes min bytes.
- 3: UE sends max bytes. Server echoes min bytes.
- 4: UE records the RTT Δt for Step 3.
- 5: Report P1 iff $\Delta t \gg \text{normal RTT}$. Otherwise report P2. RTT w/ Promo > 1500ms

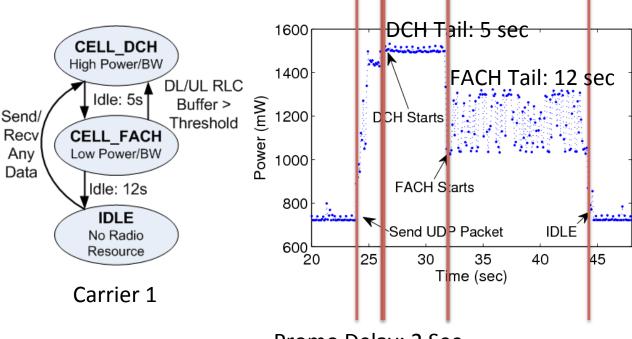

A packet of min bytes never triggers FACH→DCH promotion (we use 28B)
A packet of max bytes always triggers FACH→DCH promotion (we use 1KB)

- State demotion and inactivity timer inference
 - See paper for details

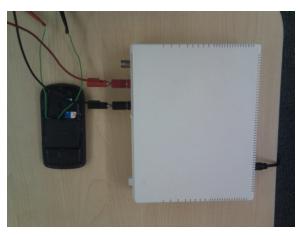
 \longrightarrow P1: IDLE \rightarrow FACH, P2:IDLE \rightarrow DCH

■ P1: FACH → DCH, P2:Keep on DCH
■ Normal RTT < 300ms

RRC State Machines of Two Commercial UMTS Carriers



Timer	Carrier 1	Carrier 2
DCH \rightarrow FACH (α timer)	5 sec	6 sec
FACH→IDLE (β timer)	12 sec	4 sec


What are the optimal inactivity timer values?

State Machine Inference

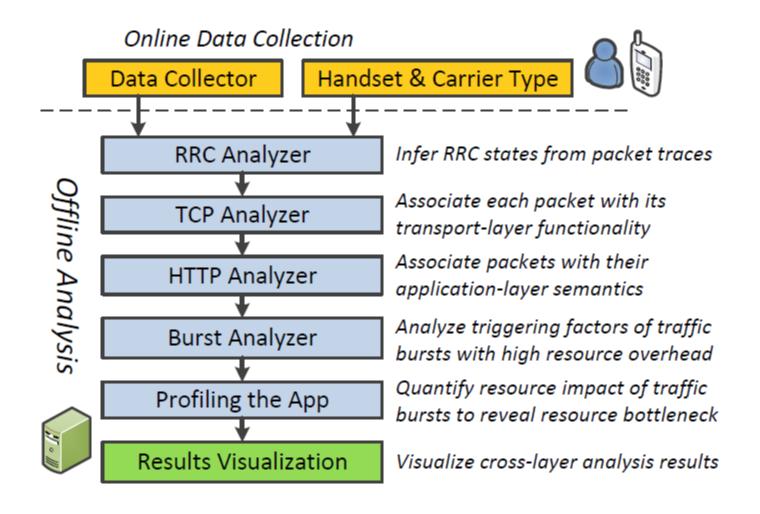
Validation using a power meter

RRC State	Avg Radio Power
IDLE	0
FACH	460 mW
DCH	800 mW
FACH→DCH	700 mW
IDLE→DCH	550 mW

Outline

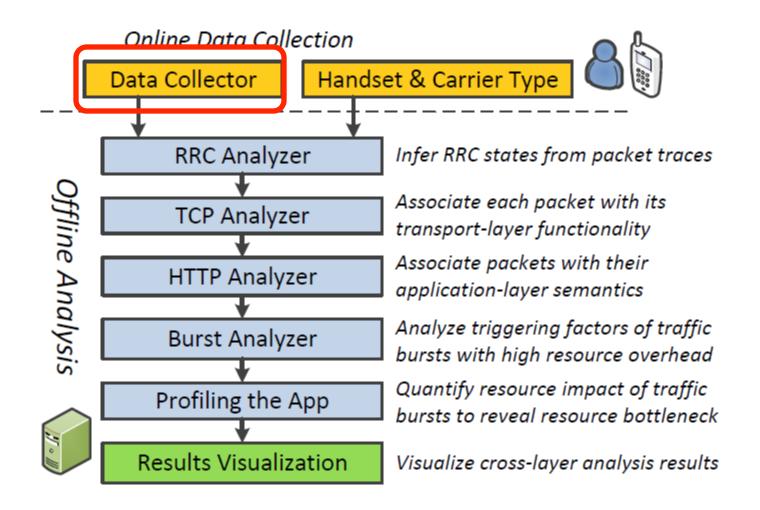
- Introduction
- RRC State Inference
- Radio Resource Usage Profiling & Optimization
- Network RRC Parameters Optimization
- Conclusion

ARO: Mobile Application Resource Optimizer


Motivations:

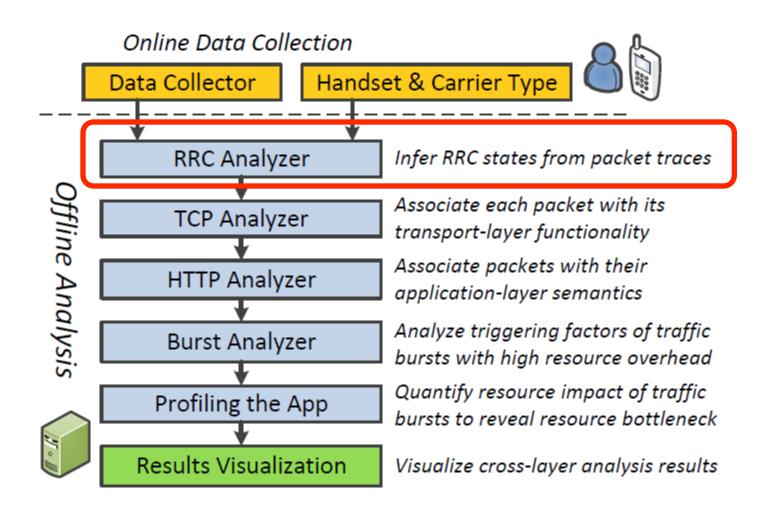
- Are developers aware of the RRC state machine and its implications on radio resource / energy? NO.
- Do they need a tool for automatically profiling their prototype applications? YES.
- If we provide that visibility, would developers optimize their applications and reduce the network impact? Hopefully YES.

ARO: Mobile Application Resource Optimizer

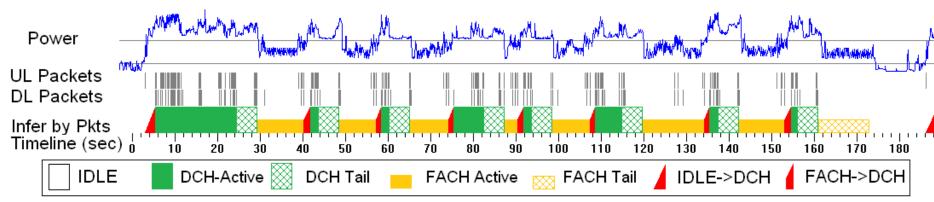

- Provide visibility of radio resource and energy utilization.
- Benchmark efficiencies of cellular radio resource and battery life for a specific application

ARO System Architecture

Courtesy: Feng Qian et al.


ARO System Architecture

The Data Collector

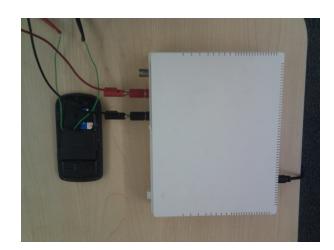

- Collects three pieces of information
 - The packet trace
 - User input (e.g., touching the screen)
 - Packet-process correspondence
 - The RRC state transition is triggered by the aggregated traffic of all concurrent applications
 - But we are only interested in our target application.
- Less than 15% runtime overhead when the throughput is as high as 600kbps

ARO System Architecture

RRC Analyzer: State Inference

- RRC state inference
 - Taking the packet trace as input, simulate the RRC state machine to infer the RRC states
 - Iterative packet driven simulation: given RRC state known for pkt_i, infer state for pkt_{i+1} based on inter-arrival time, packet size and UL/DL
 - Evaluated by measuring the device power

Example: Web Browsing Traffic on HTC TyTn II Smartphone


RRC Analyzer: Applying the Energy Model

- Apply the energy model
 - Associate each state with a constant power value
 - Based on our measurement using a power-meter

Table 3: Measured average radio power consumption

	_	_	_
	TyTn	NexusOne	ADP1 *
	Carrier 1	Carrier 1	T-Mobile
P(IDLE)	0	0	10mW
P(FACH)	460mW	450mW	401mW
P(DCH)	800mW	600mW	570mW
$P(FACH \rightarrow DCH)$	700mW	550mW	N/A
$P(IDLE \rightarrow DCH)$	550mW	530mW	N/A

^{*} Reported by [27] for Android HTC Dream phone

RRC Analyzer: Applying the Energy Model (Cont'd)

- 3G radio interface power consumption
 - at DCH, the radio power (800 mW) contributes 1/3 to 1/2 of total device power (1600 mW to 2400 mW)

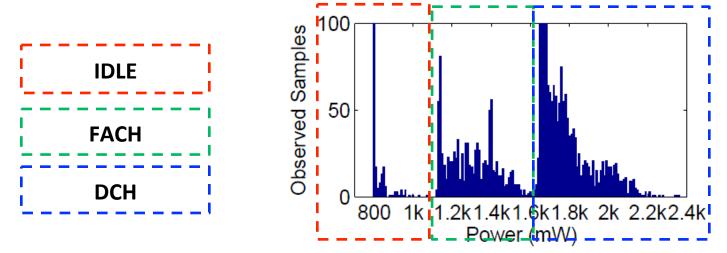
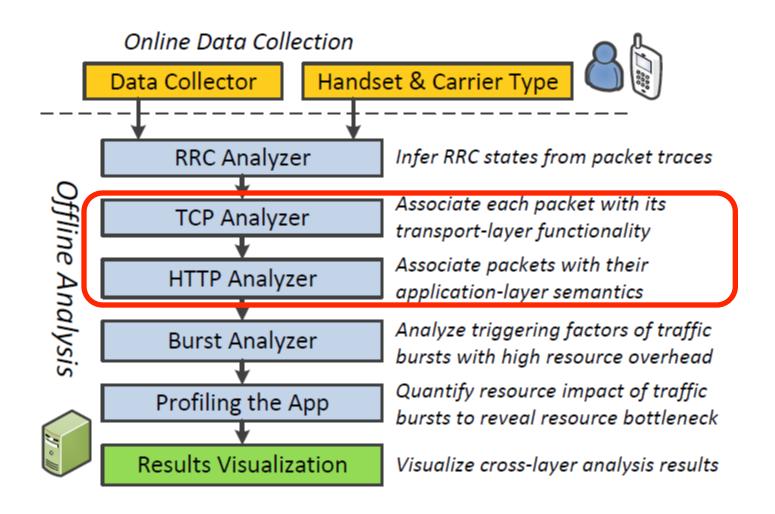
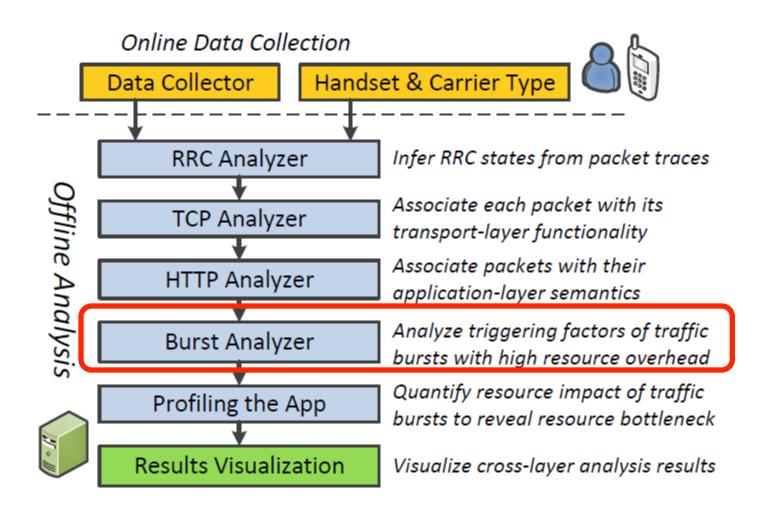



Figure 8: Histogram of measured power values for the News1 trace collected at an HTC TyTn II phone

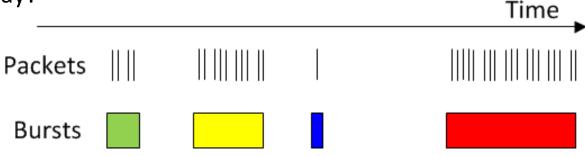
ARO System Architecture

TCP / HTTP Analysis


TCP Analysis

- Infer transport-layer properties for each TCP packet
 - SYN, FIN, or RESET?
 - Related to loss? (e.g., duplicated ACK / recovery ACK)
 - ...

HTTP Analysis:


- HTTP is the dominant app-layer protocol for mobile apps.
- Model HTTP behaviors

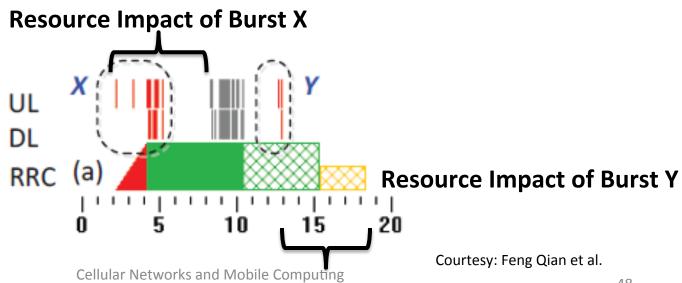
ARO System Architecture

Burst Analysis

- A burst consists of consecutive packets transferred in a batch (i.e., their IAT is less than a threshold)
- We are interested in short bursts that incur energy / radio resource inefficiencies
- ARO finds the triggering factor of each short burst
 - Triggered by user interaction?
 - By server / network delay?
 - By application delay?
 - By TCP protocol?

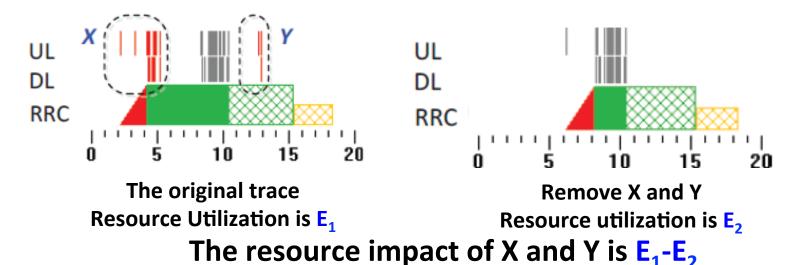
Burst Analysis Algorithm

```
d_0 \leftarrow direction of the first packet of b;
                                                                    i_0 \leftarrow \text{TCP} label of the first packet of b;
01 Burst_Analysis (Burst b) {
                                                                    if (d_0 == DL \&\& (i_0 == DATA || i_0 == ACK)) | Test 4
     Remove packets of non-target apps;
                                                               13
02
                                                               14
                                                                      {return SVR_NET_DELAY;
     if (no packet left) {return NON_TARGET;}
                                                  Test 1
03
                                                                    if (i_0 == ACK_DUP &  i_0 == ACK_RECOVER & 
                                                               15
     if (b.payload > th_a && \overline{b} duration > \overline{th_d})
04
                                                   Test 2
                                                                    i_0 == DATA DUP & i_0 == DATA RECOVER) Test 5
                                                               16
       {return LARGE_BURST;}
05
                                                                      {return TCP_LOSS_RECOVER;}
                                                               17
     if (b.payload == 0) { | Test 3
06
                                                                    if (b.payload > 0 && find user input before b) Test 6
                                                               18
       if (b contains any of ESTABLISH, CLOSE, RESET,
07
                                                               19
                                                                      {return USER_INPUT;}
       TCP_OTHER packets)
08
                                                                    if (b.payload > 1) {return APP;} Test 7
                                                               20
        {return TCP_CONTROL;
09
                                                               21
                                                                    else {return UNKNOWN;}
10
                                                               22 }
```

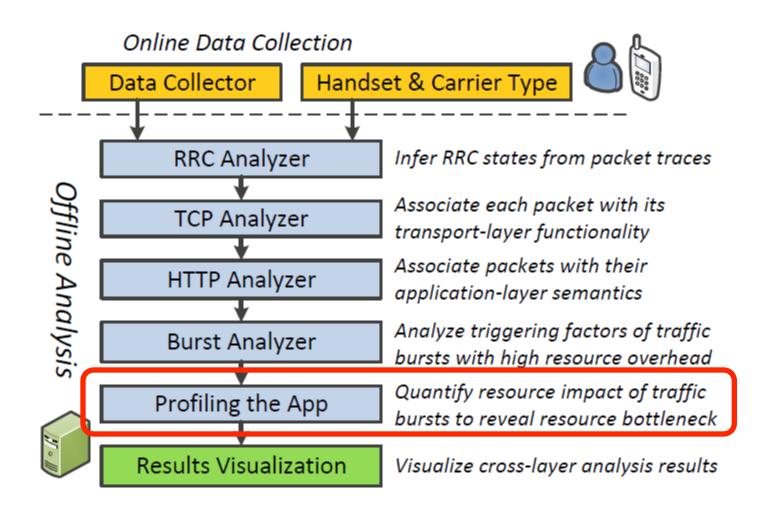

Label	The burst is triggered by	
USER_INPUT	User interaction	
LARGE_BURST	(The large burst is resource efficient)	
TCP_CONTROL	TCP control packets (e.g., FIN and RST)	
SVR_NET_DELAY	Server or network delay	
TCP_LOSS_RECOVER	TCP congestion / loss control	
NON_TARGET	Other applications not to be profiled	
APP	The application itself	
APP_PERIOD	Periodic data transfers (One special type of APP)	

47

Compute Resource Consumption of a Burst


- Upperbound of resource utilization
 - The resource impact of a burst B_i is from the beginning of B_i to the beginning of the next burst B_{i+1}
 - May overestimate resource consumption, as one burst may already be covered by the tail of the previous burst

(COMS 6998-11)


Compute Resource Consumption of a Burst

- Lowerbound of resource utilization
 - Compute the total resource utilization of the original trace
 - Remove the interested burst, then compute the resource utilization again
 - Take the delta

Cellular Networks and Mobile Computing (COMS 6998-11)

ARO System Architecture

Profiling Applications

- From RRC Analysis
 - We know the radio resource state and the radio power at any given time
- From Burst analysis
 - We know the triggering factor of each burst
 - We know the transport-layer and application-layer behavior of each burst
- By "profiling applications", we mean
 - Compute resource consumption of each burst
 - Therefore identify the root cause of resource inefficiency.

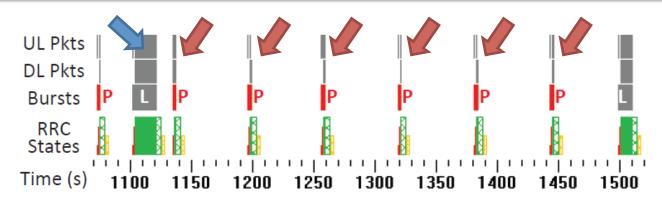
Metrics for Quantifying Resource Utilization Efficiency

- Handset radio energy consumption
- DCH occupation time
 - Quantifies radio resource utilization
- Total state promotion time (IDLE→DCH, FACH→DCH)
 - Quantifies signaling overhead
- Details of computing the three metrics (upperbound and lowerbound) in the paper

Implementation

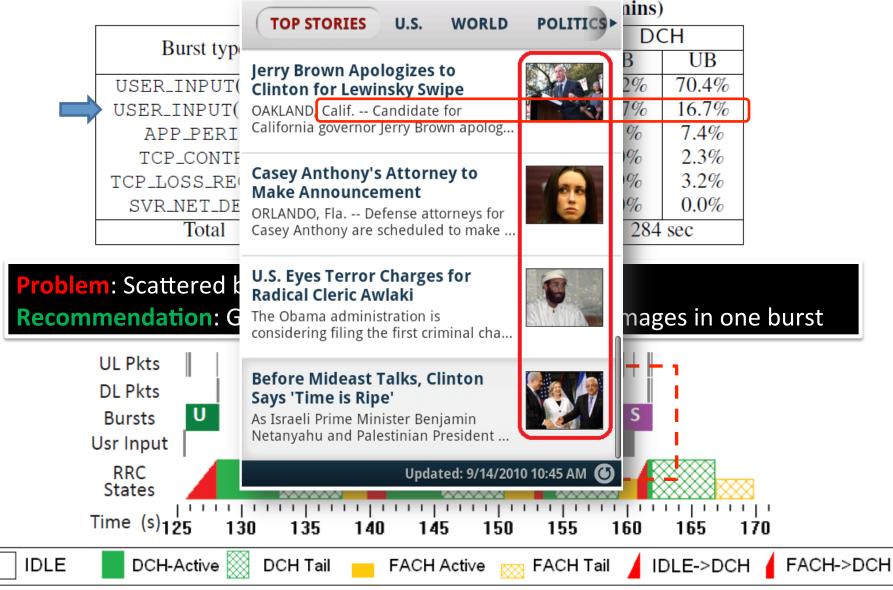
- Data collector built on Android: modified tcpdump with two new features (1K lines of code)
 - logging user inputs: reads /dev/input/event*
 - captures all user input events such as touching the screen, pressing buttons
 - finding packet-to-application association
 - /proc/PID/fd containing mappings from process ID (PID) to inode of each TCP/UDP socket
 - /proc/net/tcp(udp) maintaining socket to inode mappings,
 - /proc/PID/cmdline that has the process name of each PID
- The analyzers were implemented in C++ on Windows 7 (7.5K lines of code)

Case Studies


- Fully implemented for Android platform (7K LoC)
- Study 17 popular Android applications
 - All in the "TOP Free" Section of Android Market
 - Each has 250,000+ downloads as of Dec 2010
- ARO pinpoints resource inefficiency for many popular applications. For example,
 - Pandora Streaming
 High radio energy overhead (50%) of periodic measurements
 - Fox News
 High radio energy overhead (15%) due to users' scrolling
 - Google Search
 High radio energy overhead (78%) due to real-time query suggestions

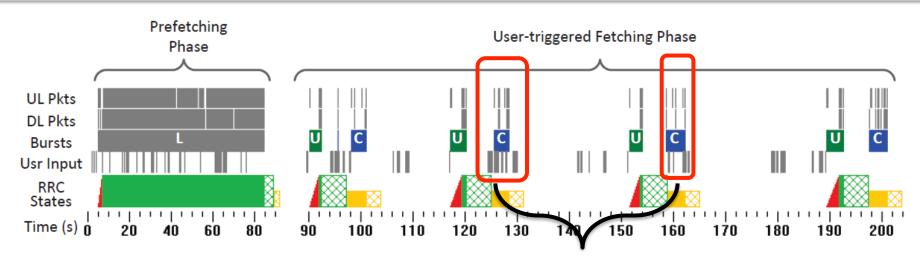
Case Study: Pandora Music

Pandora profiling results (Trace len: 1.45 hours)


Burst type	Payloads	Energy		DCH	
Burst type	1 ay loads	LB	UB	LB	UB
LARGE_BURST	96.4%	35.6%	35.9%	42.4%	42.5%
APP_PERIOD	0.2%	45.9%	46.7%	40.4%	40.9%
APP	3.2%	12.8%	13.4%	12.4%	12.8%
TCP_CONTROL	0.0%	1.2%	1.6%	1.1%	1.5%
TCP_LOSS_RECOVER	0.2%	0.2%	0.6%	0.3%	0.7%
NON_TARGET	0.0%	1.8%	1.8%	1.7%	1.7%
Total	23.6 MB	84	6 J	895	sec

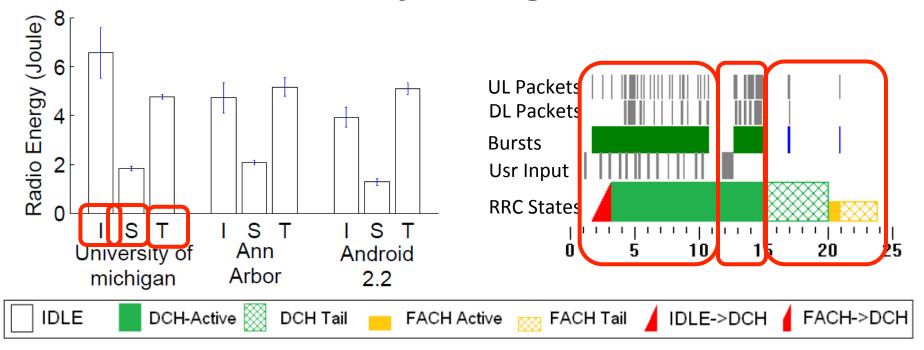
Problem: High resource overhead of periodic audience measurements (every 1 min) Recommendation: Delay transfers and batch them with delay-sensitive transfers

Case Study: Fox News


Case Study: BBC News

BBC News profiling results

	User-triggered Fetching Phase (8 mins)					
	Burst type	Payloads	Payloads Energy		DCH	
	Durst type	1 ay loads	LB	UB	LB	UB
	TCP_CONTROL	0	11.3%	24.2%	0.0%	5.7%
ŕ	USER_INPUT	98.7%	42.5%	73.1%	37.9%	90.0%
	SVR_NET_DELAY	1%	0.0%	2.7%	0.0%	5.2%
	Total	162 KB	14	5 J	120	sec


Problem: Scattered bursts of delayed FIN/RST packets

Recommendation: Close a connection immediately if possible, or within tail time

Scattered bursts of delayed

Case Study: Google Search

Search three key words.

ARO computes energy consumption for three phases

I: Input phase S: Search phase T: Tail Phase

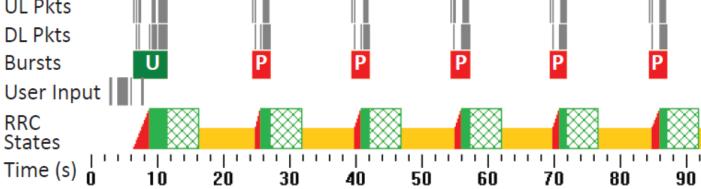
Problem: High resource overhead of query suggestions and instant search

Recommendation: Balance between functionality and resource when battery is low

Case Study: Audio Streaming

Constant bitrate vs. bursty streaming

Name	Server	bitrate	Radio Power
NPR News	SHOUTcast	32 kbps	36 J/min
Tune-in	Icecast	119 kbps	36 J/min
Iheartradio	QTSS	32 kbps	36 J/min
Pandora w/ Ad	Apache	bursty	11.2 J/min
Pandora w/o Ad*	Apache	bursty	4.8 J/min
Slacker	Apache	bursty	10.9 J/min


^{*} A hypothetical case where all periodic ads are removed.

Problem: Low DCH utilization due to constant-bitrate streaming **Recommendation**: Buffer data and periodically stream data in one burst

Case Study: Mobile Advertisements

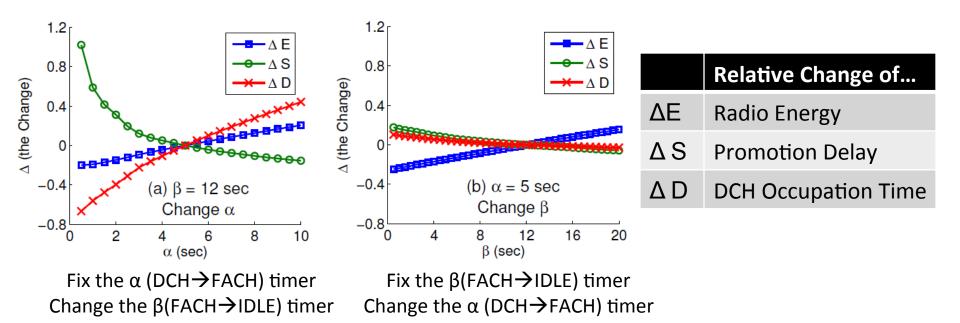
Comparing three mobile ad platforms

o simparing since measure are presented				
Name	Default	Avg Up-	Radio Power	
Name	Refresh Rate	date Size	w/ FD	w/o FD
Google Mobile Ad	180.0 sec	6.0 KB	2.5 J/min	3.6 J/min
AdMob	62.5 sec	6.8 KB	5.7 J/min	8.8 J/min
Mobelix	15.0 sec	1.4 KB	23.2 J/min	29.6 J/min
UL Pkts				

Problem: Aggressive ad refresh rate making the handset persistently occupy

FACH or DCH

Recommendation: Decrease the refresh rate, piggyback or batch ad updates


Outline

- Introduction
- RRC State Inference
- Radio Resource Usage Profiling & Optimization
- Network RRC Parameters Optimization
- Conclusion

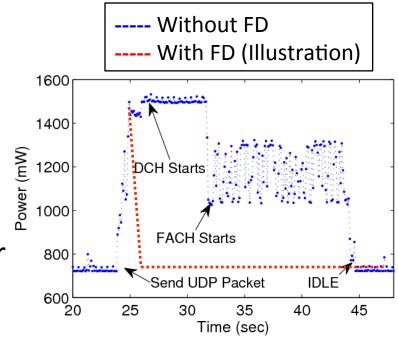
What-if Analysis for Inactivity Timers

- Inactivity timers are the most crucial parameters affecting
 - UE energy consumption
 - State promotion overhead
 - Radio resource utilization (i.e., DCH occupation time)
- What is the impact of changing inactivity timers
 - Perform what-if analysis by replaying traces to the simulator with different inactivity timer values.

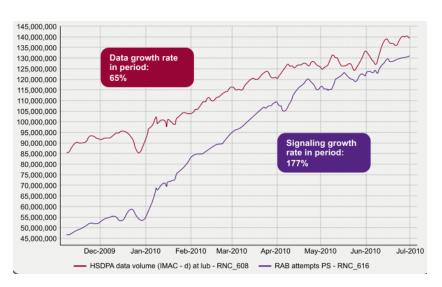
What-if Analysis for Inactivity Timers (Cont'd)

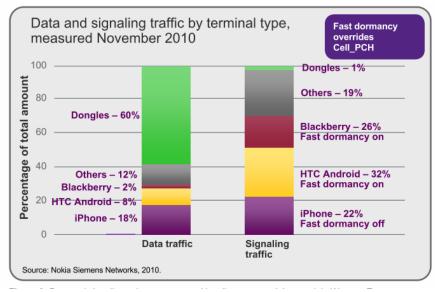
- The α (DCH \rightarrow FACH) timer imposes much higher impact on the three metrics than the β (FACH \rightarrow IDLE) timer does.
- Very small α timer values (< 2 sec) cause significant increase of state promotion overhead.
- It is difficult to well balance the tradeoff. The fundamental reason is that timers are globally and statically set to constant values.

Fast Dormancy


- A new feature added in 3GPP Release 7
- When finishing transferring the data, a handset sends a special RRC message to RAN

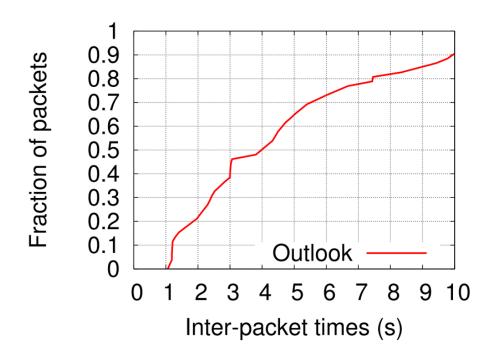
The RAN immediately releases the RRC connection and lets


the handset go to IDLE


 Fast Dormancy dramatically reduces the tail time, saving radio resources and battery life

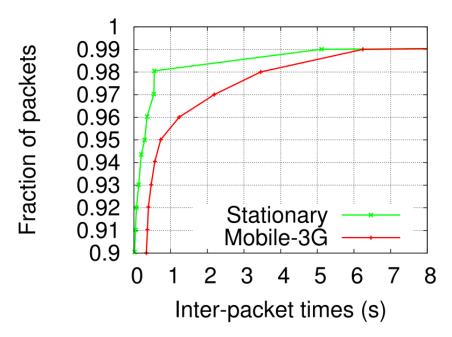
 Fast Dormancy has been supported in some devices (e.g., Google Nexus One) in application-agnostic manner

Fast Dormancy Woes



Disproportionate increase in signaling traffic caused due to increase in use of fast-dormancy

"Apple upset several operators last year when it implemented firmware 3.0 on the iPhone with a fast dormancy feature that prematurely requested a network release only to follow on with a request to connect back to the network or by a request to re-establish a connection with the network ..."

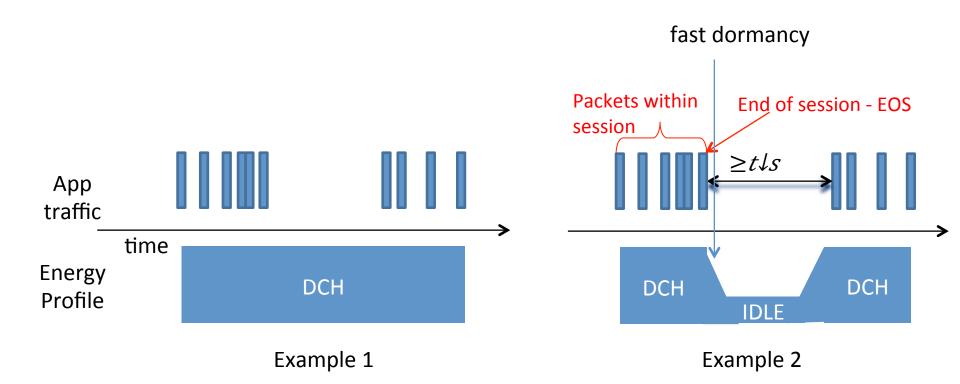

What's really causing the capacity crunch? - FierceWireless

Problem #1: Chatty Background Apps

- No distinctive knee
- High mispredictions for fixed inactivity timer

Problem #2: Varying Network Conditions

- Signal quality variations and handoffs cause sudden latency spikes
- Aggressive timers frequently misfire


Objectives

- Design a fast-dormancy policy for longstanding background apps which
 - Achieves energy savings

- Without increasing signaling overhead

Without requiring app modifications

When to Invoke Fast Dormancy?

Energy savings when t > 3 sec and fast dormancy is invoked immediately after end of session

Use Fast Dormancy to Enhance Chunk Mode

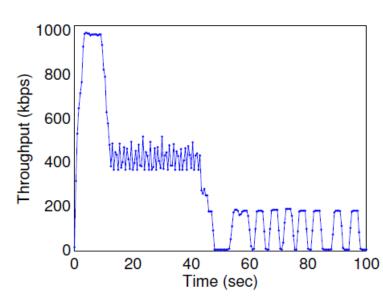
Examle: YouTube

- YouTube video streaming
 - Collect a 10-min YouTube trace using Android G2 of Carrier 2.
 - Traffic pattern

First 10 sec: maximal bw is utilized

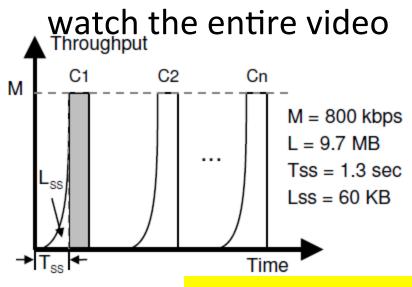
Next 30 sec: constant bitrate of

400kbps


Remaining: transmit intermittently

with

the inter-burst time between 3~5 s.


- Under-utilization of network bandwidth causes its long DCH occupation time.
 - Energy/radio resource efficiency is much worse than Pandora

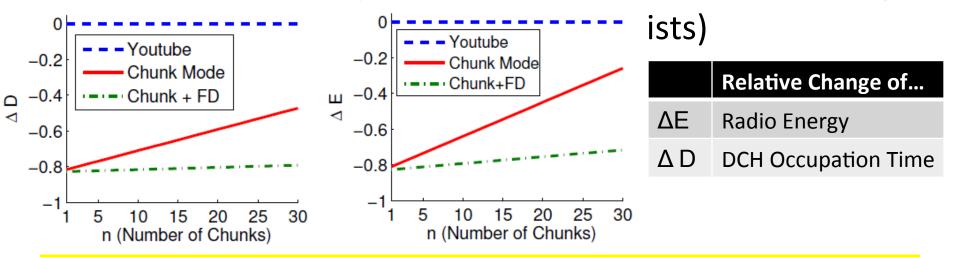
Use Fast Dormancy to Enhance Chunk Mode (Cont'd)

- Proposed traffic pattern: Chunk Mode
 - The video content is split into n chunks $C_1, ..., C_n$
 - Each transmitted at the highest bit rate.
 - n should not be too small as users often do not

Para	Meaning
M	Maximal BW
L	Content size
T_{SS}	Slow start duration
L _{SS}	Bytes transferred in slow start

How to eliminate the Tail for each chunk?

Using Fast Dormancy


lar Networks and Mobile Computing

(COMS 6998-11)

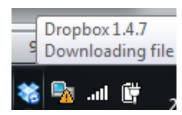
71

Use Fast Dormancy to Enhance Chunk Mode (Cont'd)

- Invoke fast dormancy at the end of each chunk
 - To immediately release radio resources (assuming

Chunk Mode: Save 80% of DCH occupation time and radio energy for YouTube

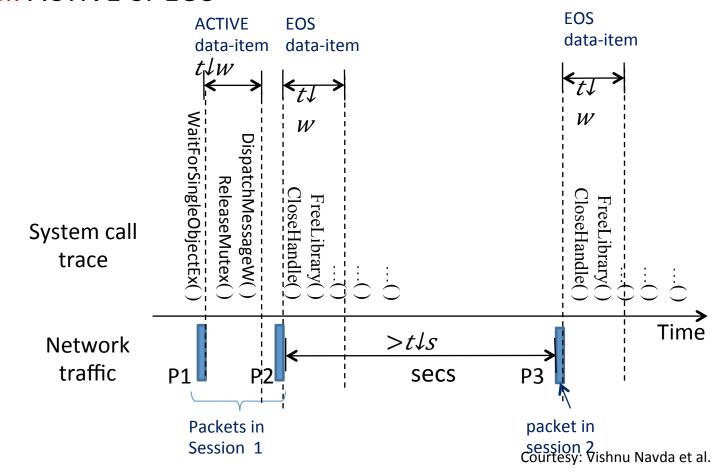
Fast Dormancy: Keep ΔD and ΔE almost constant regardless of # of chunks.


Problem: predict end of session (or onset of network inactivity)

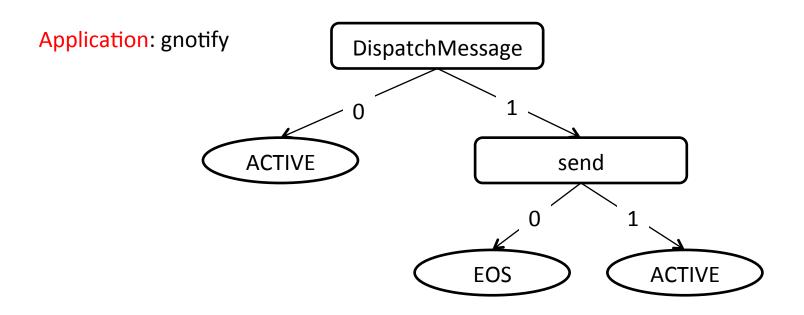
Idea: exploit unique application characteristics (if any) at end of sessions

Typical operations performed:

UI element update

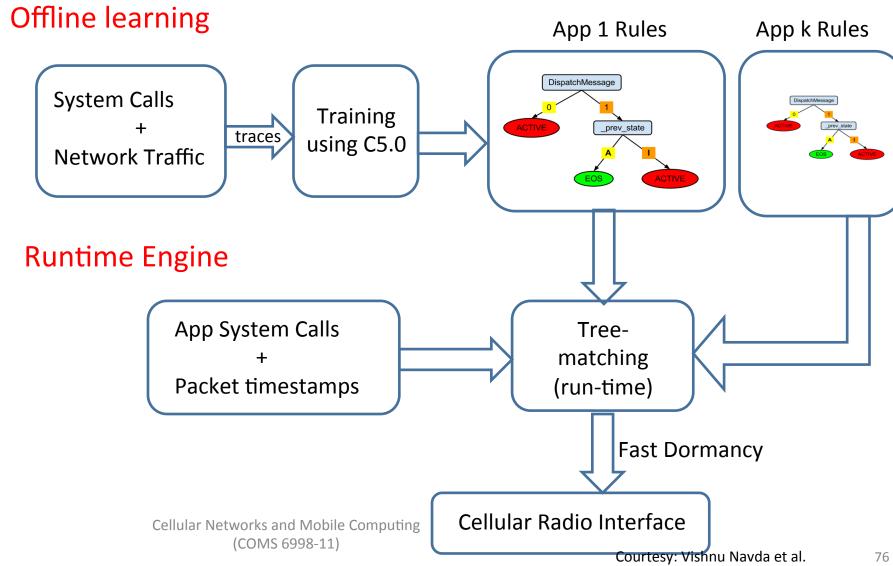


- Memory allocation or cleanup
- Processing received data


System calls invoked by an app can provide insights into the operations being performed

Predicting onset of network inactivity

- Technique: Supervised learning using C5.0 decision trees
- Data item: system calls observed immediately after a packet (encoded as bit-vector)
- Label: ACTIVE or EOS


Decision tree example

Rules:

(DispatchMessage & ! send) => EOS ! DispathcMessage => ACTIVE (DispatchMessage & send) => ACTIVE

RadioJockey System

Evaluation

- Trace driven simulations on traces from 14 applications (Windows and Android platform) on 3G network
 - Feature set evaluation for training
 - variable workloads and network characteristics
 - 20-40% energy savings and 1-4% increase in signaling over 3 sec idle timer
- 2. Runtime evaluation on 3 concurrent background applications on Windows

Runtime Evaluation with Concurrent Background Applications

Applications	Energy Savings (%)	Signaling Overhead (%)
Outlook	24.03	4.47
GTalk	24.07	4.57
Lync	24.14	0
All	22.8	6.96

- 22-24% energy savings at a cost of 4-7 % signaling overhead
- Marginal increase in signaling due to variance in packet timestamps

Conclusion

- ARO helps developers design cellular-friendly smartphone applications by providing visibility of radio resource and energy utilization.
- Cellular friendly techniques (http://developer.att.com/home/ develop/referencesandtutorials/networkapibestpractices/ Top_Radio_Resource_Issues_in_Mobile_Application_Development. pdf)
 - Group multiple simultaneous connections from the same server
 - Batching and piggybacking
 - Close unnecessary TCP connections early
 - Offloading to WiFi when possible (ms setup rather than 2sec)
 - Caching and avoid duplicate content
 - Prefetching intelligently
 - Access peripherals judicially
- Try out the ARO tool at:
 - http://developer.att.com/developer/forward.jsp?passedItemId=9700312

Questions?