Cellular Networks and Mobile Computing COMS 6998-11, Fall 2012

Instructor: Li Erran Li

(lierranli@cs.columbia.edu)

http://www.cs.columbia.edu/~lierranli/coms6998-11/

9/4/2012: Introduction to Cellular Networks

Cellular Networks Impact our Lives

More Mobile Connection

More Infrastructure Deployment

Mobile Data Tsunami Challenges Current Cellular Technologies

- Global growth 18 times from 2011 to 2016
- AT&T network:
 - wireless data traffic has grown 20,000%
 - At least doubling every year since 2007
- Existing cellular technologies are inadequate
 - Fundamental redesign of cellular networks is needed

Source: CISCO Visual Networking Index (VNI) Global Mobil Data Traffic Forecast 2011 to 2016

Outline

Goal of this lecture: understand the basics of current networks

- Basic Architecture of LTE
- Access Procedure
 - Why no carrier sensing
- Connection Setup
 - Unlike WiFi, need to keep the same IP address at different attachment points
- Mobility Management
- Power Management and Mobile Apps
- Differences between 3G and LTE
- Conclusion

LTE Infrastructure

LTE Architecture (Cont'd)

Access Procedure

Cell Search

- Base station broadcasts synchronization signals and cell system information (similar to WiFi)
- UE obtains physical layer information
 - UE acquires frequency and synchronizes to a cell
 - Determine the start of the downlink frame
 - Determine the cell identity

 Random access to establish a radio link

Base station

Random Access

Random Access (Cont'd)

Why not carrier sensing like WiFi?

- Base station coverage is much larger than WiFi AP
 - UEs most likely cannot hear each other
- How come base station can hear UEs' transmissions?
 - Base station receivers are much more sensitive and expensive

Connection Setup

- Session Requests
 - UE to base station
 - Base station to MME
 - MME obtains subscriber info from HSS, selects S-GW and P-GW
 - S-GW sends to P-GW
 - P-GW obtains policy from PCRF

Connection Setup (Cont'd)

Session Response

- Establishes GPRS
 Tunnels (GTP) between
 S-GW and P-GW,
 between S-GW and UE
- Base station allocates radio resources to UE

Mobility Management

Handoff

- Handoff without change of S-GW
 - No change at P-GW
- Handoff with change of S-GW or MME
- Inter-technology handoff (LTE to 3G)

Mobility Management (Cont'd)

Paging

- If S-GW receives a packet to a UE in IDLE state, inform MME
- MME pages UE through base station

Outline

- Basic Architecture of LTE
- Access Procedure
 - Why no carrier sensing
- Connection Setup
 - Unlike WiFi, need to keep the same IP address at different attachment points
- Mobility Management
- Power Management and Mobile Apps
- Differences between 3G and LTE
- Conclusion

Power Management: LTE

- UE runs radio resource control (RRC) state machine
- Two states: IDLE, CONNECTED
- Discontinuous reception (DRX): monitor one subframe per DRX cylce; receiver sleeps in other subframes

Power Management: UMTS

- State promotions have promotion delay
- State demotions incur tail times

Example in Detail: RRC State Machine for a Large Commercial 3G Network

Promo Delay: 2 Sec FACH Tail: 12 sec Tail Time

Waiting inactivity timers to expire

DCH: High Power State (high throughput and power consumption) FACH: Low Power State (low throughput and power consumption)

IDLE: No radio resource allocated

Courtesy: Feng Qian

Example in Detail: Pandora Music

Pandora profiling results (Trace len: 1.45 hours)

Burst type	Payloads	Energy		DCH	
		LB	UB	LB	UB
LARGE_BURST	96.4%	35.6%	35.9%	42.4%	42.5%
APP_PERIOD	0.2%	45.9%	46.7%	40.4%	40.9%
APP	3.2%	12.8%	13.4%	12.4%	12.8%
TCP_CONTROL	0.0%	1.2%	1.6%	1.1%	1.5%
TCP_LOSS_RECOVER	0.2%	0.2%	0.6%	0.3%	0.7%
NON_TARGET	0.0%	1.8%	1.8%	1.7%	1.7%
Total	23.6 MB	846 J		895 sec	

Problem: High resource overhead of periodic audience measurements (every 1 min)

Courtesy: Feng Qian

Why Power Consumptions of RRC States so different?

- IDLE: procedures based on reception rather than transmission
 - Reception of System Information messages
 - Cell selection registration (requires RRC connection establishment)
 - Reception of paging messages with a DRX cycle (may trigger RRC connection establishment)
 - Location and routing area updates (requires RRC connection establishment)

UMTS RRC State Machine (Cont'd)

- CELL_FACH: need to continuously receive (search for UE identity in messages on FACH), data can be sent by RNC any time
 - Can transfer small data
 - UE and network resource required low
 - Cell re-selections when a UE moves
 - Inter-system and inter-frequency handoff possible
 - Can receive paging messages without a DRX cycle

UMTS RRC State Machine (Cont'd)

- CELL_DCH: need to continuously receive, and sent whenever there is data
 - Possible to transfer large quantities of uplink and downlink data
 - UE and network resource requirement is relatively high
 - Soft handover possible for dedicated channels and Inter-system and inter-frequency handover possible
 - Paging messages without a DRX cycle are used for paging purposes

LTE vs UMTS (3G): Architecture

 Functional changes compared to the current UMTS Architecture

Physical Layer: UMTS

Simultaneous meetings in different rooms (FDMA)

Simultaneous meetings in the same room at different times (TDMA)

Time Slot #1

Time Slot #2

Time Slot #3

Multiple meetings in the same room at the same time (CDMA)

Physical Layer: UMTS (Cont'd)

Code Division Multiple Access (CDMA)

- Use of orthogonal codes to separate different transmissions
- Each symbol or bit is transmitted as a larger number of bits using the user specific code – Spreading
- Spread spectrum technology
 - The bandwidth occupied by the signal is much larger than the information transmission rate
 - Example: 9.6 Kbps voice is transmitted over 1.25
 MHz of bandwidth, a bandwidth expansion of

~100

Physical Layer: LTE

Sub-carriers remain orthogonal under multipath propagation

Orthogonal Frequency Division Multiple Access (OFDM)

- Closely spaced sub-carriers without guard band
- Each sub-carrier undergoes (narrow band) flat fading
 - Simplified receiver processing
- Frequency or multi-user diversity through coding or scheduling across sub-carriers
- Dynamic power allocation across subcarriers allows for interference mitigation across cells
- Orthogonal multiple access

Physical Layer: LTE (Reverse link OFDM)

- synchronized to the base
- Differential delay between users' signals at the base need to be small compared
 - Efficient use of spectrum by multiple users
 - Sub-carriers transmitted by different users are orthogonal at the receiver
 - No intra-cell interference
 - CDMA uplink is non-orthogonal since synchronization requirement is
 - ~ 1/W and so difficult to achieve

Typical Multiplexing in OFDMA

Each color represents a user

Each user is assigned a

frequency-time tile which

consists of pilot sub-carriers and
data sub-carriers

Block hopping of each user's tile
for frequency diversity

Typical pilot ratio: 4.8 % (1/21) for LTE for 1 Tx antenna and 9.5% for 2 Tx antennas

LTE vs UMTS (3G): Physical Layer

- UMTS has CELL_FACH
 - Uplink un-synchronized
 - Base station separates random access transmissions and scheduled transmissions using CDMA codes
- LTE does not have CELL_FACH
 - Uplink needs synchronization
 - Random access transmissions will interfere with scheduled transmissions

Conclusions

- LTE promises hundreds of Mbps and 10s msec latency
- Mobile apps need to be cellular friendly, e.g. avoid periodic small packets, use push notification services
- Roaming and inter-technology handoff not covered
- Challenges
 - P-GW central point of control, bad for content distribution, and scalable policy enforcement
 - Mobile video will be more than half of the traffic
 - Needs lots of spectrum (spectrum crunch)