
CleanOS: Limiting Mobile Data Exposure with Idle Eviction
Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu, Nikhil Sarda

Columbia University

Abstract
Mobile-device theft and loss have reached gigantic propor-

tions. Despite these threats, today’s mobile devices are satu-
rated with sensitive information due to operating systems that
never securely erase data and applications that hoard it on the
vulnerable device for performance or convenience. This paper
presents CleanOS, a new Android-based operating system that
manages sensitive data rigorously and maintains a clean envi-
ronment at all times. To do so, CleanOS leverages a key prop-
erty of today’s mobile applications – the use of trusted, cloud-
based services. Specifically, CleanOS identifies and tracks sen-
sitive data in RAM and on stable storage, encrypts it with a
key, and evicts that key to the cloud when the data is not in
active use on the device. We call this process idle eviction of
sensitive data. To implement CleanOS, we used the TaintDroid
mobile taint-tracking system to identify sensitive data locations
and instrumented Android’s Dalvik interpreter to securely evict
that data after a specified period of non-use. Our experimental
results show that CleanOS limits sensitive-data exposure drasti-
cally while incurring acceptable overheads on mobile networks.

1 Introduction
Mobile technology is replacing desktops as the primary
personal computing platform and is being used in in-
creasingly sensitive contexts. For example, today’s users
rely on smartphones and tablets to access their personal
and corporate email, prepare tax returns, and review cus-
tomer documents [32]. Even the US military recently
announced that it will equip soldiers with Android de-
vices for accessing classified documents [28]. The draw
to new mobile technology is justifiable: mobile devices
offer convenient and constant connectivity, increase pro-
ductivity, and provide access to feature-rich, cloud-based
applications (a.k.a. “apps”).

Despite these advantages, the transition to mobile de-
vices raises serious and yet unresolved concerns, partic-
ularly with respect to data security in the event of device
theft and loss. Unlike desktops, generally assumed to be
physically secure, mobile devices are extremely prone to
theft and loss. Statistics here are staggering: 49% of
the New York City population has experienced mobile
phone loss/theft [24], and the FCC recently declared mo-
bile theft an “epidemic” in major US cities [13].

Though alarming, these statistics have yet to prompt
mobile OSes to address the serious data-security threats
posed by device theft or loss. Like their desktop precur-
sors, such as Linux and Mac OS X, mobile OSes let sen-
sitive data accumulate uncontrollably on the device. For
example, the OS accumulates significant amounts of data
in cleartext memory, and the file system retains deleted

files by not purging their contents. Despite being backed
by clouds, applications hoard sensitive data – such as
emails, documents, and banking information – on the vul-
nerable device. Although encrypted file systems [26], en-
crypted RAM [34], and remote-wipeout systems [3, 21]
help protect this data, they are imperfect stopgaps for
OSes that were simply not designed with physical inse-
curity in mind. For example, a recent study shows that
57% of corporate users employ no locking mechanisms
on their smartphones, rendering encryption useless [32].

This paper presents CleanOS, a new Android-based
mobile operating system1 designed to manage sensitive
data rigorously and maintain a clean environment at all
times in anticipation of device theft. The crucial insight
in CleanOS is to leverage the tight integration of today’s
mobile applications with trusted cloud-based services in
order to evict sensitive in-memory and on-disk data to
those services whenever it is not needed on the device.
CleanOS thus ensures that the minimal amount of sensi-
tive data is exposed on the vulnerable device at any time.

CleanOS extends Android in two major ways. First, it
introduces sensitive data objects (SDOs), a new abstrac-
tion that facilitates management of sensitive data on mo-
bile devices. An SDO is a logical collection of Java ob-
jects, files, and database items that applications create and
use to manage their sensitive data, such as emails, finan-
cial data, or documents. SDOs and their data “disappear”
from the device unless they are frequently used by an ap-
plication. For example, if an email app adds an email’s
content to an SDO, any “trace” of that content automati-
cally disappears from RAM and stable storage unless the
user is actively reading that email on an unlocked screen.
Recovering the email requires interaction with the cloud.

Second, to evict idle SDOs, CleanOS modifies An-
droid’s Java interpreter (Dalvik) to introduce a new type
of Java garbage collector (GC), called an evict-idle GC
(eiGC). While a traditional GC deallocates only those ob-
jects guaranteed to never be used in the future (i.e., no
pointers to them exist), eiGC eliminates objects that have
not been used for a period of time even if they might be
used again in the future (i.e., pointers to them still ex-
ist). To do so, eiGC walks through all Java objects in an
idle SDO and encrypts their data-bearing fields, such as
primitives and arrays of primitives, with a key that is es-
crowed in the cloud. Our modified Dalvik interpreter then
faults when a bytecode instruction executes on an evicted

1We view the OS notion broadly in this paper to include both the
traditional OS and the entire Android framework on which apps run.

Component New or Changed Features

Dalvik (JVM)
 Evict-idle Garbage Collector (eiGC)
 Eviction-aware bytecode interpretation
 Secure deallocation of interpreted stacks

Android SDK SDO API
 Default SDO heuristics

TaintDroid Support for millions of taints
 SQLite vulnerability fix

SQLite Taint tracking in database
Webkit Screen-buffer purging
Bionic (libc) Secure user-space deallocation
Linux Kernel Secure page deallocation with grsecurity

Figure 1: CleanOS Modifications to Android, TaintDroid.

object, retrieves the key from the cloud, and decrypts the
object. Thus, data eviction in CleanOS is logical; the data
itself remains on the device in encrypted form, while the
key is shipped to the cloud.

The major security benefit of CleanOS stems from the
value-added services that app clouds can build on top of
it. For example, a cloud could revoke data access fol-
lowing a theft report, provide an audit log of data ex-
posed upon theft, or monitor data access to detect anoma-
lous uses. Building such services on today’s “dirty” de-
vices would be tremendously challenging and likely re-
quire sacrificing semantics or performance. For example,
Gmail allows email access revocation [18], but emails
cached on the device remain exposed. Conversely, not
caching sensitive data on the device degrades perfor-
mance over slow mobile networks. CleanOS provides
device-side OS support for building robust, secure, and
efficient value-added cloud services.

We built CleanOS in Android using the TaintDroid
taint-tracking system [12] and also implemented a
value-added cloud service that provides post-theft data-
exposure auditing. To do so, we modified several core
components in Android and TaintDroid, summarized in
Figure 1. Together, our changes provide: (1) eviction
of idle Java objects, (2) heuristics for identifying sensi-
tive data without requiring app changes, (3) support for
millions of taints in TaintDroid, and (4) multi-layer se-
cure deallocation of freed data in Java, native, and kernel
space. While CleanOS’ design extends in-memory evic-
tion to stable storage, this paper and our current prototype
focus on in-memory data eviction.

Overall, we make the following contributions:
1. We demonstrate the sensitive data exposure problem

by analyzing 14 popular Android apps (§2).
2. We define SDOs, a new abstraction for managing

sensitive data on theft-prone devices (§3).
3. We implement CleanOS, an Android OS extension

that combines known encryption-based data destruc-
tion [4, 16, 30] with a new GC process that evicts
idle sensitive data (§4 and §5).

4. We present a set of valuable add-on services that
clouds could build on top of CleanOS (§6).

2 Case Study: Data Exposure on Android
We selected for analysis 14 Android apps according to
their popularity in five sensitive categories: email, fi-
nance, document editing, password management, and so-
cial networking. We define as exposed any data that per-
sists on the device – either in RAM or on storage – for
a prolonged period of time, such as 10 minutes (§3 de-
scribes our rationale for this threat model). Our goal
in the analysis was to answer three questions: (1) Is
sensitive-data exposure a real problem? (2) If so, what
are its causes? and (3) Is the exposure necessary? We
tackle each question using examples from our analysis.
Is Data Exposure a Real Problem? We installed the
14 apps on a rooted Nexus S phone with Android 2.3.4
and asked the following question: what kinds of sensi-
tive data can one find by dumping RAM and database
contents while apps run in the background? Our acqui-
sition process was vastly simplified by our rooted phone
and the lack of encryption on the default Android config-
uration. Nevertheless, we believe that our findings indi-
cate the level of data exposure on better-protected phones
in face of realistic, albeit sophisticated, attacks, such as
cold boot RAM imaging [19]. We created a stable-state
environment – akin to the one a thief might find on a lost
device – by ensuring that apps had not been used for 10
minutes prior to taking RAM and DB dumps.

The answer to our question is eye-opening: with sim-
ple techniques, we retrieved cleartext copies of sensitive
information from all but one app. Figure 2(a) shows ex-
amples of cleartext sensitive data we extracted from a se-
lect subset of the apps. Figure 2(b), column “Extracted
Cleartext Data,” expands the result set to all 14 apps
and categorizes data in three classes of varied sensitivity:
passwords, contents (e.g., email body, document content,
bank account), and metadata (e.g., email subject, docu-
ment title). Overall, we captured passwords in 5/14 apps,
contents in 11/14 apps, and metadata in 13/14 apps.
What Causes Data Exposure? Given these results, an
obvious question is what leads to so much leakage. There
are several possible answers:
Insecure Deletion: The Android OS, including the kernel,
system libraries, and the Java framework, leaks sensitive
information by not erasing data securely after it is deallo-
cated or by not securely erasing files when an app asks it
to do so. These problems are well known in desktop and
server settings and have been addressed with secure deal-
location [6] and assured deletion [30, 39], respectively.
OS Data Buffering: Recent work shows that OSes and de-
vice drivers retain data in buffers past its intended life. It
also shows how to limit OS-buffered data exposure [10].
App Data Hoarding: Although most of the apps are
cloud-based, our experiments show that they hoard sig-
nificant amounts of cleartext sensitive information on the
device, either in RAM or in the local database. For exam-

App Extracted Cleartext Data

Email password, email contents,
subjects, from/to, contacts

OI Notepad (doc) document and metadata

KeePass
(password mgr)

app password, all stored
passwords & descriptions

Pageonce (finance) password, transactions, bank
account information

Facebook (social) wall posts and messages

(a) Examples of data extracted from RAM / DB.

App Description

Extracted Cleartext Data Hoarding

Cleartext Data RAM SQLite DB

Pass-
word

Cont-
ents

Meta-
data

Pass-
word

Cont-
ents

Meta-
data

Pass-
word

Cont-
ents

Meta-
data

Email email (default) Y Y Y Y Y Y Y Y

GMail email Y Y Y Y

Y! Mail email Y Y Y Y Y

GDocs documents Y Y Y Y

OI Notepad documents Y Y Y Y

DropBox documents Y Y Y

KeePass password mgr Y Y Y Y Y Y

Keeper password mgr Y Y Y Y Y

Amazon commerce

Pageonce finance Y Y Y Y Y Y Y

Mint finance Y Y Y Y Y Y

Google+ social Y Y Y Y

Facebook social Y Y Y Y

LinkedIn social Y Y Y Y Y

(b) Exposure of cleartext sensitive data across all 14 apps.

App Data When App Uses Data

Email

password user/automatic refresh

subjects on the email list screen

contents user opens the email

OI
Notepad

note title on the note list screen

note body user edits the note

KeePass

master password app launches

entry name on the entry list screen

entry password user opens the entry

(c) Example usage of hoarded data by apps.

Figure 2: Sensitive Data Exposure. (a) Examples of captured sensitive data. (b) A ’Y’ indicates that we obtained cleartext copies
from RAM/DB. A blank cell does not mean that the data is not on the device, but just that we did not find it in cleartext; the data
could exist in some encrypted form. (c) Examples of when hoarded sensitive data is being actually used by the apps.

ple, the default Android email app maintains the email
account password in cleartext RAM at all times, while
KeePass, a popular password manager, loads its entire
password database into RAM at startup and keeps it there.
Column “Cleartext Data Hoarding” in Figure 2(b) shows
the persistent, app-intended cleartext data we found in
RAM or DBs.2 It demonstrates that the hoarding behav-
ior is pervasive: all but one of the 14 apps permanently
maintain at least one type of sensitive data either in RAM
or in the database, while 6/14 apps permanently maintain
their passwords or some sensitive content in RAM.
Memory Leaks: Beyond the scope of our experiments is
the well-known ease of unwittingly introducing memory
leaks into Android applications [2]. If small, these leaks
may go undetected and expose sensitive information.
Is Data Exposure Necessary? Although apps hoard sig-
nificant amounts of sensitive data on mobile devices, they
tend to access this data fairly infrequently, suggesting that
data is often exposed longer than it needs to be. By way
of example, Figure 2(c) identifies situations where three
of our most problematic apps use hoarded sensitive data.
For example, the password in the default Android Email
app, which we know is exposed in RAM at all times, is in
fact used only during inbox refreshes (the default is every
15 minutes). Similarly, each email’s content is exposed in
SQLite at all times but accessed only when the user opens
that particular email. While the frequency of these oper-
ations depends on the workload, intuitively it should be
relatively rare, making prolonged exposure unnecessary.
Implications for Mobile OS Design. Secure deletion for
storage, RAM, and OS buffers has been acknowledged as,
and developed into, a primary OS function [6, 30, 10];

2For RAM, we conservatively assume an object to be persistent if it
always appears in the app’s Java object dump.

however, the management of app-driven data hoarding
or leakage has thus far been considered an app’s own
responsibility. For example, faced with similar data-
hoarding practices in desktop and server applications,
Chow, et al. [6] conclude that “little can be done without
modifying the application” and that “leaks are recognized
as bugs by application programmers, so they are actively
sought after and fixed.” Unfortunately, relying on the app
to manage sensitive data is problematic. Sensitive-data
caching presents tradeoffs between security on one hand
and performance, usability, and energy/bandwidth con-
sumption on the other hand. Without solid abstractions,
calibrating these tradeoffs is challenging. For example,
should a document-editing app cache the documents lo-
cally for good performance over cellular networks (as
recommended in some mobile app guidelines [14]), or
should it not do so for security reasons (as recommended
in other guidelines [40])? Should it cache the user’s pass-
word for convenience, or should it prompt the user for it
whenever it is needed?

We argue that mobile OSes can and should offer ab-
stractions for apps to manage their sensitive data rigor-
ously without sacrificing their performance, usability, or
other properties. This paper introduces one such abstrac-
tion in CleanOS, whose goals we next describe.

3 Goals and Assumptions
Goals. The primary goal of CleanOS is to minimize the
exposure of an app’s allocated sensitive data by evict-
ing it from the device whenever the data is idle (i.e., not
being actively used by the application). The key insight
that makes this possible is the tight integration between
today’s mobile apps and cloud services. CleanOS lever-
ages clouds to create a new abstraction, called a sensitive
data object (SDO). SDOs track sensitive information as

it flows through RAM and stable storage. As soon as they
become idle, they are automatically evicted to the cloud
and are recovered only when the app needs them again.

Specific design goals of CleanOS include:
1. Eviction: SDOs should “disappear” as soon as they

become idle whether or not they are expected to be
used by an application in the future.

2. Reasonable performance: We seek to provide rea-
sonable performance for popular mobile apps de-
spite data eviction over Wi-Fi or cellular networks.

3. Reasonable defaults: While we admit app changes
for best performance and semantics, we aim to offer
reasonable defaults even for unmodified apps.

4. Leverage technology trends: CleanOS must inte-
grate naturally with existing tech trends, such as the
tight integration of mobile apps with cloud services.

5. Design for mobiles: CleanOS’ design should target
mainstream mobile technologies, such as Android.

Eviction of idle data (Goal 1) is our primary goal and
contribution in CleanOS. We strive to ensure that a thief
cannot get a “free lunch” by capturing a device. Rather,
he should be required to contact the cloud in order to ac-
cess data of interest, at which time the cloud could deny
access, log it, rate-limit it, etc. However, enforcement
of precise timeouts on idle sensitive data is a non-goal.
From a performance perspective (Goal 2), we wish to
ensure that popular apps remain usable despite eviction
across Wi-Fi or cellular networks (e.g., 3G/4G).

A common pitfall when proposing new OS abstrac-
tions is to require application changes to gain any benefit.
To avoid this, CleanOS should include heuristics to con-
struct default SDOs that provide reasonable eviction and
performance properties even for unmodified apps (Goal
3). Finally, we aim to exploit unique properties of popular
mobile technologies in CleanOS’ design (Goals 4 and 5).
First, we leverage the tight integration between most mo-
bile apps and trusted cloud services to evict device data to
those services. For local-only apps, however, the user can
still integrate them with his own CleanOS service. Sec-
ond, while the data eviction concept is applicable to any
mobile OS, we focus our design on Android, which lets
us leverage its technological properties to facilitate data
eviction. For example, since all Android apps are written
in Java, we decided to tap into the garbage collector to
evict idle sensitive Java objects.
Threat Model. Our threat model considers any data on
a mobile device to be vulnerable to data-driven thieves.
While many data protection systems exist – including en-
crypted file systems [26, 38, 11], encrypted RAM [34,
23, 31], and data wipeout systems [3, 21] – they are im-
perfect when confronted with negligent users or (sophis-
ticated) physical attacks. First, users can foil any pro-
tection system by not locking their devices [32], assign-
ing trivial PINs or passwords [20], or writing passwords

down in easily retrievable locations [36]. Second, mobile
devices are prone to physical attacks, which are notori-
ously difficult to protect against. For example, an attacker
could use cold boot attacks [19] to retrieve in-RAM de-
cryption keys or data, break the seal of tamper-resistant
hardware [1, 35], or shield the device from the network
to prevent remote wipeout [3]. Such threats are especially
relevant for corporate, government, and military users,
who interact with particularly sensitive data, such as trade
secrets, customer data, health data, or state secrets.

To maintain post-loss control over data despite such
threats, CleanOS evicts data to a cloud service, which is
assumed to be trusted and non-compromisable. In real-
ity, mobile users are already required to trust the clouds
on which their apps rely, so our assumption is reason-
able. Depending on the deployment model, these clouds
could integrate directly into CleanOS to help cleanse their
apps automatically. For apps without a cloud component,
we assume that users can evict data to a trusted commu-
nity or self-administered CleanOS service. Finally, we
assume that the cloud learns about a monitored device’s
theft, either directly from the user or via an automatic
mobile-theft detection mechanism.

CleanOS explicitly assumes that the mobile device,
along with all software running on it, is trusted until it
is lost. For example, the thief cannot install malware on
a user’s device, tamper with the device physically, or in-
spect it prior to stealing the device. After loss, we trust
neither the hardware nor the software on the device.

We assume that disconnection is the exception rather
than the rule. With pervasive wireless and cellular net-
work coverage, this assumption is becoming increasingly
realistic. Moreover, CleanOS is especially geared toward
cloud-based apps, which typically require connectivity
for full functionality. Nevertheless, we present tech-
niques to allow disconnected operation in certain cases.

CleanOS is most applicable to long-lived daemon-like
apps, whose execution consists of brief computation ses-
sions interspersed with long periods of inactivity. Most of
today’s mobile apps follow this model, including email,
browsers, document editors, and social apps. CleanOS
disables exposure during periods of inactivity.

Finally, we explicitly assume the existence of robust
secure deallocation and OS buffer-cleanup techniques [6,
30, 10] and do not aim to improve the state of the art
in these intensely-researched directions. Rather, we fo-
cus on limiting the exposure of sensitive data that appli-
cations hoard or leak, a problem previously thought in-
tractable from an OS perspective (see §2).

4 The CleanOS Architecture
We now describe our CleanOS design for Android. We
focus initially on in-RAM data eviction, after which we
show how to extend SDOs to stable storage.

Linux Kernel

App 1
(active)

eiGCDalvik
(JVM)

Android
SDK

SQLite libc

App 2
(inactive)

SDO3

SDO4
SDO5

Trusted Cloud(s)

SDO
ID

SDO
Description

SDO
Key

App
Name

SDO Database

Available
SDO

Evicted
SDO

Available
Java object

Evicted
Java object

Mobile Device

SDO1

SDO2

SDO API

App Code

Java Heap

Libs

N
at

iv
e

Ja
va

FS

SDO API:

class SDO {
 SDO(String description, SDOLevel level) // new SDO
 void add(Object o) // adds object to SDO
 void remove(Object o) // removes object from SDO
}

CleanOS Protocol:

registerSDO(sdoID, appName, description, key)
 // registers SDO with DB
fetchKey(appName, sdoID, bucketID) → key || null
 // fetches the key for a bucket in the SDO
 // bucketID = 0 returns the SDO's key
sdoEvicted(appName, sdoID)
 // announces an SDO's eviction to the cloud

(b) CleanOS APIs.(a) CleanOS Architecture.
C

le
an

O
S

 P
ro

to
co

l

Figure 3: The CleanOS Architecture and APIs. (a) The architecture, with key components highlighted in grey. We add or modify
in some way all of the boxed components (except for FS and kernel). (b) The CleanOS SDO API and device-cloud protocol.

4.1 CleanOS Overview
Figure 3(a) shows the CleanOS architecture, which in-
cludes three major components: (1) the sensitive data
object (SDO) abstraction, (2) a modified, eviction-aware
version of the Dalvik interpreter, along with an evict-idle
garbage collector (eiGC), and (3) the SDO cloud store.
Briefly, apps create SDOs and place their sensitive Java
objects in them. The modified Dalvik tracks their prop-
agation across RAM with TaintDroid and monitors their
bytecode-level accesses. The eiGC evicts SDOs to the
cloud if they remain idle for a specified period.

An SDO is a logical collection of Java objects, such as
string objects representing the emails in a thread or ob-
jects pertaining to a bank account in a finance app. Upon
creation, SDOs are assigned app-wide unique IDs and en-
cryption keys (KSDO), and are registered with the cloud.

We implement three functions for SDOs. First, we
track objects in an SDO with a modified TaintDroid sys-
tem, using the ID as a taint. As objects are tainted with
an SDO’s ID, they become part of the SDO. For exam-
ple, SDO1 in Figure 3(a) includes three objects added to it
either explicitly by the app or automatically by our mod-
ified Android framework. Second, we monitor accesses
to SDOs and record their timings. Whenever an app ac-
cesses an object in an SDO (e.g., to compute on it, send
it over the network, or display it on screen), that SDO is
marked as used. Third, we evict SDOs when they are idle
for a time period (e.g., one minute).

To evict idle SDOs, the eiGC eliminates unused Java
objects from RAM even if they are still reachable. It pe-
riodically sweeps through Java objects and evicts them if
they are tainted with an idle SDO’s ID. In Figure 3(a),
the active app (App 1) has one available SDO (SDO1) and
one evicted SDO (SDO2). For example, an SDO associ-
ated with an email thread might be available while the
user reads emails in that thread, but the password SDO
might remain evicted. When the app goes into the back-

ground, all of its SDOs might be evicted, as shown for
App 2. An SDO is evicted when all Java objects in it
have been evicted; however, an available SDO may have
both evicted and available Java objects.

Conceptually, eviction occurs at the level of logical
SDOs. In practice, however, CleanOS must eliminate the
actual data-bearing objects from the vulnerable device.
To do so, eiGC leverages encryption-based data destruc-
tion from assured-delete file systems [30, 16] and applies
it to the memory subsystem. Specifically, eiGC replaces
data-bearing fields in objects, such as primitives and ar-
rays of primitives, with encrypted versions and then se-
curely destroys the encryption key. To encrypt a data field
F , eiGC uses a key KF that is uniquely generated from
the SDO’s key KSDO in the cloud (see §5 for details). We
modified Dalvik to fault when an app attempts to access
the evicted data, at which time it retrieves KSDO from the
cloud, generates KF , and decrypts the data. KSDO is then
cached onto the device and securely removed when the
SDO as a whole is again evicted.

We next provide more detail on the two main contribu-
tions of CleanOS: the SDO abstraction and the eiGC.

4.2 The SDO Abstraction
SDOs fulfill two functions in CleanOS. First, they let
CleanOS identify sensitive data and focus its cleansing
on that data for improved performance. Indeed, evicting
all Java objects indiscriminately would be prohibitively
expensive, while evicting a few at random would dimin-
ish security benefits. Second, SDOs are instrumental in
supporting some of our envisioned add-on cloud services,
such as the auditing service described in §6, as they iden-
tify and classify sensitive data for the auditor.
APIs. Figure 3(b) shows the SDO API. To realize the
data-control benefits of CleanOS, apps create SDOs and
add/remove Java objects to/from them. To create an
SDO, an app specifies a description, which is a short,
human-readable string that describes the sensitive data

associated with the SDO. For example, our modified
email app, CleanEmail, creates an SDO using “pass-
word” for the description and adds the password object
to it. It also creates one SDO for each email thread, spec-
ifying the thread’s subject as the description, and adds
each email in the thread to it. Section 6 describes two
apps that we trivially ported to CleanOS with minimal
modifications (fewer than 10 LoC).

Figure 3(b) also shows the protocol used to regis-
ter SDOs, retrieve their keys after eviction, and report
their eviction to the cloud. To create an SDO, the
app registers it with the cloud database using the SDO
API, specifying its ID, the app’s package name (such as
com.android.email), the description, and the encryp-
tion key. For example, the description for an SDO as-
sociated with a certain thread might be the subject of
that thread. In the database (whose schema is included
in Figure 3(a)), the tuple 〈app package name, SDO ID〉
is a phone-wide unique identifier. Although not imple-
mented in our current prototype, the database can use the
app user id to restrict access to keys only to the apps that
created them. Finally, to enable auditing services such as
Keypad [15], CleanOS notifies the cloud asynchronously
whenever it evicts an SDO (message sdoEvicted). The
notification is needed because, unlike Keypad, CleanOS
does not forcibly evict keys at an exact time after they
were fetched; rather, it does so when convenient, depend-
ing on load and networking conditions (see §4.5 and §5).
Default SDOs. As mentioned in §3 (Goal 3), we aim not
to rely on app modifications to gain tangible benefit from
CleanOS. To this end, we modified the Android frame-
work to register a set of default SDOs and use simple
heuristics to identify and classify Java objects coarsely
on behalf of the apps. For example, our current prototype
creates several default SDOs by plugging into various
core classes in the SDK: a User Input SDO for all input
a user types into the keypad (class InputConnection),
a Password SDO for any Java objects that capture input
a user types into a password field (based on attributes of
class TextView), a coarse SSL SDO for all objects read
from incoming SSL connections (class SSLSocket), and
SDOs for input from particularly sensitive sensors, such
as the camera. Some of these heuristics (e.g., SSL) were
inspired by prior work on automatic identification of sen-
sitive data [9]. Although default SDOs are coarse and
may potentially include many non-sensitive objects (par-
ticularly SSL), we believe that they offer comprehensive
identification of most sensitive data in unmodified apps.
For example, all the sensitive data we analyzed in §2
would be capturable by a default SDO. For apps will-
ing to adapt, CleanOS allows the overriding of default
assignments of objects to SDOs.
Eviction Granularities and Buckets. Thus far, eviction
granularities have been determined by SDOs, which is

problematic for two reasons. First, it forces app writers
to consider granularities and taint propagation when they
design their SDOs. Second, our default SDOs, such as
SSL, are coarse. In our view, CleanOS should offer evic-
tion benefits even when an app dumps all of its sensitive
objects into one big SDO, e.g., “sensitive.”

To support fine-grained eviction with coarse-grained
SDOs, we introduce buckets. Specifically, an SDO is
“split” into several disjoint buckets, which are evicted in-
dependently. Java objects added to the SDO – either by
the app or by our framework – are placed in random buck-
ets. Eviction occurs at the bucket level: when a bucket
has been idle for a period, all objects in it will be evicted
using a bucket key, which is derived from the SDO’s key
using a key derivation function [22]. For example, in an
unmodified email app, we would place all emails into the
SSL SDO. With buckets, different emails would be placed
into different buckets of the SSL SDO and might therefore
be evicted independently. Also, with bucketing, we cache
bucket keys instead of SDO keys on the device.

4.3 The Evict-Idle Garbage Collector
A simple but important innovation in CleanOS is the
evict-idle GC (eiGC). At its core (and independent of
CleanOS), eiGC implements for a managed language
what swaping implements for OSes: it monitors when
objects are being accessed during bytecode interpretation
and evicts them when they have not been used for a while.
We believe that the eiGC concept has applications beyond
CleanOS, such as limiting the amount of memory used
by Java applications on memory-constrained devices at a
finer grain than OS-level paging would be able to sustain.
In the context of CleanOS, however, eiGC evicts Java ob-
jects in idle SDO buckets.

Using the GC to evict sensitive data is not the only
design worth considering when building a “clean” OS.
We contemplated modifying the kernel’s paging mecha-
nism to swap idle pages to a Keypad-like encrypted file
system [15], which at its core achieves for files a simi-
lar eviction function to the one we achieve for RAM. We
chose the GC approach for two reasons. First, evicting
Java objects provides finer-grained control over sensitive-
data lifetime than full-page eviction. Second, by evicting
at the JVM level we can leverage TaintDroid, the only
taint tracking system for Android. Tracking sensitive data
is vital for constructing the SDO abstraction, which in
turn is the base for building powerful add-on services,
such as auditing. However, our decision has a downside:
coverage. By evicting Java objects, we may miss data
intentionally maintained by native libraries. We discuss
this limitation further in §8.

4.4 SDO Extension to Stable Storage
Like RAM, stable storage requires sanitization. At first
glance, systems such as Keypad [15] could be directly

leveraged to evict unused files in CleanOS. Unfortu-
nately, we found that eviction at file granularity is unsuit-
able for Android, where apps typically rely on a database
layer to manage their data. For example, 11 of the 14 apps
in Figure 2(b) store their data in SQLite, which maps en-
tire databases as single files in the FS. As a result, if the
DB file were exposed, then all of its items would be ex-
posed, including long-unaccessed emails and documents.

CleanOS tailors storage eviction specifically for An-
droid by extending the in-RAM SDO abstraction to in-
clude files and individual database items. For this, we use
two mechanisms. First, we propagate SDO taints to files
and database items. Unfortunately, TaintDroid supports
only the former, not the latter, an important vulnerability
we discuss in §5. We fixed this in CleanOS by modifying
the SQLite DB. Specifically, we automatically alter the
schema of any table to include for each data column, C,
a new column, Taint C, which stores the taint for each
item in that column (SDO ID and bucket ID). Second,
before storing a tainted data object in a DB, we first evict
that object, i.e., encrypt it with its eviction key. When the
database needs the object, it must decrypt it.

4.5 Disconnected Operation
While we assume that disconnection is the exceptional
case, we present techniques to deal with two types of dis-
connection: (1) short-term disconnection, such as tempo-
rary connectivity glitches, and (2) long-term, predictable
disconnection, such as a disconnection during a flight. To
address short-term disconnection, we can extend eviction
of already available SDOs by a bounded amount of time
(e.g., tens of minutes). This allows an app to continue
executing normally while temporarily disconnected until
it reaches an evicted object. For example, a user might be
able to load recently accessed emails, but not older ones.

To address long-term disconnection, such as during air
travel, we hoard SDO keys before entering into discon-
nection mode. For example, our prototype implements
Dalvik support for hoarding SDO keys upon receipt of a
signal. We plan to wrap this functionality into a privi-
leged app that provides users with a “Prepare for Discon-
nection” button, which they can press before boarding a
flight. To prevent a thief from using this button to retrieve
all SDO keys, the cloud would require the user to en-
ter a password. While we generally shun user-configured
passwords in CleanOS, we believe that long-term discon-
nection is a sufficiently rare case to warrant enforcement
of particularly strong password rules with limited impact
on usability [27]. In contrast, imposing such rules on fre-
quent unlock operations would be impractical.

4.6 Deployment Models
CleanOS presents multiple deployment opportunities.
First, security-conscious apps can use their own, dedi-
cated clouds to host keys and provide add-on services,

such as auditing. In such cases, we expect that the mo-
bile side of apps would define meaningful SDOs. Second,
users who are particularly concerned with apps that have
not yet integrated with CleanOS might use a CleanOS
cloud offered by a third party or that they host themselves.
For example, our prototype hosts all keys for all apps on
a Google App Engine service that we implemented.

5 Prototype Implementation
We built a CleanOS prototype by modifying Android
2.3.4 and TaintDroid in significant ways (see Figure 1).
To date, our prototype fully implements eviction of in-
memory SDOs and propagates taints to SQLite, but it
does not yet encrypt sensitive items in SQLite. Doing
so will require changing the native part of the SQLite li-
brary – a single, massive, over-100K-LoC file – the major
deterrant we encountered thus far. We next describe mod-
ifications we made to components of particular interest.
TaintDroid with Millions of Taints. Most dynamic
taint-tracking systems, including TaintDroid, support
limited numbers of taints, which would prevent CleanOS
from scaling to many SDOs. For example, TaintDroid
supports only 32 taints by representing them as 32-bit
shadow tags, where each taint corresponds to one tag bit.
This limitation allows propagation of multiple taints on
one object for tracking completeness and security against
malicious applications. For CleanOS, which trusts appli-
cations, we modified propagation to allow many taints.

We rely on a simple observation, which we validate
experimentally: in practice, when multi-tainting occurs,
we can usually define a strict, natural ranking for taints in
terms of their sensitivity. As intuitive examples, a Pass-
word SDO should be more sensitive than a generic User
Input SDO, and a KeePass secret’s SDO should be more
sensitive than its description SDO. In these cases, “los-
ing” the less sensitive taint would be admissible, because
it does not weaken the user’s perception of the gravity of
an object’s exposure. Using a 24-hour real-usage trace
for the Email app (see §7.1), we confirmed that 98.8%
of the tainted objects were either assigned a single taint
during their lifetimes or received multiple taints whose
sensitivity could be strictly ordered using a simple, static,
three-level ranking system: HIGH, MEDIUM, and LOW. The
remaining 1.2% of the objects received multiple taints
of undecidable ordering within this ranking system (i.e.,
equal sensitivity levels). Similar traces for Facebook and
Mint indicated even fewer undecidable cases (< 0.01%).

Based on this observation, we introduce the concept of
sensitivity level for taints and use it to propagate a sin-
gle taint per object. Apps specify a sensitivity level for
each SDO upon its creation. If an object were added
to two SDOs during taint propagation, CleanOS retains
the one with the higher sensitivity level. For equal sen-
sitivities (the rare case), CleanOS retains the most recent

 31 30 29 28 4 3 0

 E Level SDO ID Bucket

Figure 4: CleanOS Taint Tag Structure. We impose a struc-
ture on TaintDroid taints to support arbitrary numbers of taints.

taint. Figure 4 illustrates the revised structure for the taint
tag, in which we pack together the sensitivity level, SDO
ID, and bucket ID into 32 bits while supporting up to 225

SDOs. In our experience, assigning sensitivity levels to
SDOs is natural, as demonstrated in §6. The idea of prop-
agating a single taint was used before in hardware-based
taint tracking systems for improved performance [5].
Eviction-Aware Interpretation in Dalvik. We reserved
the most significant bit in the taint tag to denote the evic-
tion state of a field. We modified the Dex bytecode
instructions that access object instance fields and array
members. This includes instructions such as OP AGET,
OP IGET, OP SGET (used to retrieve array members, in-
stance fields, and static fields, respectively). Our new in-
struction implementations first test the value of the evic-
tion bit in the field’s taint tag. When the bit is set, we
request the aforementioned KSDO and decrypt the value
before allowing the instruction to proceed. If a key is not
available, execution is suspended.
The Evict-Idle Garbage Collector. While eiGC walks
the reachable objects, we inspect the taint tag for each
object field and retrieve its idle time. If it exceeds the
configured threshold, then eiGC retrieves the key asso-
ciated with the tag and encrypts the value. Only fields
that represent actual data are evicted (primitives and ar-
rays of primitives); fields implemented as pointers are not
evicted, as a pointer is not in and of itself sensitive.

To evict data, we use AES in counter mode to generate
a keystream, which we use as input to an XOR operation
with each byte of the data to be evicted. The size of the
keystream depends on the data’s type. For primitives, it is
either 4 bytes (for char, int, float, etc.) or 8 bytes (for
double or long). For arrays, many bytes may be neces-
sary. We use the bucket key to generate an appropriately
sized keystream. For primitives, we replace the data with
a pointer to a structure containing metadata necessary for
decryption (e.g., initialization vectors) and the resulting
ciphertext. For arrays, we evict the contents in place and
store the necessary metadata inside the ArrayObject.

Running the eiGC continuously would prevent the
CPU from turning off when the mobile device is idle,
thereby wasting energy. Fortunately, eiGC needs to run
only while sensitive objects are left unevicted. Hence,
in our prototype, eiGC stops executing as soon as it has
evicted all data, which should occur shortly after the app
goes idle. The eiGC resumes execution once the app
faults on an evicted object or assigns a new taint to an
object. Hence, eiGC runs only while the app also runs.
Optimizations: Bulk Eviction and Prefetching. Perfor-
mance and energy are major concerns with CleanOS, for

two reasons. First, garbage collection is expensive; hence
performing it frequently hurts app performance and en-
ergy (e.g., the eiGC’s full-heap scans block interpretation
for 1-2s). Second, our reliance on the network to fetch
decryption keys causes app delays and dissipates energy.

To address the first problem, we developed bulk evic-
tion, in which the eiGC evicts sensitive Java objects all at
once, soon after the app itself becomes idle. More specif-
ically, while the app is executing, we evict nothing and
perform no GC; once the app has remained idle for a pre-
defined time (e.g., one minute), the eiGC performs a full-
heap scan-through and evicts all cleartext tainted objects.
This technique reduces the number of heavyweight GCs
to just one per app execution session, thereby minimizing
the eiGC’s impact on performance and energy.

To address the second problem, we developed bulk key
prefetch, which prefetches all keys that were accessed
during the last eviction period upon the app’s first miss
on a key. For example, if a user opened his inbox sub-
ject list and read two emails during a previous interaction
session with his email app, then the next time the user
brings the app into the foreground, CleanOS will fetch
the decryption keys for the subjects and the two emails’
contents – all in one network request. If the user views
only his subject list but reads no emails in a previous ses-
sion, then the next time around, CleanOS will fetch only
subject keys again, not any email content keys. This tech-
nique improves app launches and the latency of repeated
operations, such as re-reading an email. It can be ex-
tended to prefetch keys used in the last N sessions.

Although these optimizations may improve perfor-
mance and energy, they may also increase sensitive-data
exposure. For example, prefetching previously-used keys
may expose some sensitive data needlessly. We quantify
this performance/exposure tradeoff in §7.2.
Multi-Level Secure Memory Deallocation. Android
goes to great lengths to keep an application running in
the background so it can re-launch quickly. This can
cause an accumulation of sensitive data in areas of mem-
ory that are no longer in use but have not been returned to
the kernel. The object heap in Dalvik is implemented us-
ing dlmalloc mspaces and relies on the implementation of
free() in dlmalloc to return memory to the mspace. To
implement secure deallocation, we changed both free()
and an Android-specific modification to dlmalloc that
merges chunks of adjacent free memory. These functions
now overwrite the space being released with a fixed pat-
tern. We also modified Dalvik to overwrite interpreted
stack frames on method exit, scrubbing them of sensitive
data. Finally, when assigning default taints to Java ob-
jects, we made explicit efforts to taint objects as soon as
they enter Java space from native libraries.
Addressing a TaintDroid Vulnerability. When imple-
menting CleanOS, we uncovered a surprising implication

of a known limitation in TaintDroid. Specifically, Taint-
Droid does not track changes in native libraries, which,
as acknowledged by its authors, may allow a malicious li-
brary to leak tainted data without triggering an audit log.
To address this problem, TaintDroid prevents untrusted
apps from loading any native libraries other than system
libraries (e.g., SQLite and WebKit), which are included
in Android itself and are therefore trusted. This measure
has thus far been thought sufficient.

Nevertheless, we discovered that even trusted system
libraries can be exploited by a malicious app to expose
tainted data with no alarms. For example, because SQLite
is written in native code, a malicious app could wash
taints off a tracked data item simply by storing it into the
database and reading it back. More generally, any stateful
libraries that provide the ability to put and later retrieve
data are vulnerable to attacks. Since disabling system li-
braries is impractical (e.g., 12/14 apps in §2 depend on
SQLite), we instead suggest identifying and modifying
all stateful system libraries to propagate taints.

To date, we modified two such libraries: SQLite and
WebKit. For SQLite, we implemented taint propagation
by persisting taints along with the data (see §4.4). For
WebKit, we disabled caching of rendered Web pages.
While important for security, we leave identifying and
fixing other libraries for future work and for now sug-
gest notifying the cloud about a potential leak if sensitive
data were handed over to an unchecked native library. We
suggest that TaintDroid proceed similarly. We discuss the
coverage limitation further in §8.

6 Applications
We ported three of our “dirtiest” apps from §2 onto
CleanOS and built a proof-of-concept, add-on service.

6.1 Extending Apps with SDOs
Although unmodified apps can benefit from the coarse
default SDOs that CleanOS offers, they can also define
their own SDOs for fine-grained control of sensitive data.
To demonstrate how apps can be “ported” to our API, we
modified two open-source apps – Email and KeePass – to
define fine-grained SDOs. Changes for both apps were
trivial. For Email, we added these seven lines of code:� �

SDO subjectSDO = new SDO(”Subject”, SDO.LOW);
subjectSDO.add(mSubject);
SDO bodySDO = new SDO(”Content of ” + mSubject, SDO.MED);
bodySDO.add(mTextContent);
bodySDO.add(mHtmlContent);
bodySDO.add(mTextReply);
bodySDO.add(mHtmlReply);� �

We added each email’s subject to a global, low-sensitivity
SDO and created a medium-sensitivity content SDO for
its body, using the subject itself as the description. Pass-
words, already embedded in an SDO by our default
heuristics, needed no changes.

For KeePass, changes were similarly trivial (7 lines):

Figure 5: Screenshot of Audit Service Log in App Engine.� �
SDO masterSDO = new SDO(”Master key”, SDO.MED);
SDO entrySDO = new SDO(”Entry”, SDO.HIGH);
masterSDO.add(mPassword); // In SetPassword.java
masterSDO.add(masterKey); // In PwDatabase.java
entrySDO.add(password); // In PwEntryV3.java
entrySDO.add(pass); // In EntryEditActivity.java
entrySDO.add(conf); // In EntryEditActivity.java� �

6.2 Add-on Cloud Services
CleanOS evicts sensitive data to the cloud to prevent un-
mediated accesses by device thieves. However, by itself,
CleanOS cannot guarantee data security. For example,
a thief could interact with the apps in an unlocked de-
vice or force all SDOs to decrypt. Therefore, CleanOS
provides device-side mechanisms necessary for clouds to
build clean-semantic security add-ons, such as assured re-
mote wipeout or data exposure auditing. Such services al-
ready exist today (e.g., Apple’s iCloud and Gmail’s two-
step verification), but we maintain that their semantics
are unclear given the state of today’s devices. We next
describe an add-on service we trivially built on CleanOS.
Prototype Auditing Service. Inspired by Keypad [15],
we implemented an auditing service on CleanOS. Its goal
is to provide users with audit logs of what was on the de-
vice at the time of theft and what has been accessed since.
The auditing service integrates with the CleanOS service
and both are hosted on App Engine. When a device reg-
isters an SDO or requests a decryption key, the cloud logs
that operation with the app name, SDO, and current time.
In this way, the user can learn from the audit log exactly
what data was leaked. For instance, Figure 5 shows a
sample audit log that contains entries for SDO registra-
tion and key fetching. Were these operations to occur af-
ter the device was stolen, the user will know that the email
password and KeePass entry may have been leaked.

Crucial to any auditing system is precision. In the au-
dit log, data in different buckets of the same SDO are
indistinguishable. Thus, accessing the data in one bucket
may cause false alarms for evicted buckets of the same
SDO. Using a finer SDO granularity helps reduce false
positives. We evaluate audit precision in §7.1.
Further Examples. A cloud could build many other use-
ful services on CleanOS. For example, the cloud could:
allow its mobile users to revoke data access from their
missing devices, disable access to sensitive data while
the phone is outside the corporate network, and perform
theft detection based on access patterns. A variety of en-
tities would find such services useful to host. For ex-
ample, a company might integrate with CleanOS on the

(a) Sensitive data exposure period. (b) Sensitive data lifetime.

App Password Contents Metadata

Email without CleanOS 100% 95.5% 99.0%

Email with default SDOs 6.5% 5.9% 5.9%

CleanEmail (fine SDOs) 6.5% 0.3% 1.6%

App
Without
CleanOS

With CleanOS

1
bucket

32
buckets

1024
buckets

Email

Password 22.5h 1h 28m 1h 19m 1h 11m

Contents 20.9h 3 min 1 min 1 min

Metadata 20.9h 18 min 6 min 6 min

Facebook 24h 3h 54m 3h 51m 3h 29m

Mint 24h 1h 10m 1h 2m 55 min

(c) Audit precision.

Figure 6: Data Exposure. (a) Fraction of time in which sensitive data was exposed. (b) Maximum sensitive data retention period.
(c) Average probability over time that tainted data was actually exposed, given that the audit log shows its SDO as exposed.

device for all corporate apps (e.g., corporate email, cus-
tomer database), to access its auditing, revocation, and
geography-constrained services. Similarly, Gmail could
integrate with CleanOS to prevent email exposure after
authentication-token revocation.

7 Evaluation
We next quantify CleanOS’ security, performance, and
energy characteristics. Our goal is to show that CleanOS
significantly reduces sensitive data exposure while pro-
viding reasonable performance and energy consumption,
even over cellular networks. We conducted all exper-
iments on rooted Samsung Nexus S phones running
CleanOS on Android 2.3.4 and TaintDroid 2.3.

7.1 Data Exposure Evaluation
To evaluate the data exposure benefits of CleanOS, we
pose three questions: How much does eviction limit ex-
posure of sensitive data? How much do default SDO
heuristics limit exposure? How effective is the auditing
service? To answer these questions, we recorded a 24-
hour trace of one of the authors’ phone running CleanOS
as it was used to interact with regular apps, including
Email, Facebook, and Mint. For Email, we experimented
with both the unmodified app and our modified version of
it, which we call CleanEmail (see §6.1). The Email app
was configured with the author’s personal account, which
receives about ten new mails daily, and with the default
15-minute refresh period. Facebook and Mint had wid-
gets enabled, which made them continuous services.
Sensitive Data Exposure Period. We measured the ex-
posure period for three types of tainted data (password,
content, and metadata) in the Email app. Figure 6(a)
shows the fraction of time that each type of tainted data
was exposed in RAM. Without CleanOS, the password
was maintained in RAM all the time, and the content and
metadata were exposed over 95% of the time. CleanOS
reduced password exposure to 6.5%. For email content,
the unmodified Email app with default SDOs reduced ex-
posure time from 95.5% to 5.9%, and modifying the app
to support fine-grained SDOs further reduced it to 0.3%.
Similar observations held for metadata. To be clear, these
results depend on workloads. From another, much more
intensive email workload – that registered for many mail-
ing lists and Twitter feeds – we obtained a result of 7.3%
and 12.7% for content and metadata, respectively. Over-

all, results demonstrate a significant reduction in expo-
sure times for tainted data. Moreover, they show that our
default heuristics protect sensitive data reasonably well.
Sensitive Data Lifetime. As SDO lifetime is critical to
system security, we must also examine the maximum pe-
riod that a tainted object could be retained in RAM. Fig-
ure 6(b) shows the retention time for the longest-lived
tainted object in three applications, where we break down
email into three types. Without CleanOS, all observed ap-
plications retained certain tainted objects for more than
20 hours. With CleanOS, the maximum SDO lifetime
was dramatically reduced. For instance, the Email app
kept some metadata objects for as long as 20.9 hours,
which CleanOS reduced to only 6 minutes when using
1024 buckets. For Facebook and Mint, the impact of
bucketing on sensitive data lifetime was more limited be-
cause these apps tend to use most objects in an SDO at
the same time. Overall, these results indicated that the
mobile device was significantly cleaner with CleanOS.
Audit Precision. We next evaluated the effectiveness of
the auditing service we built on CleanOS (see §6.2). We
compared audit precision across four levels of SDO gran-
ularity in Email: (1) mono-SDO, where we marked data
as only “sensitive” or “non-sensitive,” (2) default SDOs,
where we used default heuristics, (3) coarse SDOs, where
the application defined one content SDO and one meta-
data SDO for all emails, and (4) fine SDOs, where each
email had its own content and metadata SDOs. We define
audit precision as the average probability over time that
the tainted data is actually exposed on the device, given
that the audit log shows its SDO has not been evicted.

Figure 6(c) shows audit precision for the Email app’s
password, content, and metadata. Password auditing was
50.0% precise with mono-SDO but increased to 95.1%
with default SDOs. The content and metadata, however,
had poor precision (<3%) without application support:
CleanOS could not differentiate data coming from the
Internet and hence added every incoming object to the
SSL SDO. With coarse, application-specific SDOs, au-
dit precision for email content and metadata was 9.1%
and 61.3%, respectively. When fine application-specific
SDOs were available, audit precision reached 100%.
Thus, our default SDOs were effective in auditing pass-
word exposure, but application adaptation was needed to
provide precise auditing for other types of sensitive data.

Android
2.3.4

TaintDroid
2.3

CleanOS

not
evicted

evicted,
cached

evicted,
Wi-Fi

evicted,
3G

Untainted Primitive 0.00021 0.00022 0.00026 - - -

Tainted Primitive - 0.00023 0.00056 1.24 22.844 336.07

Untainted Array 0.00027 0.00029 0.00035 - - -

Tainted Array (S) - 0.00030 0.00075 1.4 21.652 308.71

Tainted Array (M) - 0.00030 0.00075 1.331 21.702 316.79

Tainted Array (L) - 0.00030 0.00075 2.355 22.365 317.97

Figure 7: Micro-operation Performance (milliseconds).
CleanOS Java object field access times compared with Android,
TaintDroid. Times for non-sensitive and sensitive fields for var-
ious eviction states. Averages over 1,000 accesses.

7.2 Performance Evaluation
We next evaluate the performance impact of CleanOS un-
der different workloads and networking conditions. Here,
we aim to: (1) quantify raw performance overheads, (2)
demonstrate that CleanOS is practical over Wi-Fi for pop-
ular apps, and (3) show how our optimizations make
CleanOS practical even over slow, cellular networks.
In our experience, obtaining reliable and repeatable re-
sults from the cellular network is tremendously difficult;
hence, our results used emulated Wi-Fi and 3G networks
with RTTs configured at 20ms and 300ms, respectively.
Because our transmission units were tiny (keys were 16-
byte long), we did not enforce bandwidth restrictions.
Micro-operation Performance Overheads. To evalu-
ate raw performance overheads, we measured Java object
field-access times for Android, TaintDroid, and CleanOS.
Figure 7 compares them for four field types: primitives
(int), small arrays (16 bytes), medium arrays (4KB), and
large arrays (16KB). For CleanOS, we show access times
both for non-sensitive fields (the vast majority) and sensi-
tive fields under various eviction states. CleanOS’ access
overhead for non-sensitive fields was small compared
with TaintDroid (16%), which itself was close to raw
Android (6% overhead for TaintDroid). The overhead
for sensitive field access increased to 141% over Taint-
Droid: CleanOS performed last-time-of-use bookkeeping
on every Dalvik field access instruction (e.g., OP AGET,
OP IGET) that involved a tainted field. Further, when
evicted, CleanOS access overhead spiked dramatically,
especially when the evicted field’s key was not cached
on the device but was fetched over Wi-Fi or 3G. More-
over, unlike in Android and TaintDroid, access times for
evicted arrays in CleanOS depended on the array’s size
because decryption times increase with data size. For ex-
ample, the “evicted, cached” column shows that decrypt-
ing a tainted array grew by 68% when the array’s size
increased from 16B to 16KB. Fortunately, in practice,
sensitive fields are extremely rare compared with non-
sensitive fields. For example, our email trace showed an
average of 102,907 fields at any time, of which merely
1,889 were tainted (or 1.83%). Hence, CleanOS should
acceptably affect real app performance, as shown next.
Application Performance. Figure 8(a) shows the time

to launch several popular apps (i.e., bring them into the
foreground) and perform typical actions, such as open-
ing an email, viewing a KeePass entry, or loading a Web
page. We chose three Web pages: a simple one (https:
//iana.org/domains/example) and two popular and
more complex ones (https://news.google.com and
https://cnn.com). For CleanOS, results labeled “not
evicted” correspond to cases where all accessed objects
were decrypted, while results labeled “evicted” corre-
spond to cases where objects were all evicted.

In the “not evicted” case, interaction with the apps in-
curred a limited performance penalty compared with both
TaintDroid and Android. For example, 8/13 operations
incurred less than 100ms penalties over TaintDroid, and
7/13 did so over Android. Such penalties will likely go
unnoticed by users, who are known to perceive delays
coarsely [29]. Hence, when users interact with a recently
used app, they should not feel CleanOS’ presence.

When users interact with a cold app (“evicted”
columns for unoptimized CleanOS), however, perfor-
mance degraded but remained usable for Wi-Fi networks.
Our cheapest app is the browser, for which CleanOS in-
curred 8-23% overheads over Android for all operations.
The reason is two-fold: (1) the browser deals with lit-
tle sensitive data, and (2) during page loads, the browser
fetches large amounts of data over Wi-Fi, which dwarf
CleanOS’ key traffic delays. The most expensive app for
CleanOS is CleanEmail, which incurred a larger penalty
than Email for “evicted” launches due to more granular
tainting. For example, while Email needed to fetch 2 keys
to load an email, CleanEmail needed to fetch 3 keys.

Over 3G, CleanOS penalties after eviction became sig-
nificant. While some operations remained within rea-
sonable bounds (e.g., launching the browser and loading
iana.org or cnn.com), many operations incurred over-
heads in excess of 100%. For example, loading an email
onto the screen jumped from 197ms to 1.1s for Email and
1.4s for CleanEmail. Such delays likely affect usability.
Effect of Optimizations on Application Performance.
Column “Optimized CleanOS” in Figure 8(a) shows the
elapsed time of repeat operations under our bulk prefetch-
ing optimization (see §5). All timed operations were in-
voked in the previous application session; therefore, all
of their relevant keys were prefetched together as part of
one bulk request during the timed session. The results
show dramatic improvements in performance for both
launching and interacting with the apps. For example,
CleanEmail – our most expensive application – launched
in 589ms over 3G compared with 919ms on unoptimized
CleanOS (35.9% improvement) and loaded a previously
read email in 420ms compared with 1.4s (71% improve-
ment). In general, this optimization lets an app re-launch
incur little more than one RTT over non-evicted CleanOS,
while subsequent repeat operations incur no RTT. Natu-

Application Action Android
2.3.4

TaintDroid
2.3

CleanOS Optimized
CleanOS

not evicted evicted, Wi-Fi evicted, 3G evicted, 3G*

Email
Launch 197 202 241 312 919 589

Read Message 212 254 387 501 1165 379

CleanEmail
Launch - - 291 315 902 598

Read Message - - 452 526 1472 421

KeePass
Launch 173 192 217 221 527 672

Read Entry 125 150 146 155 479 135

Browser

Launch 130 151 160 144 222 138
Load Page

(iana)
Wi-Fi 488 483 658 605 - -
3G 2067 2114 2125 - 2136 2031

Load Page
(GNews)

Wi-Fi 1072 1043 1270 1160 - -
3G 1717 2475 2475 - 3536 2942

Load Page
(CNN)

Wi-Fi 1065 1136 1394 1446 - -
3G 4570 4709 4325 - 4619 4538

* Actions were performed before.

(a) App Performance (milliseconds).

A T C A T C A T C
0

20
40
60
80

100
120
140
160
180

Network
CPU
LCD

E
ne

rg
y

(J
ou

le
s/

ho
ur

)

A – Android
T – TaintDroid
C – CleanOS

0 6.4 8.4 0 2.9 8.6 0 3.8 8.2

CleanEmail KeePassBrowser

(b) Energy over Wi-Fi.
Figure 8: Application Performance and Energy Consumption. (a) Performance of various popular app activities under Android,
TaintDroid, and CleanOS for various eviction states and configurations. Results are averages over 40 runs. (b) Hourly energy
consumption attributed by PowerTutor to the three apps when running a long-term synthetic workload for at least 3 hours. Numbers
on top of each bar show energy overhead over default Android in percent.

rally, our optimization will not benefit non-repeat opera-
tions, such as loading a brand new or long-unread email.
However, one type of operation that will always benefit is
app launch, a latency-sensitive operation on mobiles.

Despite their performance benefits, our optimizations
may increase data exposure. When applying these opti-
mizations to the workloads in §7.1, we obtained limited,
but non-trivial, exposure impact. The period for each type
of tainted data increased by up to 0.9 percentage points
for the workload in Figure 6(a), and by up to 23.2 percent-
age points for our intensive Email workload. Prefetching
keys from multiple sessions would cause further expo-
sure. Hence, CleanOS should best apply this optimiza-
tion only in specific cases (e.g., over 3G).
Overhead Estimation for SDO Stable Storage Exten-
sion. Thus far, our results show CleanOS’ overheads for
eviction of in-RAM SDOs. While we have not fully im-
plemented the SDO extension to stable storage, we now
offer rough estimates for the extra overheads to expect
from such an extension. We expect the major sources
of overhead to be: (1) the key fetches required to ac-
cess encrypted database items, and (2) the extra encryp-
tion/decryption that occurs when accessing these items.
To account for (1), we ran experiments with our test ap-
plications that instruct CleanOS to fetch the appropri-
ate decryption keys for any tainted database items being
accessed. To account for (2), we added an extra 20%
overhead per query, a number reported by CryptDB [33],
which also does per-item encryption.

With this methodology, we estimate that extending
SDOs to SQLite would result in additional overheads
ranging between 0-65% on 3G over CleanOS with in-
RAM SDOs. We predict that these operations will suffer
the most: KeePass Launch (869ms, or 64.9% additional
overhead), CleanEmail Read (1887ms, or 28.2% addi-
tional overhead), and Browser Load (2542ms, 4086ms,
and 4573ms for iana.org, news.google.com, and cnn.
com, respectively, or 15-19% additional overhead). Most

of these overheads (82-99% across all apps) are due to
extra RTTs incurred by necessary key fetches, which are
optimizable via batch prefetching. Thus, overall, we be-
lieve that our system will be practical from a performance
perspective even when implemented in full.

7.3 Energy and Network Evaluation
CleanOS’ encryption, network traffic, and extra GCs
raise concerns about its impact on energy consumption.
To evaluate this impact, we ran coarse-grained experi-
ments that drove a simple, long-term workload against
each app (CleanEmail, Browser, and KeePass) using
MonkeyRunner [17] and measured consumption using
the PowerTutor online power monitor [42]. The work-
load repeatedly launched an app, performed a set of typ-
ical tasks (such as reading emails, accessing entries in
KeePass, and visiting Web pages in the browser), sent the
app into the background, and then slept for 15 minutes.
Each app interaction lasted for 36-46s, after which we
promptly turned off the LCD. We ran the workload con-
tinuously for at least 3 hours and plotted per-app power
consumption as reported by PowerTutor.

Figure 8(b) shows energy consumption for Android,
TaintDroid, and CleanOS over a real home Wi-Fi net-
work. For each app, we show the energy consumed by
the LCD, CPU, and Wi-Fi. Results show that CleanOS’
total energy overheads over Wi-Fi were small compared
with both Android and TaintDroid: 8.2-8.4% over An-
droid (see labels above bars) and 1.9-5.5% over Taint-
Droid. Drilling down on resource overheads, we observe
that CleanOS increased energy consumption of both the
network (44-45%) and the CPU (32-74%), but those over-
heads were dwarfed by the LCD energy draw. In general,
our overheads were smallest for the browser, which itself
consumed relatively more CPU and network energy, and
largest for KeePass, a lightweight application that per-
formed little computation and had no network traffic.

Over 3G, energy overheads due to network traffic will
likely increase. Our experience shows that experiment-

D
at

a
tra

ns
m

itt
ed

 (K
B

/m
in

)

Figure 9: Network Traffic Patterns of Apps vs. CleanOS.
CleanOS traffic vs. app traffic for a one-hour trace. The Y axis
is in log scale. In our cases, the phone has background traffic,
which is included in both app and CleanOS lines.

ing with 3G networks leads to very unstable and unre-
peatable results; hence, for these networks, we rely on
an analytic evaluation grounded in a study of CleanOS’
network traffic. Figure 9 compares CleanOS’ traffic pat-
terns to those of the three apps using one-hour traces
from our energy experiments. It shows that CleanOS’
network consumption depends on the application’s own
network profile. For networked apps, such as email and
browser, CleanOS’ traffic closely follows the app’s own
traffic distribution over time. For example, for email, of
the 24 minutes during which CleanOS issued some traf-
fic, only 9 of those had no accompanying app traffic; for
the browser, only 1 out of 5 one-minute periods did so.
From an energy perspective, this means that CleanOS
usually piggybacks on the app’s own use of the network
and only rarely needs to hold the interface up for its own
purposes. On the other hand, for local-only apps, such as
KeePass, CleanOS uses the network mostly for its own
purpose; but even in such cases, however, its traffic will
be rare, brief, and small (≤ 10KB/min). Thus, we expect
CleanOS to be practical from an energy perspective.

8 Security Discussion and Limitations
We now discuss CleanOS’ security implications and limi-
tations. There are two types of data that an attacker might
seek: unevicted data and evicted data. CleanOS does not
protect unevicted data on a stolen device; instead, it seeks
to minimize the amount of such data. An audit-enabled
cloud service can provide users with a robust audit trail of
data exposed at the time of loss and data retrieved since.
For evicted data, clouds can do much more. For example,
after theft has been detected, they can revoke the device’s
access to still evicted data. They can also monitor ac-
cesses to keys to detect anomalous behavior.

A thief might also try to retrieve keys for all evicted
SDOs before the cloud disables them. Such aggressive at-
tackers could be identified via anomalous access-pattern

detection. To evade detection, the attacker could retrieve
SDO keys only for objects of interest, such as emails with
tempting subjects. While some attackers may be unwill-
ing to do so for fear of revealing their identities, the cloud
can provide an audit log of such accesses.

Attackers might also attempt to break the disconnec-
tion password to hoard keys for apps of interest without
raising suspicion. CleanOS could enforce sufficient en-
tropy to make the disconnection password, which is ex-
tremely rarely used, much stronger than a regular pass-
word (which a user must type every time he unlocks his
device). However, even if the password were broken, the
cloud could provide evidence of the attacker’s behavior.

Adversaries may perform network attacks to sniff or
disrupt CleanOS device-cloud traffic. To prevent sniff-
ing of keys from network traffic, we encrypt connec-
tions and authenticate the device to the cloud using a pre-
established secret key (akin to the device token in Gmail’s
two-factor verification) and the cloud using public key
cryptography. An attacker could also disrupt CleanOS
device-cloud communication to induce CleanOS into an
accumulation mode, where it defers eviction until cloud
connectivity returns. To defend, CleanOS bounds its
eviction delay for temporary disconnections. Moreover,
a thief could prevent eviction messages from arriving at
the cloud. However, dropping those messages will not
affect confidentiality since data eviction will complete as
planned, but it might raise auditing false positives.

One CleanOS limitation is its limited coverage outside
the Java realm. To be clear, expunging sensitive data
from Java is an important contribution: 9/14 apps in Fig-
ure 2(b) would expose some sensitive data permanently
in RAM if we did not do so. Moreover, we have incor-
porated some basic multi-level secure deallocation tech-
niques and have modified two popular native libraries to
limit exposure (SQLite and WebKit). However, any data
retained in other buffers or caches in the OS or native
libraries remains exposed. To limit this exposure, we rec-
ommend: (1) incorporating additional OS data scrubbing
mechanisms [10], (2) inspecting all remaining system li-
braries for caches as we do for SQLite and WebKit, and
(3) either disabling all third-party libraries (an approach
similar to TaintDroid’s [12]) or informing the cloud about
any data leakages to uninspected third-party libraries.

9 Related Work
CleanOS builds upon prior work that we now describe.
Encrypted File Systems. Encrypted file systems [11]
and full-disk encryption [26, 38] are designed to protect
data stored on a vulnerable device, but they do not pro-
tect data in RAM. Moreover, as discussed in §3 (Threat
Model) and in prior work [15, 41], these systems can fail
in the real world due to human factors (e.g., non-existent
or poor passwords) and physical attacks (e.g., key re-

trieval from RAM via cold-boot attacks [19]). CleanOS
recognizes these limitations and promptly removes un-
used data from the vulnerable device.
Encrypted RAM Systems. Encrypted RAM systems
– such as XOM [23], CryptKeeper [31], and encrypted
swap [34] – encrypt data while it sits in RAM. Crypt-
Keeper resembles the CleanOS model by encrypting all
memory pages except for a small working set, thereby
achieving a similar encrypted-unless-in-use effect as
CleanOS. However, while the data is encrypted in these
systems, the decryption keys themselves are still avail-
able in RAM and potentially accessible to memory-
harvesting unless extra hardware is deployed. Moreover,
if the device were unlocked or the thief found the user’s
password, encrypted RAM would have no effect.

ZIA [7, 8] encrypts mobile data in RAM and on disk
whenever a device is not near its owner. The user wears a
beaconing token at all times, whose presence is detected
by the mobile. Like ZIA, CleanOS encrypts data after a
period of non-use, but the granularities, method, and us-
age model are different. For example, we disable unused
data at the Java object level as opposed to the device level,
evict data to clouds for increased post-theft control, and
do not require users to carry (and secure!) tokens.
Mobile Wipe-Out Systems. Varied commercial wipe-
out systems exist and help increase users’ post-theft data
control. For example, remote wipe-out systems, such as
iCloud [3], let the users send “kill” messages to lost de-
vices. Unfortunately, these systems require network con-
nectivity to function correctly. If the thief prevents device
connectivity (e.g., by wrapping it into a Faraday cage),
the device will not receive the message and therefore not
complete its wipeout. Moreover, configuring the device
to self-destruct after a number of failed authentication at-
tempts helps prevent access to file system data, but it does
not preclude memory harvesting attacks, such as coldboot
imaging [19]. Such attacks are particularly problematic
on mobile devices, which hardly ever power off.
Cloud-based Mobile Security Services. The value of
the cloud for increased data control is being increasingly
recognized. Examples of cloud-based security services
include: online data access revocation with two-step veri-
fication [18], location-based access control with location-
aware encryption [37], and cloud-based authentication
with capture-resilient cryptography [25]. Generally, these
systems prevent the compromise of data not already ex-
posed on the device, but they do not guarantee security
for mobile-resident data. For example, none of these
systems takes RAM-resident data into account, and the
Google two-step verification does not even consider stor-
age. CleanOS cleanses device RAM and storage in sup-
port of such security services.
Keypad. Particularly relevant is Keypad [15], an audit-
ing file system for old-generation mobile devices, such as

laptops and USB sticks, that achieves file-level, strong-
semantic auditing. CleanOS shares Keypad’s threat
model, and our auditing service was inspired by it. How-
ever, in addition to its support for in-RAM data auditing,
CleanOS also differs from Keypad in its focus on new-
generation mobile technologies, such as Android, which
have distinct auditing granularity requirements. For ex-
ample, file-level auditing in Keypad would be ineffective
for apps using the SQLite database since they all would
be stored within one single file. Instead, CleanOS defines
SDOs, an abstraction that encompasses fine-grained ob-
jects, database items, and sdcard files.
Secure-Deletion Systems. Secure deletion has been rec-
ognized as a key OS primitive. It erases data in mem-
ory [6], OS buffers [10], and stable storage [30, 39, 4]
once the data is not needed by the application. CleanOS
explicitly assumes the existence and robustness of such
systems, but addresses a distinct, important part of the
sensitive data exposure problem for the first time: se-
curing data explictly hoarded by applications for perfor-
mance or convenience. CleanOS SDOs resemble the self-
destructing data abstraction in Vanish [16] in that they
“disappear” over time, but the setting is different: Van-
ish makes Web data disappear after a specified time post-
creation, whereas SDOs make mobile data disappear if
they are unused for a specified time.

10 Conclusions
This paper described CleanOS, a new design for the
Android OS that manages sensitive data rigorously and
keeps mobile devices clean at any point in time. Unlike
Android, which lets sensitive data accumulate in cleartext
RAM and on disk, CleanOS eliminates it from the vulner-
able device by evicting it to the cloud whenever it is not
needed on the device. It provides a clean-semantic foun-
dation for clouds to build add-on services, such as data
access revocation after a device has been lost or post-theft
data exposure auditing. We implemented CleanOS by in-
strumenting Android’s Java virtual machine to securely
evict sensitive data objects after a specified period of non-
use. On top of CleanOS, we built a sample auditing cloud
service. Our experiments demonstrate that CleanOS lim-
its data exposure significantly while imposing acceptable
performance overheads and offering sound semantics for
cloud-based applications.

11 Acknowledgements
We thank our shepherd, Petros Maniatis, and anonymous
reviewers for their valuable comments. We also thank
Steve Gribble, Angelos Keromytis, Hank Levy, Simha
Sethumadhavan, Salvatore Stolfo, and Junfeng Yang for
their feedback. This work was supported by DARPA
through FA8650-11-C-7190 and FA8750-10-2-0253 and
NSF through CNS-0905246.

References

[1] R. Anderson and M. Kuhn. Tamper resistance: A cautionary
note. In Proc. of the USENIX Workshop on Electronics Com-
merce, 1996.

[2] Android Developers Blog. Avoiding memory leaks.
android-developers.blogspot.com/2009/01/avoiding-
memory-leaks.html, 2009.

[3] Apple iCloud. Find my iPhone, iPad, and Mac. www.apple.com/
icloud/features/find-my-iphone.html, 2012.

[4] D. Boneh and R. Lipton. A revocable backup system. In Proc. of
USENIX Security, 1996.

[5] S. Chen, M. Kozuch, T. Strigkos, and et.al. Flexible hardware
acceleration for instruction-grain program monitoring. In Proc. of
the Annual International Symposium on Computer Architecture
(ISCA), 2008.

[6] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure deallocation.
In Proc. of USENIX Security, 2005.

[7] M. D. Corner and B. D. Noble. Zero-interaction authentication.
In Proc. of the ACM Annual International Conference on Mobile
Computing and Networking, 2002.

[8] M. D. Corner and B. D. Noble. Protecting applications with tran-
sient authentication. In Proc. of the International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2003.

[9] L. P. Cox and P. Gilbert. Redflag: Reducing inadvertent leaks by
personal machines. Technical Report TR-2009-02, Duke Univer-
sity, 2009.

[10] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spotless
machine: Protecting privacy with ephemeral channels. In Proc. of
the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2012.

[11] EncFS. www.arg0.net/encfs, 2010.
[12] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth. TaintDroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones. In Proc. of
the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2010.

[13] Federal Communications Commission. Announcement
of new initiatives to combat smartphone and data theft.
www.fcc.gov/document/announcement-new-initiatives-
combat-smartphone-and-data-theft, 2012.

[14] Future of Privacy Forum, Center for Democracy & Tech-
nology. Best practices for mobile applications devel-
opers. www.futureofprivacy.org/wp-content/uploads/
Apps-Best-Practices-v-beta.pdf, 2011.

[15] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M.
Levy. Keypad: An auditing file system for theft-prone devices.
In Proc. of the ACM European Conference on Computer Systems
(EuroSys), 2011.

[16] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish:
Increasing data privacy with self-destructing data. In Proc. of
USENIX Security, 2009.

[17] Google Inc. MonkeyRunner. developer.android.com/tools/
help/monkeyrunner_concepts.html, 2012.

[18] Google Inc. Two-step verification. support.google.com/
accounts/bin/topic.py?hl=en&topic=28786, 2012.

[19] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W.
Felten. Lest we remember: Cold boot attacks on encryption keys.
In Proc. of USENIX Security, 2008.

[20] Imperva. Consumer password practices. www.imperva.com/
docs/WP_Consumer_Password_Worst_Practices.pdf, 2010.

[21] Intel Corporation. Laptop security with Intel Anti-Theft technol-

ogy. www.intel.com/content/www/us/en/architecture-
and-technology/anti-theft/anti-theft-general-
technology.html, 2012.

[22] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand
key derivation function (HKDF). tools.ietf.org/html/
rfc5869, 2010.

[23] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy and
tamper resistant software. In Proc. of the International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000.

[24] Lookout Mobile Security. Lost and found: The challenges
of finding your lost or stolen phone. blog.mylookout.com/
blog/2011/07/12/lost-and-found-the-challenges-of-
finding-your-lost-or-stolen-phone, 2011.

[25] P. MacKenzie and M. Reiter. Networked cryptographic devices
resilient to capture. In Proc. of USENIX Security, 2001.

[26] Microsoft Corporation. Windows 7 BitLocker executive overview.
technet.microsoft.com/en-us/library/dd548341(WS.10)
.aspx, 2009.

[27] Microsoft Corporation. Create strong passwords. www.
microsoft.com/security/online-privacy/passwords-
create.aspx, 2012.

[28] M. Milian. U.S. government, military to get secure An-
droid phones. www.cnn.com/2012/02/03/tech/mobile/
government-android-phones/index.html, 2012.

[29] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.
[30] R. Perlman. File system design with assured delete. In Proc. of

the Annual Network and Distributed System Security Symposium
(NDSS), 2007.

[31] P. A. H. Peterson. Cryptkeeper: Improving security with en-
crypted RAM. In Proc. of the IEEE International Conference on
Technologies for Homeland Security (HST), 2010.

[32] Ponemon Institute. The lost smartphone problem.
www.mcafee.com/us/resources/reports/rp-ponemon-
lost-smartphone-problem.pdf, 2011.

[33] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan. CryptDB: Protecting confidentiality with encrypted query
processing. In Proc. of the ACM Symposium on Operating Sys-
tems Principles (SOSP), 2011.

[34] N. Provos. Encrypting virtual memory. In Proc. of USENIX Se-
curity, 2000.

[35] J. Robertson. Security chip that does encryption in PCs
hacked. www.usatoday.com/tech/news/computersecurity/
2010-02-08-security-chip-pc-hacked_N.htm, 2010.

[36] M. Savage. NHS ‘loses’ thousands of medical records.
www.independent.co.uk/news/uk/politics/nhs-loses-
thousands-of-medical-records-1690398.html, 2009.

[37] A. Studer and A. Perrig. Mobile user location-specific encryption
(MULE): Using your office as your password. In Proc. of the
ACM Conference on Wireless Network Security (WiSec), 2010.

[38] Symantec Corporation. PGP whole disk encryption. www.
symantec.com/whole-disk-encryption, 2012.

[39] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman. FADE: Secure
overlay cloud storage for file assured deletion. In Proc. of the
International ICST Conference on Security and Privacy in Com-
munication Networks (SecureComm), 2010.

[40] W3C. Mobile app best practices. www.w3.org/TR/mwabp, 2010.
[41] A. Whitten and J. Tygar. Why Johnny can’t encrypt: A usability

evaluation of PGP 5.0. In Proc. of USENIX Security, 1999.
[42] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao, and

L. Yang. Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones. In
Proc. of the IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, 2000.

