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ABSTRACT

This paper presents the design and implementation of an in-
crementally scalable architecture for middleboxes based on
commodity servers and operating systems. xOMB, the eX-
tensible Open MiddleBox, employs general programmable
network processing pipelines, with user-defined C++ mod-
ules responsible for parsing, transforming, and forwarding
network flows. We implement three processing pipelines in
xOMB, demonstrating good performance for load balancing,
protocol acceleration, and application integration. In par-
ticular, our xOMB load balancing switch is able to match or
outperform a commercial programmable switch and popu-
lar open-source reverse proxy while still providing a more
flexible programming model.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Inter-
networking; D.2.11 [Software Engineering]: Software Ar-
chitectures—Patterns

Keywords

middlebox, application-layer switch, network processing
pipeline

1. INTRODUCTION
Network appliances and middleboxes performing forward-

ing, filtering, and transformation based on traffic contents
have proliferated in the Internet architecture. Examples
include load balancing switches [6–8] and reverse prox-
ies [3, 10, 16–18], firewalls [15, 31], and protocol accelera-
tors [13, 16, 18]. These middleboxes typically accept con-
nections from potentially tens of thousands of clients, read
messages from the connections, perform processing based
on the message contents, and then forward the (potentially
modified) messages to destination servers.
Middleboxes form the basis for scale-out architectures in

modern data centers, being used in three main roles. First,
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they perform static load balancing and possibly filtering,
whereby they distribute (or drop) messages to server pools
based on a fixed configuration. For example, a load balanc-
ing switch might forward requests to different server pools
based on URL. Second, middleboxes perform dynamic re-

quest routing and application integration, where they exe-
cute service logic and use dynamic service state to forward
requests to specific application servers and often compose
replies from many application servers for the response. For
example, front-end servers use object ids to direct requests
to the back-end servers storing the objects. Third, middle-
boxes perform protocol acceleration by caching/compressing
data and responding to requests directly from their caches.
For example, services deployed across multiple data centers
use middleboxes to cache content from remote data centers.

Unfortunately, the architecture of commercial hardware
middleboxes consists of a mixture of custom ASICs, embed-
ded processors, and software with, at best, limited extensi-
bility. While firewalls, NATs, load balancing switches, VPN
gateways, protocol accelerators, and other middleboxes per-
form logically similar functionality, they are individually de-
signed by niche providers with non-uniform programming
models. These boxes often command a significant price pre-
mium because of the need for custom hardware and software
and their limited production volumes. Extending function-
ality to new protocols may require new custom hardware.
Worse, expanding the processing or bandwidth capacity of
a given middlebox may require replacing it with a higher-
end model. Similarly, software reverse proxy middleboxes
are specialized for specific protocols and, like their hardware
counterparts, offer limited scalability and extensibility.

At first blush, software routers such as Click [28] or Route
Bricks [21] may be employed to achieve extensible middlebox
functionality. In fact, recent work [33] demonstrates the
feasibility of such an approach with a middlebox architecture
based on Click. However, these pioneering efforts are focused
on per-packet processing, making them less applicable to
the stream or flow-based processing common to the class of
middleboxes we target in this work. For example, flow-based
processing requires operating on a byte stream rather than
individual packets and may require communication among
multiple network elements to perform dynamic forwarding
and rewriting. Further, they provide no specific support
for managing and rewriting a large number of concurrent
flows, instead focusing on high-speed pipeline processing of
individual packets.

Hence, this paper presents xOMB (pronounced zombie), an
eXtensible Open MiddleBox software architecture for build-



ing flexible, programmable, and incrementally scalable mid-
dleboxes based on commodity servers and operating sys-
tems. xOMB employs a general programmable pipeline for
network processing, composed of xOMB-provided and user-
defined C++ modules responsible for arbitrary parsing,
transforming, and forwarding messages and streams. Mod-
ules can store state and dynamically choose different pro-
cessing paths within a pipeline based on message content.
A control plane automatically configures middleboxes and
monitors both middleboxes and destination servers for fault
tolerance and availability. xOMB provides a single, unified
platform for implementing the various functions of static
load balancing/filtering, dynamic request routing, and pro-
tocol acceleration.
Several additional xOMB features add power and ease of

programming to the simple pipeline model. Asynchronous

processing modules and independent, per-connection process-

ing efficiently support network communication (e.g., to re-
trieve dynamic state) as part of message processing. Ar-

bitrary per-message metadata allows modules to store and
pass state associated with each message to other modules
in the pipeline. Finally, xOMB automatically manages client
and server connections, socket I/O, message data buffers,
and message buffering, pairing, or reordering.
We implement and evaluate three sample pipelines: an

HTTP load balancing switch (static load balancing), a front
end to a distributed storage service based on Eucalyptus [29]
implementing the S3 interface [1] (dynamic request routing),
and an NFS [32] protocol accelerator. Forwarding through
xOMB presents little overhead relative to direct access to back-
end servers. More importantly, xOMB scales its network and
processing performance with additional commodity servers
and provides transparent support for dynamically growing
the pool of available middleboxes. We also compare the
performance of our xOMB load balancing switch against a
commercially available hardware load balancing switch and
the leading open source reverse proxy. xOMB matches or out-
performs the commercial switch and open source proxy in
most cases, while providing a more flexible and powerful
programming model.

2. OVERVIEW
Middleboxes can be defined as network elements that pro-

cess, forward, and potentially modify traffic on the path
between a source and a destination. With this generic def-
inition, routers and switches can also be classified as mid-
dleboxes. In this paper, we focus on an active middle box

(“middlebox” for short), a network device that performs pro-
grammable traffic processing based on entire packet con-
tents rather than just on headers. We identify three key
features differentiating middleboxes from traditional routers
and switches: middleboxes i) understand the application se-
mantics of network data, ii) may modify or even completely
replace the contents of that data, and iii) despite being “in
the middle,” middleboxes may terminate connections and
initiate new connections.
Although the xOMB design is general to a variety of mid-

dlebox applications, we primarily focus on their use in data
centers in this paper as this deployment scenario stresses all
aspects of our design and presents a particularly challeng-
ing use case, with strict requirements for performance and
reliability. We begin by examining load balancing switches

(LBSs), specialized middleboxes widely used to distribute
requests among dynamic server pools in data centers.

2.1 Load Balancing Switches
Data center services rely on specialized hardware LBSs

that serve as the access point for services at a particu-
lar data center, abstracting back-end service topology and
server membership and enabling incremental scalability and
fault tolerance of server pools. When a client initiates a re-
quest, rather than returning the IP address of an application
server, the service instead returns the IP address of a LBS.
Client packets must then pass through the LBS on the way
to their ultimate destination.

LBSs may operate at the packet-header or packet-payload
granularity. In the first case, they forward packets to back-
end servers by transparently rewriting IP destination ad-
dresses in packet headers. Care must be taken to ensure
that all packets belonging to the same flow are mapped to
the same server. Many commodity switches provide ba-
sic hardware support for appropriate flow hashing to de-
liver such functionality. A straightforward design might
employ OpenFlow [11] coupled with commercially avail-
able switches to map flows to back-end servers by mon-
itoring group membership and load information. Hence,
we focus on the more challenging (and commercially rele-
vant) instance where LBSs must operate at the granular-
ity of packet-payloads, performing arbitrary processing on
application-level messages before forwarding them to appro-
priate back-end servers.

Performance optimizations, used either independently or
in addition to protocol acceleration, are another example of
LBS functionality. For example, an LBS will maintain per-
sistent TCP connections to back-end webservers, re-writing
HTTP 1.0 requests as 1.1 if necessary to use one of the ex-
isting connections. Switches may also implement connection
collapsing, in which many incoming client TCP connections
are multiplexed onto a small number of persistent TCP con-
nections at the application servers. These functions pro-
vide several benefits. First, they eliminate the overhead of
establishing new TCP connections and the delay for it to
ramp up to the available bandwidth, reducing overall la-
tency. Second, servers incur some degree of per-connection
processing overhead, so if every client connection requires a
connection from the middlebox to the back-end, then both
the middleboxes and backends incur this cost. By “absorb-
ing” the client connections through connection collapsing,
the middlebox reduces back-end load and also reduces its
own load by having fewer back-end connections to manage.
Connection collapsing and request rewriting for persistent
connections is one of the most popular uses for commercial
LBSs [9, 30].

While some commercial LBSs can process byte streams,
this capability is typically limited to a small set of protocols
(e.g., HTTP) with restricted programming models. Further,
as running at line speeds often requires specialized hardware
employing custom ASICs, it is typically impossible for LBSs
to perform message forwarding or rewriting based on state
maintained across connections or to initiate RPCs to look
up non-local state for dynamic request routing, requiring
large-scale service providers to employ proprietary software
solutions. The goal of our work is to address these challenges
with a scalable, easy-to-program architecture built entirely
from commodity server components.



Figure 1: System Architecture

2.2 Architecture
Figure 1 shows the xOMB architecture. The major compo-

nents include commodity hardware switches, our front-end
software middleboxes, back-end application servers, and a
controller for coordination. The software middleboxes com-
municate with each other, with the controller, and with
agent processes—used for collecting statistics such as ma-
chine load on each back-end server—using an RPC frame-
work.

Hardware switches. While our software middleboxes can
perform application-level packet inspection to aid forward-
ing decisions, we can optionally leverage existing commodity
hardware switches to act as the single point of contact for
client requests. These commodity switches employ line-rate
hashing to map flows to an array of our programmable soft-
ware middleboxes [35].

Software middleboxes. Commodity servers with soft-
ware middleboxes function as the front-end switches for
xOMB. They parse, process, and forward streams of requests
and responses between clients and the back-end application
servers. xOMB flexibly supports arbitrary protocol and appli-
cation logic through user-defined processing modules. De-
ployments can scale processing capacity by “stacking” xOMB
servers either vertically (every server runs the same mod-
ules) or horizontally (servers run different modules and form
a processing chain). Additionally, the middleboxes provide
distributed failure detection and load monitoring.

Application servers. Application servers (e.g., web-
servers) form the back end of our system and process and
respond to client requests according to the protocol(s) they
are serving. These servers may be grouped into logical pools
with related resources or functionality.

Controller. The controller provides a central rendezvous
point for managing front-end and back-end configuration
and membership. In addition to coordinating and stor-
ing server membership, the controller also stores a limited
amount of service hard state. The controller may be imple-
mented as a replicated state machine for fault tolerance.

3. DESIGN
The middleboxes form the core of the xOMB framework,

with the primary goals of flexibility, programmability, and
performance. They provide complete control over data pro-
cessing, allowing them to work with any protocol, includ-
ing proprietary, institution-specific ones. Our high-level ap-
proach to arbitrary byte stream processing is to terminate
client TCP connections at the middlebox, execute the ap-
propriate modular processing pipeline (pipeline) containing
user-defined processing logic on an incoming byte stream,
and then transmit the resulting byte stream over a new TCP
connection to the appropriate back-end server. We leave
extensions to message-oriented protocols such as UDP to

Figure 2: Anatomy of a xOMB Server

future work. A separate control plane configures the mid-
dleboxes, manages membership, performs monitoring, and
schedules and executes timers.
xOMB automatically handles low-level functionality neces-

sary for high-performance processing, allowing the program-
mer to concentrate on the application logic. xOMB abstracts
connection management, socket I/O, and data buffering.
Additionally, xOMB targets request-oriented protocols, which
comprise most of today’s Internet services. In these pro-
tocols, request messages have exactly one logical response
message, and responses should be returned in the order re-
quested. xOMB tracks requests and buffers and reorders re-
sponses to meet this requirement. Although our design al-
lows arbitrary data processing, our aim is to make handling
common processing patterns and standard protocols as sim-
ple as possible (see §4.3.2).

Figure 2 shows an overview of the anatomy of a xOMB

server. The user simply defines the processing modules (the
dark gray boxes) that plug into the xOMB pipeline framework.
In this section, we discuss the design of the xOMB core archi-
tecture, and we delve into the key implementation details in
§4.

3.1 Pipelines and Modules
xOMB divides data stream processing into three logical

stages: protocol parsing, filtering/transformation, and for-
warding. Each stage is composed of an arbitrary collection
of modules that dynamically determine the processing path
of a message. As each module can process different mes-
sages independently and concurrently, we refer to the com-
plete DAG of modules and any additional control-flow logic
as the pipeline. Because requests and responses require dif-
ferent handling, middleboxes use separate pipelines for each
direction.

3.1.1 API

Each pipeline module represents a single processing task,
and modules may be composed of other modules. Modules
may be either synchronous or asynchronous; asynchronous
modules allow processing tasks to retrieve state over the net-
work without blocking. A simple API consists of methods
for initializing state, receiving failure/membership notifica-



Figure 3: Example Pipeline

tions, and a process()method to execute the module’s task.
Middlebox programmers must only define a set of modules
and the pipeline to link them together.
When a middlebox reads a chunk of data from a socket

into a message buffer, it passes the buffer to the pipeline,
which successively invokes module process() methods until
either a module halts processing or every module has been
executed. Modules may store soft state in memory, sched-
ule timers, and, for asynchronous modules, make RPCs to
retrieve or store shared persistent state. Modules pass pro-
cessing results to other modules, or between requests and
responses, through arbitrary metadata pointers associated
with each message. For example, a parser module may set
a data structure representing the parsed message as a meta-
data value.
xOMB assigns every connection its own pipeline object to

increase throughput and simplify programming. The xOMB

concurrency model uses strands [5] based on each connec-
tion, meaning that at most one thread will execute pipeline
or I/O instructions for a given connection at a time. The ad-
vantage of this model over explicit locking is that it elegantly
allows multiple cores to execute processing or I/O for dif-
ferent connections in parallel. Moreover, if one connection’s
pipeline makes an RPC (which is asynchronous), control will
immediately transfer to another connection’s pipeline until
receiving the reply, further increasing throughput and uti-
lization. Because many modules need to track per-message
or per-connection state (e.g., the number of bytes parsed),
per-connection pipelines have the additional advantage of
simplifying programming by automatically giving each mod-
ule private state. xOMB also provides support for modules
storing state across connections (§3.1.3).

3.1.2 Example Pipeline: HTTP

Figure 3 shows an example request and response pipeline
for processing HTTP traffic, broken into parse, filter, and
forward stages.

Protocol Parsing. The protocol parsing stage transforms
the raw byte stream into discrete application-defined mes-
sages and sets application-specific metadata in the message
structure. On a parse error, the module sets a message
flag to close the connection. The parser indicates when it
has parsed a complete message along with the total bytes
parsed. The middlebox reads these fields to create a new
buffer pointing to any remaining bytes for the next message.
Parsers can be chained together to simplify the logic for

different subsets of a complicated protocol. For example,
parsing XML-RPC might use an HTTP parser followed by
an XML parser. Our sample HTTP parser sets a metadata
structure representing an HTTP request, including the pro-
tocol version, request method, path, headers, etc.

Filtering and Transformation. Filter modules perform
arbitrary transformations on messages. Our example re-
quest pipeline has three filters illustrating common uses.
First, an AttackDetector checks the request against a set of
attack signatures using string matching expressions loaded
from Snort [15] rules. If the message matches a rule, the
filter sets the “drop connection” flag.

Next, the pipeline uses a Cache module for protocol accel-
eration. In the request pipeline, the module checks whether
a cache entry exists for the path set in the HTTP meta-
data. If so, the module sets the message buffer pointers to
the cached response and sets the message destination to the
client. In the response pipeline, the cache module checks
the response headers in the HTTP metadata and stores the
response if permitted.

The final filtering step (omitted in Figure 3) performs
HTTP version rewriting to allow middleboxes to main-
tain persistent connections to the back-end webservers, even
when clients do not support them. If the HTTP metadata
version is 1.0, the request pipeline module rewrites the head-
ers to version 1.1 and adds the appropriate“Host”field. The
response pipeline also uses a version filter that rewrites the
response back to HTTP/1.0 for requests that were trans-
formed. Similarly, because cached responses will always be
version 1.1, the request pipeline sends these through a re-
sponse version filter as well.

Forwarding. The forwarding stage sets the message desti-
nation based on metadata set by the previous stages. For-
warding can be as simple as selecting a back-end server from
a pool to as complicated as computing the destination from a
dynamically populated forwarding table. Response pipelines
do not have forwarding modules; the middlebox automati-
cally sends responses to the requesting client.

Our example request pipeline uses two forwarding mod-
ules. The URLPool module partitions back-end server pools
based on the paths from the URL that they may serve. This
module periodically reads configuration state from the con-
troller that maps URL path prefixes to server pools. For
example, paths beginning with “/image” go to one set of
servers and paths beginning with “/video” go to another
set. By using the HTTP metadata path, the module sets
a metadata field with the pool for the longest prefix match.
The LoadBalance module selects a destination server from
the designated pool using a specified load balancing policy.
We have implemented simple load balancers that use round-
robin or random selection.

Figure 4 shows a sample module implementing random
forwarding. The module sets the message destination to a
random server in the specified pool. If the specified pool
does not contain any servers, the module returns an error
status that signals the pipeline logic to initiate alternate
processing or close the connection.

3.1.3 Module State and Configuration

Integrating programmable middleboxes into complex dis-
tributed protocols requires that the middleboxes can ac-
cess potentially large amounts of service state necessary for
making forwarding decisions. We distinguish two kinds of



class RandomForwardModule : public Module {
public:
MessageStatus process(MessagePtr m) {
// get membership from control plane
MembershipSet members =
Membership::getMembers(m->getPool());

if (members.empty())
// tell xomb to close connection
return MessageStatus::Error;

// set destination on message structure
m->setDest(random(members)->addr());

// tell xomb to start forwarding data
return MessageStatus::Complete;

// (Modules that need more data can
// return MessageStatus::ReadMore)

}
};

Figure 4: A forwarding module implementing random for-
warding to a pool of servers specified in the message meta-
data.

module state: configuration state and dynamic state. Con-
figuration state specifies parameters such as rates, cache
sizes, numbers of connections, etc., and any global state
that changes infrequently. Examples of configuration state
include the set of fingerprints used by the AttackDetector

module or the path prefix to server pool mapping used by
the URLPool module. xOMB uses the controller to manage
all global configuration state, stored as a map from state
name to opaque binary value. This map can be queried
through an RPC interface by a middlebox when it starts,
allowing modules to retrieve necessary configuration param-
eters. Optional metadata includes a version number and
time duration, which tells modules how long they should
use the current value before checking for a new version.
Dynamic state consists of any unique state that a module

references or retrieves for each message. Consider an object
store directory that maps billions of object ids to back-end
servers. Modules typically cannot prefetch and store a com-
plete copy of such forwarding state because the total state is
too large, keeping a consistent copy would be too expensive,
or both. xOMB modules may dynamically construct forward-
ing tables during message processing and may control the
rate at which dynamic state is updated. Modules can re-
trieve required state on demand by making asynchronous
RPCs to application services such as a back-end metadata
server. The ability to build dynamic forwarding tables is
a significant advantage afforded by the general programma-
bility of xOMB middleboxes relative to less flexible callback-
based models (§3.3).
Modules store global state—including both configuration

and dynamic state—in memory that persists across connec-
tions. To allow modules to manage memory effectively, xOMB
passes membership and failure notifications to every mod-
ule so that they may discard unneeded state. Additionally,
modules may set timers to perform periodic state mainte-
nance to optimize storage or purge stale state.

3.2 Control Plane
Although pipelines and modules form the core of xOMB, a

number of other components complete the system function-
ality and convenience.

3.2.1 Membership

xOMB middleboxes and back-end servers require the cur-
rent server membership for various pools. As middleboxes
and servers join and leave, updated membership must be
disseminated efficiently. In addition to basic pool member-
ship, xOMB must assign both back-end and middlebox servers
to be monitored by one or more middleboxes. These assign-
ments should remain balanced as middleboxes and servers
are added and removed. Finally, we also require that there
be no manual configuration for adding or removing servers—
all membership pools and monitoring assignments must be
updated automatically.

To achieve these requirements, the xOMB controller man-
ages pool membership and monitors assignments. Although
using a centralized controller may not scale to the largest
systems, it is a simple solution and should be sufficient for
thousands to tens-of-thousands of servers [22]. The con-
troller may be implemented as a replicated state machine
for high availability, or replaced with a coordination system
such as [26].

When a new server comes online, its agent process makes
a join RPC to the controller, registering itself as either a
middlebox or an application server, and specifies the sets of
pools to which it should be added and any pools for which it
requires membership updates. The controller records this re-
quest and informs all servers who have registered interest in
membership updates for that pool. When failure detectors
inform the controller of a server failure, it similarly notifies
all registrants.

3.2.2 Monitoring

Services must respond to failures and changing server
loads. Front-ends such as xOMB implement this functionality
as they direct requests to back-end servers: middleboxes can
avoid sending requests to failed machines and shift traffic to
less loaded servers. To effectively minimize service time for
requests, the middleboxes need the current liveness and load
status of all servers, generally including other middleboxes.

Each middlebox collects load information from a set of
servers assigned by the controller at a configurable inter-
val. The xOMB agent on each server reports machine-level
information, such as load, CPU, network, and memory uti-
lization, but application server agents may report more de-
tailed application information, such as the number of active
connections or operations per second.

3.2.3 Failure Detector

xOMB employs an active failure detector to quickly detect
unresponsive servers. The controller assigns every middle-
box a set of servers to monitor. Middleboxes ping each of
their monitored servers at a configurable period. For more
reliable failure detection, xOMB supports assigning multiple
middlebox failure detectors for every server.

3.3 Design Discussion
While a general modular/pipeline approach is common

in system design [28, 37], it represents a novel architecture
for programmable middleboxes, which typically use a lay-
ered approach with protocol-specific callbacks [8, 17]. For
example, a conventional middlebox may provide callbacks
for processing a new TCP flow, part of an HTTP request
(such as the URL), or a complete HTTP request.

The primary advantage of callbacks is that, as long as the



product supports your protocol, they make it straightfor-
ward to implement simple protocol-specific handling for a
particular set of events. Because vendors tailor the set of
callbacks to only specific supported protocols, they can pro-
vide a high level of integration for switch programmers, ab-
stracting details such as protocol parsing and loading shared
libraries—the programmer only needs to provide bodies of
the desired event handlers. Additionally, the callbacks take
as arguments the relevant fields for the event, eliminating
the need for metadata objects attached to messages.
In contrast, xOMB modular pipelines provide four impor-

tant advantages over callbacks. First, asynchronous mod-
ules allow message processing to perform RPCs to retrieve
or store state over the network. The programmable mid-
dleboxes that we surveyed have the limitation that call-
backs must run to completion and must not block, thus
precluding this critical functionality for implementing dy-
namic request routing. Second, xOMB pipelines are more flex-
ible because they are not limited to a fixed set of protocols
or callbacks. Third, xOMB pipelines elegantly allow mod-
ules to pass arbitrary per-message state to other modules
through the message metadata, enabling cross-module pro-
cessing logic. While callbacks could provide similar function-
ality, this must be supported by the framework; current sys-
tems do not allow this and instead require setting global vari-
ables, a much more complicated and error-prone approach,
and may limit processing parallelism if accessing these global
variables requires locking. Finally, xOMB pipelines are poten-
tially more efficient, because parsing modules only need to
parse the minimal amount of bytes necessary to complete
the desired processing. Furthermore, the pipeline can be
programmed to immediately begin processing message frag-
ments rather than waiting for the complete message, poten-
tially reducing latency and overhead for large messages that
can be processed with streaming logic.
xOMB pipelines can be structured to provide all of the con-

venience of callbacks while maintaining the above advan-
tages. For example, we envision including parsers for pop-
ular protocols as part of the xOMB distribution. Further,
pipelines can emulate a set of callbacks by using a series
of modules with methods for each callback. These modules
can wait for a desired event to occur and invoke the re-
spective handler method with arguments from the message
metadata.

4. IMPLEMENTATION
We now discuss xOMB’s implementation in more detail.

4.1 Pipeline Libraries
To simplify pipeline programming, xOMB separates module

and pipeline implementation from the xOMB C++ implemen-
tation. The user provides pipelines written in C or C++
as shared-object libraries linked with the required modules,
also written in C/C++. xOMB allows users to define sim-
ple pipelines by just adding modules in the desired order
to a pipeline module list. A xOMB server can load multiple
pipelines, each associated with a separate port.

4.2 Control Module
The middlebox implements its portion of the control plane

in a global control module. Upon startup, the control mod-
ule first initializes the middlebox by creating threads for
asynchronous I/O dispatch [5], and starts an RPC server to

Figure 5: Message and Buffer State Snapshots

receive calls from the controller. Next, it dynamically loads
specified pipeline shared-object libraries and begins listening
for client connections on the data plane. Finally, it joins the
controller and retrieves any global configuration parameters.

As described in §3.2, the middlebox receives server pool
membership and monitoring assignments from the con-
troller. The control module stores the pool assignments in
a shared membership module and schedules timers for its
monitoring tasks. A shared load monitor module queries
servers for load information and stores the results. When
the control module receives a failure notification from the
controller, it notifies all pipelines so that the modules can
update their state and respond appropriately. However, ser-
vices such as health and load monitoring are optional. While
we expect such functionality in many production environ-
ments, simpler deployments may not have this requirement.

4.3 Data Plane
The data plane listens for client connections on one or

more ports, each of which has its own request and response
pipeline. Although the xOMB architecture is general to any
protocol, we focus on TCP-based protocols in this paper.
Upon accepting a client TCP connection, the middlebox cre-
ates a client connection object that holds the client socket,
the request pipeline, and a data structure to buffer and re-
order responses. xOMB then creates a new message structure
and buffer and reads data from the socket. We will illustrate
pipeline processing with the state snapshots in Figure 5.

4.3.1 Messages and Buffers

The middlebox creates a message data structure for each



request and response to buffer message data during pro-
cessing. Buffer management—how buffers are allocated, ac-
cessed, and copied—is a critical design detail for building a
high performance middlebox. xOMB uses memory efficiently
by avoiding user-level copying and freeing buffered data once
it has been sent, even if the message is not complete. We use
reference-counted buffer pointers to simplify memory man-
agement for data that persists across multiple messages.
Each message structure maintains a list of pointers to

fixed-size buffers. Because buffers may not be full or may
contain data for multiple messages, the message also has
a list of segments—contiguous substrings in a buffer—each
holding a pointer to the start of the segment (an offset into
the buffer) and the segment length. The structure also holds
fields for the total buffered data size and the number of bytes
parsed, queued, and sent. The segment list and byte counts
represent shifting windows of data to be processed and sent.
To maximize memory efficiency, the middlebox always fills

every buffer by using scatter/gather I/O (reading into mul-
tiple buffers with one system call) and passing allocated but
unused buffers to the next message. When a read completes,
the middlebox adds segments to the message pointing to the
newly read bytes. SnapshotA of Figure 5 shows messageM1
after reading 28K into buffer B0.
Message processing proceeds one segment at a time. The

pipeline returns one of three results: either the message is
complete, an error occurred, or the pipeline needs more data.
If the message is complete, the middlebox constructs a new
message with any remaining unparsed buffer pointers and
segments. On an error, the middlebox discards the message
and closes the connection. If the pipeline returns incomplete,
the middlebox performs another read.
Snapshot B of Figure 5 shows M1 after the middlebox

has processed B0. The HTTP parser has set metadata rep-
resenting the request, including the total request size of 42K,
URLPool has set the destination pool, and LoadBalance has
set the destination server. Because M1 was not complete,
the pipeline returned that it needed more, and the middle-
box read another 30K into buffer B1.
Once the pipeline has determined the destination for the

message, the middlebox sends any processed segments to
the destination. As the middlebox reads and processes new
buffers and segments, it simultaneously sends previous ones.
By discarding buffers after sending them, the middlebox uses
only a small amount of memory for each message, regard-
less of the total message size. The middlebox limits the
amount of data buffered for any message by not reading on
a connection while the total buffered size exceeds a thresh-
old; the middlebox eventually closes connections for reads
that take too long. Because message data typically will not
fall on buffer boundaries, when the pipeline has processed
a complete message, xOMB copies pointers for any buffered
but unprocessed bytes from the completed message into a
new message and invokes the pipeline with the new message
before attempting another read.
Figure 5 C shows the state after processing B1 through

the end ofM1. While the pipeline processed B1, the middle-
box concurrently sent B0 and then freed it. Because M1 is
complete but B1 is not empty, the middlebox creates a new
message M2 with initial buffers and segments as shown and
empty metadata (not shown). The middlebox will process
M2 before attempting to read more from the socket because

Figure 6: Reorder Buffer Example

M2 may be complete and, if so, processed before blocking
on further data.

4.3.2 Connection Pool and Message Reordering

Most Internet protocols can be classified as either request-
oriented, for which each logical request has one logical re-
sponse, or streaming, where the byte stream cannot be sep-
arated into logical message boundaries. Although many
request-oriented protocols, such as HTTP, have a one-to-
one mapping between request and response messages, this
is not always the case: for instance, NFS (see §6.4) may
send multiple data fragment messages in response to a read
request. xOMB relies on the parsing module to denote the log-
ical message boundaries to when they span multiple protocol
messages.

For streaming protocols, xOMB uses a unique server connec-
tion for each client connection and proxies the transformed
pipeline data. For request-oriented protocols, xOMB main-
tains a pool of connections to back-end servers, with a con-
figurable number of reusable connections per server. The
connection collapsing performed by xOMB middleboxes can
significantly increase back-end server efficiency by multiplex-
ing a large number of client connections onto a small number
of server connections (§6.2).

Because of connection collapsing, xOMB may interleave re-
quests from different clients on server connections. Addi-
tionally, because xOMB may distribute pipelined client re-
quests among different servers, the responses may arrive
out-of-order. xOMB automatically demultiplexes, buffers, and
reorders the responses to the clients, simplifying pipeline
implementation. xOMB achieves this with a reorder buffer,
data structure, illustrated with an example in Figure 6, that
matches server responses with client requests based on their
connections. As responses flow in, xOMB pairs the front of the
server connection queue with the client reorder buffer, send-
ing the message if they match and shifting the queues, or
otherwise buffering the message (the vertical queues in Fig-
ure 6). xOMB limits buffered message data by only allowing
a fixed number of pipelined requests per connection.

The example in Figure 6 shows six requests from two
clients (c1, c2) distributed over three server connections
(s1− s3), and shows both kinds of reordering: 1) requests 1
and 3 from both c1 and c2 have been interleaved on connec-
tion s1, and 2) requests from both clients have been spread
across different servers. For example, xOMB will buffer re-
sponses to c1 for messages 2 and 5 until the response for
message 1 has been sent.



5. DISTRIBUTED OBJECT STORE
For a detailed example of dynamic request routing, we de-

scribe an object store service, xOS, based on Amazon’s S3 [1].
To be interface compatible with S3, we used the unmodified
Eucalyptus [29] Walrus storage components for our back-
end application servers. However, as of the latest version
(2.0), Eucalyptus does not support more than a single Wal-
rus storage server. By using xOMBmiddleboxes together with
a distributed metadata service, we transparently overcome
this limitation while maintaining a unified, scalable storage
namespace. We quantify xOS scalability in §6.3.
xOS hosts objects stored in buckets named by unique keys.

Eucalyptus uses a single cloud controller to manage the au-
thentication and metadata for all storage requests. Multi-
ple storage servers will work independently when configured
with the same Eucalyptus cloud controller, so we built a
xOMB pipeline to consistently forward requests for a given
user/bucket to the same storage server. xOS supports any
middlebox processing requests for any bucket.
We implement bucket → server placement with a dis-

tributed metadata service that maps 〈userid, bucket〉 pairs
to storage servers. Metadata servers subscribe to the storage
server pool on the xOMB controller. Each metadata server is
configured with a portion of a 160-bit key space, which it
registers with the xOMB controller. The xOS forwarding mod-
ule retrieves the key-space to metadata server mapping as
part of its configuration state. Additionally, the forwarding
module will update its metadata server configuration when-
ever it receives notification that the set of metadata servers
has changed (via addition, removal, or failure).
The xOS request pipeline consists of the standard HTTP

parse module followed by our xOS forwarding module. To
process a request, the xOS forwarding module takes the
SHA1 hash of the 〈userid, bucket〉 string parsed from the
HTTP headers and URL. Using this hash, the module com-
putes the metadata server responsible for that portion of
the key-space and makes an RPC to retrieve the storage
server. When a metadata server receives a lookup request,
it either returns an existing assignment if found or otherwise
chooses a new storage server and stores the assignment. The
forwarding module caches these assignments to avoid subse-
quent lookups for the same bucket.
In our design, middleboxes maintain only soft state for

their fowarding tables, so no middlebox recovery is neces-
sary. Furthermore, middleboxes can update their bucket-to-
server mappings lazily; if they attempt to forward a request
to a failed server and receive a socket error, then they can
contact the metadata servers to retrieve an updated map-
ping. When the storage servers are replicated (we did not
implement this, as it was not the focus of this example), then
storage server failure would be transparent to the client.
Basing xOS on distributed Walrus servers presents an ad-

ditional challenge for the front-end middleboxes. The S3
interface contains a ListBuckets request to list all of a user’s
buckets. However, no single server contains this informa-
tion. To support the complete interface, the xOS forwarding
module recognizes the ListBuckets message and makes an
RPC to each metadata server requesting all the user’s buck-
ets. Once the forwarding module has received all responses,
it generates the HTTP and XML response by combining the
separate bucket lists. Although not difficult to implement,
we note that such functionality would be impossible in de-
signs limited to event-handler callbacks.

6. EVALUATION
In this section, we evaluate the main xOMB design goals

of scalability, performance, and programmability. For these
experiments, we use servers with Intel 2.13 GHz Xeon quad-
core processors and 4 GB DRAM running Linux 2.6.26. All
machines have 1 Gbps NICs connected to the same 1Gbps
Ethernet switch.

6.1 Programmability
First, we give a sense of xOMB’s programmability. Ta-

ble 1 shows the number of lines of C/C++ code for mod-
ules we implemented, as well as the xOMB core middlebox
service framework (excluding the controller) for reference.
The majority of the modules are short, although the HTTP
parsing module includes 1700 lines of an HTTP parsing li-
brary [14], and the NFS parse and Cache modules both use
code generated from the XDR protocol file. In addition, all
of the pipelines use the default pipeline construction process,
meaning they are only a handful of lines each.

Module Lines of Code

HTTP Parse 111 (+ 1699)
Round-Robin Forward 73

Random Forward 37
URL Pool Forward 31
HTTP Attack Filter 99
HTTP Version Filter 72

xOS Forward 277

NFS Parse 235 (+ 2906)
NFS Cache 413 (+ 602)

xOMB Core 4478

Table 1: Module Code Lengths

6.2 HTTP Performance
We first evaluate xOMB performance with HTTP pipelines.

We used Apache 2.2.9 [2] running the MPM worker mod-
ule, serving files of various sizes. All throughput measure-
ments include the bytes transferred for HTTP headers. In
addition, our HTTP client is pipelined, but limits itself to
10 outstanding requests. In these experiments, xOMB uses a
basic HTTP pipeline configured to parse requests and for-
ward them, using a “client sticky” round-robin forwarding
module, across the available webservers. Our forwarding
module ensures that all of a client’s requests go to the same
webserver, although each client is assigned to a webserver
round-robin. In addition, we perform connection collapsing
down to at most five connections from each middlebox to
each webserver.

We compare our performance against Apache directly, the
popular open-source reverse proxy nginx [10], and a pro-
grammable hardware switch from F5 Networks [8]. The F5
BIG-IP Local Traffic Manager 1600 (LTM) we used has an
Intel 1.8 GHz E2160 dual-core processor and 4 GB DRAM
and is running OS Version 9.4.8 and has a single 1 Gb/s
NIC. We refer to the LTM simply as “F5” in our experi-
ments. It is difficult to compare the processor employed
in the F5 relative to our servers. While our machines are
three years old and based on older microarchitecture, they
do have four cores and a higher clock speed. One challenge
with specialized hardware such as the F5 switch is integrat-
ing the latest processors and motherboards into a specialized
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Figure 7: Throughput and Scalability Comparisons

hardware and software environment, a downside endemic to
non-commodity solutions.
Figure 7a shows a comparison of client throughput to

Apache, through a single xOMB middlebox, a single nginx
reverse proxy, and through the F5 switch. For each file size,
we used 100 clients, which was enough to maximize through-
put. Compared to Apache, xOMB does quite well, only losing
out slightly at large file sizes due to the fact that the xOMB

middlebox must allocate some of its 1 Gb/s of NIC band-
width to forwarding the clients’ requests to the back-end
webserver. Nginx performs noticeably slower in almost all
cases, only able to surpass xOMB slightly with 1 MB files.
Finally, xOMB performs similarly to the F5 switch for larger
files, but the F5 handily outperforms with smaller files.
Intrigued by the F5’s impressive performance, we inves-

tigated further to determine how the F5 could outperform
stand-alone Apache with small files since we had disabled
caching. We wrote a very simple TCP proxy that accepts
a client connection, parses request streams by looking for a
lone CRLF, and simply copies the requests to a fixed des-
tination connection. When running a single HTTP client
through this proxy connected to Apache, we saw through-
put increase by a factor of two-to-ten compared to the client
connecting to Apache directly, depending on the file size. We
saw this speedup regardless of whether the client pipelined
requests or not. However, we saw zero speedup when we
repeated this through a TCP proxy that did not parse re-
quests. While we leave a more in-depth study to future
research, our initial conclusion is that Apache appears to be
sensitive to the way it receives streams of client requests, and
for small files, parsing these requests is the limiting factor
for throughput.
Although the presence of a single xOMB middlebox shows

reduced performance compared to the F5 switch for small
files, one of the key components of our design is the ability to
scale well. Figure 7b shows client throughput when request-
ing 1 KB files with eight back-end webservers behind differ-
ing numbers of middleboxes. A single middlebox is not able
to handle the extra capacity additional back-ends provide,
but we see near-perfect scalability as we add middleboxes.
In our next experiment, clients request a simple CGI ap-

plication that computes the SHA-1 hash of a 1 MB file on
disk. Instead of being limited by middlebox processing ca-
pacity, we are now limited by back-end capacity. Figure 7c
shows client throughput, now measured in requests per sec-

ond, of 100 clients making requests to the CGI program with
varying numbers of webservers behind a single xOMB middle-
box. We see that xOMB, nginx, and the F5 switch are all able
to achieve near-perfect scalability as back-end resources are
added.

One of the most difficult aspects of middlebox design is
performance under extremely high numbers of concurrent
connections. We ran between 1 and 10,000 clients request-
ing 1 KB files against xOMB, nginx, the F5, and Apache, with
the results shown in Figure 8a. We first note that Apache by
itself does not perform well with 1,000 clients, and we could
not get it to serve 10,000 concurrent clients at all. Both xOMB

and nginx show similar curves, although we outperform ng-
inx for all connection sizes. However, the F5 shows very
unusual behavior. We see it is able to perform extremely
well with between 100 and 1000 clients. Additionally, al-
though it outperforms xOMB and nginx, we saw around 6,000
of the 10,000 clients’ connections closed prematurely by the
F5. We have been unable to determine the cause of this
performance anomaly and leave further study of the F5 for
future work.

Our final benchmark for HTTP traffic is a pipeline for
filtering potential malicious requests (§3.1.2). We compare
against the F5, which we programmed to perform the same
checks. Although F5 offers a firewall module that can filter
attack traffic, we chose to implement an attack filter for
the F5 in their provided scripting language to both gain
experience programming the F5 and to compare the exact
same set of rules for both systems.

Our attack filter module loads 285 Snort [15] rules from
the controller, each containing a regular expression to search
for in the URL of a web request. We check each URL re-
quest against all 285 rules. Although we did not introduce
any malicious requests in this experiment, we measure the
performance hit of checking every request against all rules.
Figure 8b compares xOMB’s performance against the F5 run-
ning this attack filter against a single webserver. Not only
does xOMB outperform the F5 across all tested numbers of
clients with 1 MB and 4 KB files, but it sustains the through-
put achieved when not running the attack filter with 1 MB
files and comes within 10% for 4 KB files.

6.3 xOS Performance
Next, we evaluate the performance of xOS with dynamic

request routing as described in §5. We ran two experiments,
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Figure 8: Throughput and Scalability Comparisons

one using a single instance of Walrus by itself, and the other
using xOS. For both experiments, we used varying numbers
of clients to repeatedly write 4 KB blocks to the storage sys-
tem. We used the Amazon S3 curl client to make the write
requests, which do not support pipelining. We had each
client create and write to its own unique bucket, a workload
that causes the middlebox to do the most dynamic request
routing. For the xOS experiment, we used two metadata
nodes, eight Walrus nodes, and a single xOMB middlebox.
The results of both experiments are shown in Figure 8c.

We see the Walrus write throughput max out at around 74
operations per second. Throughput decreases as the number
of clients increases past 30, and tests with more than 90
clients did not finish correctly as we began having connection
issues with Walrus. In contrast, xOMB allows xOS clients to
write to the eight Walrus backends in parallel, easily scaling
past the capacity of a single Walrus machine.

6.4 NFS Acceleration
To evaluate xOMB in a different context than HTTP load

balancing, we implemented an NFS protocol accelerator
pipeline. Our basic accelerator, designed to speed up wide-
area access to an NFS server, caches file attribute structures
from lookups and file data from reads or writes. We did not
attempt to write a comprehensive accelerator. Rather, our
intent is to demonstrate that xOMB can effectively process
diverse protocols with varying goals. A limitation of our im-
plementation is the assumption that all client requests pass
through the middlebox; it does not attempt to reconcile the
cache with the server if some clients connect to the server di-
rectly. Some protocol accelerators increase write throughput
by responding to the client immediately before forwarding
the write to the server; we opted not to implement this.
The file attribute (getattr) and lookup calls form a sig-

nificant portion of NFS traffic [32]. Typically, clients cache
these attributes for a short duration (3 sec). Also, clients
need to ensure that file attributes are up to date while serv-
ing reads from its local buffer cache. The large number of
round trips due to attribute lookups causes significant per-
formance degradation for NFS over a wide-area network.
Having NFS clients connect to a xOMB middlebox on the
same LAN, which in turn connects to the server, results in
better response time for file system operations by caching
file attributes and data.
We evaluate performance with the Postmark bench-

mark [12], modified to bypass the kernel buffer cache. For

this experiment, we compare the performance of direct NFS
versus xOMB when the clients connect over both a LAN and
the an emulated wide-area link. We emulate a 100ms de-
lay using NetEm [25]. To be a worst-case test for NFS, we
mount the file system using synchronous writes. Postmark
creates 60 files with sizes ranging from 1B to 10KB and per-
forms 300 transactions. Table 2 shows the throughput, aver-
age operation latency, and total runtime results for the four
runs. xOMB adds a small amount of latency on the LAN,
as it must process all the NFS traffic and copy data into
the cache. However, the xOMB cache significantly improves
the performance of file lookups and read operations with a
wide-area delay, completing the workload almost twice as
quickly.

LAN 100ms RTT WAN
Operations xOMB NFS xOMB NFS
Read (KB/s) 48 50 3.2 1.6
Write (KB/s) 55 57 3.7 1.9

Create (ms) 1.9 0.3 201 204
Open (ms) 0.6 0.2 0.5 192
Remove (ms) 0.9 0.2 101 101
Read (ms) 0.6 0.2 0.5 100
Write (ms) 7.6 7.8 101 100

Total time (s) 23 22 341 672

Table 2: NFS Latency and Throughput Comparison

7. DISCUSSION
We are encouraged by our experience with xOMB and its

evaluation. However, there are a number of important is-
sues that require work for programmable middle boxes to
be successful in general. We discuss these in turn below.

Performance. Our focus has been on scalability and ex-
tensibility. While our single node is reasonable (and in
many cases superior to commercial product offerings), it will
fundamentally be limited by our user-level implementation.
One could imagine alternate, higher-performance xOMB im-
plementations in kernel or even in programmable line cards.
While reasonable for certain scenarios, we believe that such
architectures will fundamentally limit the expressibility of
the available programming model.

Load Balancing. Devising good load balancing algorithms
is a difficult research and engineering challenge by itself.
For evaluation, we implemented simple algorithms with no



claims of novelty. The goal of this work is not to innovate in
developing better algorithms directly, but rather to provide
a framework where it becomes easier to innovate in load
balancing algorithms.

Debugging. All of our data processing modules have been
of moderate complexity thus far, but debugging the behav-
ior of a middle box is a challenge in general. xOMB facilitates
pipeline debugging by allowing the programmer to enable
progressively more verbose logging. Because xOMB is written
in C++, programmers can leverage standard logging tech-
niques, network monitoring (e.g., tcpdump and wireshark),
and tools such as gdb to assist with debugging. More spe-
cialized middleboxes typically do not have the same rich set
of open source tools or perhaps even the ability to log state
over the network or to local disk.

Resource Allocation and Isolation. xOMB currently pro-
vides no support to isolate individual processing pipelines
from one another or to isolate the processing of one flow
from another. For example, a rarely-exercised code path
could cause the entire pipeline to fail or to slow process-
ing for concurrent flows. Similarly, an administrator may
wish to allocate varying amounts of bandwidth or CPU re-
sources to different flows or pipelines. A range of possible
techniques are possible for delivering the necessary isola-
tion, from heavyweight solutions employing entire virtual
machines on a per-pipeline basis, to individual processes on
a per-flow basis, to in-kernel queueing disciplines limiting
the bandwidth available to any individual flow. We plan
to explore these and other techniques [23] as part of our
ongoing work.

8. RELATED WORK
Most closely related to our work in spirit are Click [28],

RouteBricks [21], and CoMb [33]. Click provides a modular
programming interface for packet processing in extensible
routers. The principal difference between Click and xOMB is
our focus on extensibility and programmability at the gran-
ularity of byte streams rather than individual packets. Our
pipelined programming model focuses on efficiently parsing
and transforming request/response based communication.
Like xOMB, RouteBricks also focuses on scaling network

processing with commodity servers. Their work, like Click,
focuses on routing and operates at the granularity of pack-
ets. They focus on the more extreme performance require-
ments of large-scale routers that may require terabits/sec
of aggregate communication bandwidth and their in-kernel
implementation and VLB-based load balancing delivers sig-
nificant scalability. Middleboxes typically do not require
quite the same level of bandwidth performance and while
our architecture similarly scales with additional servers, our
user-level implementation trades per-server performance for
programmability and overall extensibility.
CoMb [33] shares the goal of using software middleboxes

with commodity hardware, but emphasizes consolidation of
middlebox hardware and simplifying network deployments,
whereas xOMB focuses on programmability and extensibil-
ity. CoMb requires modular applications to be written in
the Click framework with flow-level processing supported
through a session reconstruction module. We see CoMb’s
goal of consolidation as complementary to ours and expect
that xOMB middleboxes could be used with a CoMb con-
troller.

Flowstream [24] also provides an architecture for mid-
dleboxes. It employs OpenFlow [11]-controlled hardware
switches to separate traffic at flow granularity that is then
forwarded to individual servers for further processing. By
default these servers would perform network processing at
packet granularity. As such, one could view xOMB as the ar-
chitecture and programming model for extensible transfor-
mation of OpenFlow-forwarded byte streams in Flowstream.

There are many commercial hardware/software products
for middlebox processing. F5 networks [8] provides popular
load balancing switches. Pai et al. [30] performed some of
the early academic work in this space. Bivio [4] focuses on
deep packet inspection, while Riverbed [13] delivers protocol
accelerators among other products. Each product typically
focuses on a niche domain and provides a limited extensi-
bility model. In particular, the F5 switch we evaluate uses
the Tcl programming language. However, it is not able to
support the full generality of our framework, for example
with respect to making remote procedure calls or maintain-
ing protocol-specific metadata and state. For instance, the
F5 could not be employed to implement functionality for an
entirely different protocol such as the S3 service (§5). In con-
trast, the goal of our work is to provide a unified framework
and programming model for a range of traditional middlebox
functionality.

Reverse proxies such as [3, 10, 16–18] aim to provide load
balancing over a set of web servers. While this is similar in
spirit to part of the functionality that xOMB supports, our ar-
chitecture is much more general and can support arbitrary
protocols. Most reverse proxies can only handle a static
set of servers, protocols, and have fixed processing options,
unlike xOMB which can handle dynamic membership and ar-
bitrary processing. Nginx [10] is fairly extensible, although
modules written for it must be compiled into the executable
and not loaded dynamically like in xOMB. In addition, nginx
does not support general connection collapsing of client re-
quests, which can severely impact performance with large
numbers of clients. Finally, RPCs for making dynamic rout-
ing decisions cannot be done with their callback model, al-
though they do support passing arbitrary state between call-
backs like xOMB.

Allman performed an early performance study of middle-
boxes [19]. He found that middleboxes are a mixed bag
for performance, increasing or reducing performance under
different circumstances. The study also found that middle-
boxes can reduce end-to-end availability, though typically
availability remained at an acceptable 99.9%. One goal of
xOMB is to develop a framework to increase the performance
and availability of middleboxes.

One challenge with middlebox deployment is ensuring that
flows are forwarded through an appropriate set of middle-
boxes based on higher-level policy. Dilip et al. [27] intro-
duced an architecture to ensure such forwarding. OpenFlow
provides a general mechanism to intercept flows and for-
ward them through an appropriate set of middleboxes on
the way to the destination. Ethane/SANE [20] is one in-
stance of such an approach for enterprise network security
and authentication.

DOA [36] is a delegation oriented architecture for more
explicitly integrating middleboxes into the Internet archi-
tecture. One goal of DOA is to address the transparency
issues introduced by non-extensible hardware middleboxes
on evolving network flows. xOMB would ideally make it easier



for middleboxes to adapt to changing traffic characteristics.
Similar to DOA, I3 [34] explicitly introduces indirection in
data forwarding, this time at the overlay level using a DHT.

9. CONCLUSIONS
xOMB demonstrates a new design and architecture for

building scalable, extensible middleboxes. We show that
programmability need not come at the expense of perfor-
mance; for instance, the xOMB implementation of a load bal-
ancing switch achieves performance comparable to a com-
mercial load balancing switch. Beyond load balancing, we
have shown how extensible middleboxes can be used to build
scalable services by constructing dynamic forwarding tables
based on application service state and the effectiveness of a
xOMB protocol accelerator for NFS.
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