
Where is the Debugger for my Software-Defined Network?

Nikhil Handigol†, Brandon Heller†, Vimalkumar Jeyakumar†,
David Mazières, and Nick McKeown

Stanford University

Stanford, CA, USA

{nikhilh,brandonh,jvimal,nickm}@stanford.edu, http://www.scs.stanford.edu/~dm/addr/
† These authors contributed equally to this work

ABSTRACT

The behavior of a Software-Defined Network is controlled

by programs, which like all software, will have bugs – but

this programmatic control also enables new ways to debug

networks. This paper introduces ndb, a prototype network

debugger inspired by gdb, which implements two primitives

useful for debugging an SDN: breakpoints and packet back-

traces. We show how ndb modifies forwarding state and logs

packet digests to rebuild the sequence of events leading to

an errant packet, providing SDN programmers and opera-

tors with a valuable tool for tracking down the root cause

of a bug.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network

Operation; D.2.5 [Software Engineering]: Testing and

Debugging

General Terms

Design, Algorithms, Reliability

Keywords

Interactive, Network Debugging, Software-Defined Networks

1. INTRODUCTION

Networks are notoriously hard to debug. Network oper-

ators only have a rudimentary set of tools available, such

as ping and traceroute, passive monitoring tools such as

tcpdump at end-hosts, and netflow at switches and routers.

Debugging networks is hard for a reason: these tools try to

reconstruct the complex and distributed state of the network

in an ad-hoc fashion, yet a variety of distributed protocols,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

such as L2 learning and L3 routing, are constantly changing

that state.

In contrast, Software-Defined Networks (SDNs) are pro-

grammatically controlled: network state is managed by log-

ically centralized control programs with a global network

view, and written directly into the switch forwarding tables

using a standard API (e.g. OpenFlow [10]). In this new

world, we can start to debug networks like we debug soft-

ware: write and execute control programs, use a debugger to

view context around exceptions (errant packets), and trace

sequences of events leading to exceptions to find their root

causes. SDNs provide the opportunity to rethink how we

debug networks, from the development of control programs,

all the way to their deployment in production networks.

Inspired by gdb, a popular debugger for software pro-

grams, we introduce ndb, a debugger for network control

programs in SDNs. Both gdb and ndb execute a slightly

modified version of the original control flow, while main-

taining its original semantics. Our goal for ndb is to help

pinpoint the sequence of events leading to a network error,

using familiar debugger actions such as breakpoint, watch,

backtrace, single-step, and continue.

This paper focuses on the first primitives we have imple-

mented in ndb: breakpoint and backtrace. When debugging

a program gdb lets us pause execution at a breakpoint, then

shows the history of function calls leading to that break-

point. Similarly, a packet backtrace in ndb lets us define a

packet breakpoint (e.g., an un-forwarded packet or a packet

filter), then shows the sequence of forwarding actions seen

by that packet leading to the breakpoint, like this:

packet [dl_src: 0x123, ...]:
switch 1: { inport: p0, outports: [p1]

mods: [dl_dst -> 0x345]
matched flow: 23 [...]
matched table version: 3 }

switch 2: { inport: p0, outports: [p2]
mods: []
matched flow: 11 [...]
matched table version: 7 }

...
switch N: { inport: p0

table miss
matched table version: 8 }

The information in a packet backtrace helps SDN pro-

http://www.scs.stanford.edu/~dm/addr/

grammers resolve logic bugs, helps switch implementers re-

solve protocol compliance errors, and helps network opera-

tors submit detailed bug reports to vendors. We make the

following contributions:

Introduce packet backtrace and show its value. §2

shows how the information in a packet backtrace can

help solve a range of bug types.

Show the feasibility of backtrace in hardware. Our

prototype is a usable ndb with a few caveats. §3 describes

the prototype, requirements for deterministic packet

backtrace, and protocol features that would ease future

implementations. §4 examines practical concerns and

ways to address them.

Describe packet backtrace extensions. §5 shows natu-

ral extensions to ndb: forward trace, generalized break-

points, and controller integration.

We conclude with a discussion in §7 of the generality of

packet backtrace and avenues for future network debugging

tools.

2. NETWORK DEBUGGER IN ACTION

To illustrate the value of a network debugger, we walk

through three bugs encountered while creating an in-

network load balancer [5]. All three represent errors com-

monly seen by SDN programmers: (1) a race condition when

installing switch flow entries, (2) a controller logic error, and

(3) a bug in a switch implementation. Each bug provides a

concrete example where the information from a breakpoint-

triggered packet backtrace helped a programmer to narrow

down the source of a bug.

Load Balancer. The load-balancing controller has two

main functions: server location discovery and flow routing.

To locate servers, each server periodically injects packets to

a known UDP port, and each first-hop switch sends these

packets to the controller. To route flows, the controller

chooses a server and a path to it, then pushes flow entries

to switches along the way.

Symptoms. Three bugs appeared: (1) packets matching

no forwarding rule in the middle of the network, (2) servers

discovered at the wrong location, and (3) servers that could

not connect to clients.

Using ndb. Breakpoints1 are specified using a tcpdump-

like interface. A breakpoint is a filter defined on packet

headers that applies to one or more switches. When a packet

triggers a breakpoint along its path, the user sees a backtrace

that lists the forwarding details for each hop encountered

by the packet on its path, including inputs (flow table state,

input packet, and ingress ports) and outputs (matched flow

entry, packet modifications, and egress ports).

Bug 1. We instructed ndb to return backtraces for pack-

ets that matched no flow entries. The first backtrace high-

lighted a packet that was forwarded properly until its last
1Our “breakpoints” do not pause packets, so perhaps “trace-
point” is a better name. We keep the breakpoint terminology
for its familiarity in program debugging.

hop, where it failed to match any flow entries. This sug-

gests either a misconfigured flow entry or an incomplete path

(e.g. a race condition where differences in control channel

delays lead to partially inserted paths, as explained more in

[1, 12]). By inspecting the log of control channel messages

for the switch, we found that a matching entry was on its

way and added shortly after our packet backtrace. With

sufficient evidence that the bug was a race condition, not

invalid logic, the programmer chose to work around the bug

by sending these rare packets directly to their destination

through the control channel.

Bug 2. To find the server location bug, we added a break-

point to match UDP location discovery packets at each in-

terior switch. The first backtrace showed a flow entry on an

ingress switch that forwarded UDP packets. The flow entry

pointed to the source of the logic error: in order to route

application-generated UDP packets between hosts, the con-

troller installed a high-priority flow entry that matches all

UDP packets originating from the given host. This partic-

ular flow entry also matched and forwarded the location-

discovery packets, causing them to show up at an internal

switch. The bug was fixed by changing the code to install

flow entries with a more specific match.

Bug 3. To investigate why a specific client and server

could not connect, we added breakpoints to view all data

packets coming to the server. The backtrace showed that

packets were reaching the server along the right path, but

they were being corrupted along the way. One switch was

corrupting the packet’s source MAC and the destination

server rejected packets from unknown senders. The informa-

tion in the backtrace made the story clear. Remembering a

mailing list post with similar symptoms [11], we updated the

software switch and the connectivity problem went away.

Test Cases. These three examples served as our first test

cases for the ndb prototype. We recreated each scenario in

Mininet [7] with a custom controller and a chain topology.

In each case, ndb produced a correct backtrace with the full

context around an errant packet, allowing us to immediately

find the bug.

General Applicability and Limitations. We won-

dered if ndb was providing useful information for debugging,

so we informally surveyed SDN developers to find which

bugs, in their experience, were most common. Their war

stories were of two types: performance issues (non-line-rate

forwarding or traffic imbalance) and forwarding correctness

(reachability and isolation). While ndb can’t diagnose per-

formance bugs, its strength is in diagnosing bugs that affect

the correctness of forwarding, including control logic errors,

network race conditions, configuration errors, unexpected

packet formats, and switch implementation errors. For the

majority of bugs that were painful enough for developers

to recall, the information in a packet backtrace produced

by ndb would help to isolate one of these categories as the

culprit.

input from user:
"trace flow table

misses at switch N"

 ndb

Network

Flow Table

Storage

Postcard

Storage

p = {mark with
 path state,
 send to
 collector}

hdrs actions p

hdrs actions p

1

N

2
Proxy

Collector

Break-

points

control

messages

postcards

output to user:
packet backtrace

A

B

hdrs actions p

x

C
o
n
tr

o
lle

r

Figure 1: Architecture of ndb, showing a packet

backtrace for Bug 1 (Network Race Condition) on a

chain topology.

3. PROTOTYPE

Should we record the path taken by a world traveler from

the stamps in their passport, or from the postcards they

send home? This analogy summarizes our choice when im-

plementing packet backtrace. It is conceptually simple to

“stamp” every packet with the flow entry it matches at ev-

ery hop; it is then easy to reconstruct the path followed by

the packet. But this approach is impractical in hardware

networks. Commodity switches do not support adding this

state within a packet. Even if they did, the packet would

become too long and the added state would interfere with

forwarding.2 Instead, we choose to send a small “postcard”

every time a packet visits a switch. This approach avoids

the problems of stamping, but requires postcards to uniquely

identify a packet and include a matched flow entry to recon-

struct that packet’s path.

In our implementation, a postcard is a truncated copy

of the packet’s header, augmented with the matching flow

entry, switch, and output port. Figure 1 shows the main

code components of ndb: (1) Proxy, which modifies con-

trol messages to tell switches to create postcards, and (2)

Collector, which stores postcards and creates backtraces for

breakpoint-marked packets. Note that postcards are gener-

ated and collected entirely in the datapath; they never enter

the control channel. Each piece must scale to high flow entry

and postcard rates, without affecting production traffic; §4

addresses these practical concerns of bandwidth, processing,

and storage.

3.1 Main Functions

ndb must create postcards, collect the postcards, and con-

struct backtraces. These functions could be implemented

in multiple ways, and we picked the choices most imple-

2It would be easy in a SDN simulator, emulator or software-
only network, but our goal is for backtrace to work in any
SDN.

Assume all packets on outport C are routed to the collector.

Interpose on the control channel:

while True:

M = next message

S = switch targeted by M

if M is a flow modification message:

F = flow entry specified by M

S.version += 1

tag_actions = []

for action in F.actions:

if action == Output:

tag = pack_to_48bits(one_byte(S.id),

two_bytes(action.port),

three_bytes(S.version))

tag_actions.append(SetDstMac(tag), Output(port=C))

F.actions.append(tag_actions)

S.send_message(M)

Figure 2: Algorithm in the Proxy component of

ndb to modify control messages to create postcards.

mentable today on OpenFlow 1.0. Each choice highlights a

requirement for producing correct, unambiguous and com-

plete packet backtraces on an arbitrary network topology,

which a future, more production-ready ndb could attain. For

simplicity, we assume single-table switches; for practicality,

we assume no time synchronization between switches or the

collector(s).

Creating Postcards. To create postcards, ndb appends

each flow entry modification message with actions to tag

and output a copy of the original packet — one per original

output port. The tag encodes three values: the switch ID,

the output port, and a version number for the matching flow

entry. The version number is a counter that increments for

every flow modification message. ndb uses the destination

MAC address field to write hop state, as per the pseudocode

in Figure 2. To modify each message, ndb proxies the control

channel, leaving controllers and switches unmodified.

Collecting Postcards. At the collector, ndb checks in-

coming postcards against a list of breakpoint filters, and

stores the vast majority that do not trigger a breakpoint.

Later, when constructing a backtrace, ndb retrieves those

postcards created and sent by the breakpoint-triggering

packet. Finding these postcards requires packets to be

uniquely identifiable, even though switch actions can mod-

ify packet headers. To identify postcards, ndb looks at im-

mutable header fields, such as the IPID and TCP sequence

numbers, that not modified by forwarding rules in switches.

To store and retrieve postcards efficiently ndb uses a hash

table called the path table. Each key is a combination of

all immutable header fields in a packet, and each value is

a list of collected postcards. To minimize in-memory state,

ndb stores postcards in a circular buffer and evicts them after

a delay equal to the maximum time for a packet to traverse

the network. When a postcard times out, the correspond-

ing data is removed from the path table. For simplicity,

our prototype collector is a single server that receives all

postcards.

Constructing a Backtrace. When a packet triggers a

breakpoint at the collector, ndb must reconstruct the back-

A

(empty)

B

(empty)

Time:

Flow

Table:

B: Match X, Fwd

Tag 2

t1 t2t0

really v1: B wasn't installed

really v2: B didn't match

Packet matched A,

postcard has Tag 1.

What is the flow

table state?

flow table state ambiguity

A: Match *, Fwd

Tag 1

?

A: Match *, Fwd

Tag 1

Figure 3: Simple two-entry flow table highlights a

possible ambiguity that cannot be resolved by know-

ing just the flow entry a packet matched.

trace from the set of matching postcards. Doing this without

timestamps or explicit input ports requires topology knowl-

edge to know the (switch, input port) opposite a (switch,

output port) tuple. With topology knowledge, the set of

postcards define a subgraph of the original network topol-

ogy. The returned backtrace path is simply the topological

sort of this subgraph, formed after a breakpoint triggers.

3.2 Resolving Ambiguity

Our implementation is not perfect. In some cases, flow ta-

ble and packet ambiguity may prevent ndb from identifying

an unambiguous packet backtrace.

Flow Table Ambiguity. Postcards generated by the

tagging algorithm (§3.1) uniquely identify a switch, flow en-

try, and output port(s). In most cases, a backtrace con-

structed from these postcards provides sufficient informa-

tion to reason about a bug. However, a developer cannot

reason about the full flow table state when postcards spec-

ify only the matching flow entry. This gap in knowledge can

lead to the ambiguity shown in Figure 3. Suppose a con-

troller inserts two flow entries A and B in succession. If ndb

sees a postcard generated by entry A, it may be that en-

try B wasn’t installed (yet), or that entry B did not match

this packet. Moreover, a switch can timeout flow entries,

breaking ndb’s view of flow table state. To resolve such am-

biguities and produce the state of the entire flow table at

the time of forwarding, ndb should observe and control every

change to flow table state, in three steps.

First, to prevent switch state from advancing on its own,

ndb must emulate timeouts. Hard timeouts can be emulated

with one extra flow-delete message, while soft timeouts re-

quire additional messages to periodically query statistics and

remove inactive entries.

Second, ndb must ensure that flow table updates are or-

dered. An OpenFlow switch is not guaranteed to insert en-

tries A and B in order, so ndb must insert a barrier message

after every flow modification message.

Third, ndb must version the entire flow table rather than

individual entries. One option is to update the version num-

ber in every flow entry after any flow entry change. This

bounds flow table version inconsistency to one flow entry,

but increases the flow-mod rate by a factor equal to the

number of flow entries. A cleaner option is atomic flow up-

x

A

B

(a) Packet

duplicated at

the first switch

(b) A and B

transmit

identical packets

(c) A transmits

identical

packets

x

A

x

Figure 4: Ambiguous scenarios for packet identifica-

tion. X marks the breakpoint.

dates. Upon each state change, ndb could issue a transaction

to atomically update all flow entries to tag packets with the

new version number, by swapping between two tables or by

pausing forwarding while updating. Our preferred option is

to have a separate register that is atomically incremented on

each flow table change. This decouples versioning from up-

dates, but requires support for an action that stamps packets

with the register value.

Packet Ambiguity. Identifying packets uniquely within

the timescale of a packet lifetime is a requirement for de-

terministic backtraces. As shown in Figure 4, ambiguity

arises when (a) a switch duplicates packets within the net-

work, (b) different hosts generate identical packets, or (c)

a host repeats packets (e.g. ARP requests). For example,

in Figure 4(a), a packet duplicated at the first switch trig-

gers breakpoint X, but backtraces along the upper and lower

paths are equally feasible. In these situations, ndb returns

all possibilities.

To evaluate the strategy of using non-mutable header

fields to identify packets, we analyzed a 400k-packet trace

of enterprise packet headers [8]. Nearly 11.3% of packets

were indistinguishable from at least one other packet within

a one-second time window. On closer inspection, we found

that these were mostly UDP packets with IPID 0 generated

by an NFS server. Ignoring these removed all IP packet

ambiguity, leaving only seven ambiguous ARPs. This ini-

tial analysis suggests that most of the packets have enough

entropy in their header fields to be uniquely identified. We

leave dealing with ambiguous packets to future work.

3.3 SDN Feature Wishlist

Implementing our ndb prototype revealed ways that fu-

ture versions of OpenFlow (and SDN protocols in general)

could be modified to simplify the creation of future network

debuggers. We make three concrete suggestions:

Atomic flow table updates. As discussed in §3.2, tag-

ging postcards with just the matching flow entry leads to

ambiguous flow table state. An unambiguous backtrace

would require concurrent updates – either across multiple

entries within a single flow table or over a flow entry and a

register. We recommend atomic update primitives for future

SDN protocols.

Layer-2 encapsulation. The current version of ndb

overwrites the destination MAC address field with postcard

data (§3.1), but this choice obscures modifications to this

field, and possibly bugs [11]. Another approach is to encap-

sulate postcard data. We could use a VLAN tag, but Open-

Flow 1.0 only supports a single layer of VLAN tags, pre-

venting its use on already-VLAN-tagged networks. Open-

Flow 1.1+ allows multiple VLAN tags, but that gives only

15 bits to store the data for one hop. Support for layer-

2 encapsulation, such as MAC-in-MAC, would remove this

limitation.

Forwarding actions. ndb could benefit from additional

forwarding actions: (1) WriteMetadataToPacketField: To

generate a backtrace without knowing the network topol-

ogy, ndb would need the inport and outport(s) for every

switch hop. If the inport field in a flow entry is wildcarded,

ndb must expand the wildcard and insert input-port-specific

flow entries to correctly tag packets, wasting limited re-

sources. Writing the packet’s input port number into its

header would help ndb create backtraces without topology

knowledge. Similarly, writing the contents of a version reg-

ister to a packet decouples versioning from postcard actions.

(2) TruncatePacket: Our prototype creates full sized post-

cards, since OpenFlow does not support an action to trun-

cate packets in the datapath. Truncating packets would

enable postcard collection to scale.

4. FREQUENTLY ASKED QUESTIONS

Will ndb melt my network? If postcards are sent

over a separate “debug port”, then the original (i.e., not-

to-collector) packets and paths are unaffected. Even if post-

cards travel in-band to share links with the original pack-

ets, we can minimize the impact by placing postcards in

low-priority queues.3 Duplication of packets for postcard

generation does increase the use of internal switch band-

width, but should only matter for highly utilized switches

with small average packet sizes.

In the control path, ndb, as implemented, creates no ad-

ditional (expensive) flow insertions for the switch to process

and should also be able to process control messages even

for fairly large networks. Recent work has demonstrated

OpenFlow controllers that scale to millions of messages per

second, beyond the capabilities of entire networks of hard-

ware switches [15].

Can my network handle the extra postcard band-

width? Recall that every packet creates a postcard at every

hop. For an estimate of the bandwidth costs, consider the

Stanford campus backbone, which has 14 internal routers

connected by 10Gb/s links, two Internet-facing routers, a

network diameter of 5 hops, and an average packet size of

1031 bytes. Minimum-size 64 byte postcards increase traffic

by 64B

1031B
× 5(hops) = 31%. The average aggregate band-

width is 5.9Gb/s, for which collector traffic adds 1.8Gb/s.

Even if we conservatively add together the peak traffic of

each campus router, the sum of 25Gb/s yields only 7.8Gb/s

of collector traffic.

3We would need to use a ‘postcard bit’ (e.g. in the type of
service field) to prevent generating postcards of postcards.

Can the collector handle the deluge of postcards?

At Stanford, the collector must be provisioned to handle

a rate of 7.8Gb/s, which equals 15.2M postcards/second.

Prototype software routers have shown that a Linux server

can forward minimum-size packets at 40Gb/s [2]. In other

words, we could collect postcards for every packet header in

every switch of the campus backbone using a single server.

Can a server store the entire path table? The mem-

ory required to store the postcards is determined by the

maximum queueing delay in the network and the maximum

postcard rate. Storing postcards at Stanford for a second

requires less than 1Gbyte of memory.

Can the collector be parallelized? Collection is em-

barrassingly parallel. Postcards can be load-balanced across

collectors at the granularity of a switch, port, or single flow

entry. At the extreme, a collector could be attached to (or

embedded inside) each switch. The reconstruction process

would have to change slightly, as multiple collectors would

need to be queried for each triggered breakpoint.

Can we reduce the rate of postcards? A programmer

may be interested only in a subset of traffic; e.g. UDP pack-

ets destined to a specific IP address. Creating postcards for

a subset of traffic greatly reduces demands on the collector.

However, if packets may be transformed in arbitrary ways

inside the network, it is hard to safely design a filter. In

the example above, if IP addresses are rewritten, or worse,

if TCP packets can change to UDP packets, postcards have

to be created for all TCP and UDP packets. In such cases,

ndb can benefit from techniques such as Header Space Anal-

ysis [6] to identify which forwarding rules may trigger the

current set of breakpoints.

5. EXTENDING NDB

Our ndb prototype can continuously record single-path

packet backtraces for multiple breakpoints, in parallel.

There are a number of ways to extend this:

Forward Trace. A backtrace connects from a break-

point back to its source; a forward trace connects from a

breakpoint to its destination. The algorithm described in

Figure 2 actually handles this case already, providing com-

bined forward-and-backward paths for all packets.

Flexible Breakpoints. Because breakpoints are imple-

mented by the collector, rather than the switches, we can

implement filters on both packet fields and their paths. Ex-

ample filters include port ranges, path lengths, switch hops,

and anything that can be implemented efficiently at the col-

lector. One can even imagine creating a language to define

queries that supports tcpdump-like header match semantics

over subsets of network paths.

Integrating Packet Backtrace with the control

plane. Currently, packet backtrace is limited to the net-

work; it cannot directly point to a line of code that modi-

fied or inserted a flow entry. Integrating packet backtrace

mechanisms into a controller, adding an API by which con-

trollers can integrate themselves, or combining ndb with gdb

would allow a packet backtrace to show the relevant code

paths, events, and inputs involved in forwarding a packet.

For example, storing program backtraces as values, keyed

by the flow entries they produce, would support an efficient

controller-integrated backtrace.

6. RELATED WORK

Anteater [9] and Header Space Analysis [6] statically ana-

lyze the dataplane configuration to detect connectivity and

isolation errors. Languages such as Frenetic [4] and Net-

tle [16] abstract aspects of SDNs to improve code correctness

and composability. Consistent Updates [12] adds flow and

packet consistency primitives. NICE [1] combines model

checking and symbolic execution to verify controller code.

The above techniques model network behavior, but bugs

can creep in at any level in the SDN stack and break an

idealized model. ndb, on the other hand, takes a more di-

rect approach – it finds bugs that manifest themselves as

errantly forwarded packets and provides direct evidence to

help identify their root cause.

OFRewind [17] is a tool for recording and playing SDN

control plane traffic. While ndb also records flow table state

via a proxy and logs packet traces, they differ in their overall

approach to debugging. OFRewind aids debugging via sce-

nario re-creation, whereas ndb helps debugging via live ob-

servation. ndb also benefits from many techniques used for

efficient traffic monitoring and robust IP traceback in ISPs.

Trajectory sampling [3] proposed a hash function to sample

packets consistently at all routers, for direct traffic monitor-

ing. Further, ndb can use sampling and memory reduction

techniques for IP traceback [13, 14] to reduce bandwidth

and memory costs for debugging an SDN.

7. DISCUSSION

SDN as an architecture provides structured state and well-

defined semantics, which enables new ways to debug net-

works. This paper showed one approach — packet backtrace

triggered by a breakpoint — to be useful, feasible, and scal-

able. But we wish to stress the generality of the concept of

interactive debugging, not just the specifics of a prototype.

ndb appears useful across a range of:

Network Types: Unlike today’s tools, ndb doesn’t focus

on a single layer or protocol.

Control Applications: ndb makes no assumptions about

the controller(s) and imposes no language, primitive, or

framework restrictions on them.

Human Roles: ndb benefits switch vendors, framework de-

velopers, application writers, and even network operators.

Still, many practical questions remain: What are the scal-

ing limits of the current design? Where should ndb func-

tionality be placed? What is the right user interface? What

switch changes would help to build a future ndb right? As

shown in §3.2, currently used SDN control protocols have

limitations for debugging; the semantics for modifying for-

warding state and packets could be more flexible. Other

communities have found support for easier debugging so

valuable that they have standardized hardware support for

it, such as JTAG in-circuit debugging in embedded systems

and programmable debug registers in x86 processors. As

a community, we should explore whether to augment hard-

ware or whether to use software workarounds with caveats

like those in §3. We believe that ndb is only one of many

SDN-specific tools that will make networks easier to debug,

benefiting networking researchers, vendors, and operators.

Acknowledgments

This work was funded by NSF FIA award CNS-1040190,

NSF FIA award CNS-1040593-001, Stanford Open Network-

ing Research Center (ONRC), a Hewlett Packard Fellowship,

and a gift from Google.

References
[1] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford.

A nice way to test openflow applications. In NSDI. USENIX,

2012.

[2] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.

Routebricks: exploiting parallelism to scale software routers. In

ACM SOSP, volume 9. Citeseer, 2009.

[3] N. G. Duffield and M. Grossglauser. Trajectory sampling for

direct traffic observation. IEEE/ACM Trans. Netw., 2001.

[4] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker. Frenetic: A network programming

language. ACM SIGPLAN Notices, 46(9):279–291, 2011.

[5] N. Handigol and others. Aster* x: Load-balancing web traffic

over wide-area networks. GENI Engineering Conf. 9, 2010.

[6] P. Kazemian, G. Varghese, and N. McKeown. Header space

analysis: Static checking for networks. In NSDI. USENIX,

2012.

[7] B. Lantz, B. Heller, and N. McKeown. A network in a laptop:

Rapid prototyping for software-defined networks. In HotNets.

ACM, 2010.

[8] LBNL/ICSI Enterprise Tracing Project.

http://www.icir.org/enterprise-tracing/download.html.

[9] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,

and S. T. King. Debugging the data plane with anteater.

SIGCOMM ’11, New York, NY, USA, 2011. ACM.

[10] The openflow switch. http://www.openflow.org.

[11] [ovs-discuss] setting mod-dl-dst in action field of openflow

corrupts src mac address.

http://openvswitch.org/pipermail/discuss/2012-March/006625.html.

[12] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent

updates for software-defined networks: change you can believe

in! In HotNets. ACM, 2011.

[13] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical

network support for ip traceback. SIGCOMM ’00, New York,

NY, USA, 2000. ACM.

[14] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,

F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based ip

traceback. SIGCOMM ’01, New York, NY, USA, 2001. ACM.

[15] A. Tootoonchian and Y. Ganjali. Hyperflow: A distributed

control plane for openflow. In Workshop on Research on

enterprise networking (INM/WREN). USENIX Association,

2010.

[16] A. Voellmy and P. Hudak. Nettle: Functional reactive

programming of openflow networks. PADL, Jan, 2011.

[17] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.

Ofrewind: enabling record and replay troubleshooting for

networks. In USENIX Annual Technical Conference, 2011.

http://www.icir.org/enterprise-tracing/download.html
http://www.openflow.org
http://openvswitch.org/pipermail/discuss/2012-March/006625.html

	Introduction
	Network Debugger In action
	Prototype
	Main Functions
	Resolving Ambiguity
	SDN Feature Wishlist

	Frequently Asked Questions
	Extending NDB
	Related Work
	Discussion

