An Assertion Language for Debugging SDN Applications

Ryan Beckett, X. Kelvin Zou, Shuyuan Zhang,
Sharad Malik, Jennifer Rexford, and David Walker
Princeton University
{rbeckett, xuanz, shuyuanz, sharad, jrx, dpw}@Princeton.edu

ABSTRACT

Software Defined Networking (SDN) provides opportunities
for network verification and debugging by offering central-
ized visibility of the data plane. This has enabled both
offline and online data-plane verification. However, little
work has gone into the verification of time-varying properties
(e.g., dynamic access control), where verification conditions
change dynamically in response to application logic, network
events, and external stimulus (e.g., operator requests).

This paper introduces an assertion language to support
verifying and debugging SDN applications with dynamically
changing verification conditions. The language allows pro-
grammers to annotate controller applications with C-style
assertions about the data plane. Assertions consist of reg-
ular expressions on paths to describe path properties for
classes of packets, and universal and existential quantifiers
that range over programmer-defined sets of hosts, switches,
or other network entities. As controller programs dynami-
cally add and remove elements from these sets, they gener-
ate new verification conditions that the existing data plane
must satisfy. This work proposes an incremental data struc-
ture together with an underlying verification engine, to avoid
naively re-verifying the entire data plane as these verifica-
tion conditions change. To validate our ideas, we have im-
plemented a debugging library on top of a modified version
of VeriFlow, which is easily integrated into existing con-
troller systems with minimal changes. Using this library,
we have verified correctness properties for applications on
several controller platforms.

Categories and Subject Descriptors

C.2 [Computer Communication Networks]: Network
Verification; D.3 [Programming Languages]: Verification
Language Design

Keywords

Software Defined Network; incremental verification; stateful
firewall

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotSDN’14, August 22, 2014, Chicago, IL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620743 .

1. INTRODUCTION

SDNs are a promising approach for managing network
complexity. However, subtle bugs introduced from com-
plicated software remain problematic. Network operators
need sophisticated tools and techniques to proactively catch
these bugs before they can occur in production networks.
Previous work in this area has focused on verifying static
network invariants over dynamically changing networks [4,
6]. These prior works have found effective ways to ensure
that invariants such as “host A can communicate with host
B” are enforced even as the underlying network data plane
changes. In contrast, we have designed efficient techniques
for incrementally verifying dynamic network properties that
describe the desired behavior of the evolution of the network
rather than the behavior of the network at any given point
in time. For example, an operator may wish to ensure that
the network’s stateful firewall functions correctly by verify-
ing a property of the form: “host A can only communicate
with host B after B first sends a message to A”.

Because existing verification tools are isolated from the
controller, operating exclusively on the data plane, they are
only able to check that a property always or never holds for
the network. For this reason, their enforcement mechanism
can either be too strong (resulting in false positives) or too
weak (missing violations of the property). For example, the
programmer may want to suspend verification temporarily
to push a set of rules into the data plane to form a path.
However, existing tools will report unwanted property vio-
lations while invariants are temporarily violated.

To enable the verification of more expressive network prop-
erties and to avoid spurious warnings, we present an asser-

tion language that allows programmers to formulate application-

specific properties in terms of C-style assert statements. Con-
trol over the placement of assertions in the application en-
ables the programmer to describe time-varying properties
by relating properties to dynamic controller state as well
as to refine the granularity at which properties are checked
to avoid erroneously detecting transient property violations.
As controller state changes, we can efficiently run incremen-
tal re-verification of relevant network properties. The main
contributions of this paper are the following:

e We provide an assertion-based debugging/verification
language to enable application developers to verify dy-
namic properties of controller applications via high-
level program statements.

e We propose a verification procedure that combines the
VeriFlow verification algorithm with an incremental

Inport: 1 Dst: H3 Inport: 1 Dst: H3 Inport: 1 Dst: H3
—Port 3 —Port 2 —Port 2

Inport: 3 Dst: H1 Inport: 2 Dst: H1 Inport: 2 Dst: HI
—Port | —Port | —Port |

@ Inport: 2 Dst: H3
—Port 3 l l
3 TN | 2 @
S2 S3

H2
Figure 1: Example of MAC Learning Switch

data structure, to efficiently verify properties with dy-
namically changing verification conditions.

e We evaluate our tool on several controller applications
from various controller platforms, and report its per-
formance.

This paper is organized as follows: Section 2 introduces
two examples to motivate the usefulness of debugging with
assertions. Section 3 explains the language used to formu-
late assertions and specify dynamic network properties. The
implementation details of our approach are provided in Sec-
tion 4 and a performance evaluation is given in Section 5.
An overview of related work is in Section 6, and we provide
concluding remarks in Section 7.

2. DEBUGGING WITH ASSERTIONS

In this section, we will present two examples that demon-
strate the usefulness of supporting controller-based network
assertions and dynamically changing verification conditions.

2.1 MAC Learning Switch

Assume we have a simple network topology shown in Fig-
ure 1, and a MAC learning application written as in Figure 2.
The MAC learning application maintains a table mapping
destinations to output ports for each switch and reactively
installs rules matching on packet destination and input port
to forward packets according to this table. To see why this
application is buggy, consider what happens when both H1
and H2 try to communicate with H3. Assume H1 and H3
first exchange a series of packets. The controller will learn
the appropriate output port for both H1 and H3 at each
switch upon seeing the first packet sent from each host. Af-
ter seeing additional packets, the controller will install rules
to send future packets out the appropriate output port.

Now, imagine that H2 tries to send a packet to H3. It will
first send a packet to S1, and since S1 has no rule matching a
packet from port 2, it will send the packet to the controller.
The controller will learn about H2 for S1 before installing a
rule to forward future packets from port 2, destined to H3,
out port 3. The forwarding tables for each switch at this
point are shown in Figure 1.

Bug. However, now when the packet sent from H2 to
H3 reaches S2 and subsequently S3, it will not be sent to the
controller since the controller has already installed matching
rules on S2 and S3 for destination H3 and input port 1.
Although the packet will arrive at H3 without going to the
controller, S2 and S3 will never learn about H2. Whenever
H3 now sends a packet to H2, S2 and S3 will forward the
packet to the controller and the controller will flood the

def packet_in(self, event)

pkt, sw, inport = parse(event)

self .macTable[sw][pkt.src] = inport

if pkt.dst not in self.macTable[sw]:
flood ()

else:

outport = self.macTable[sw][pkt.dst]
install_rule (sw

inport=inport ,

dst=pkt.dst ,

outport=outport)
packet_out (pkt, outport)

Figure 2: Buggy MAC learning application

packet. While these packets will still reach their destination,
the controller is consulted each time, leading to an elusive
performance bottleneck. This kind of low-level reasoning
about individual packets and switch state is difficult for most
programmers.

Property. To see how assertions can catch subtle bugs
of this kind, we now formulate a useful property to enforce
for the MAC learning application. The main idea is to relate
the state of the MAC table stored at the controller to paths
in the network. A first guess might be: if the controller
has learned about a host for a given switch, then that host
should be able to reach that switch since it had to send a
packet through the switch for the controller to learn about
it. However, the controller may initially see a packet due to
flooding rather than the presence of a path in the data plane.
Although we cannot say much about the data plane when
the controller has learned about a particular host, we can
say something when it has not learned about a particular
host. We can now try a variation of our first guess: if the
controller has not learned about a host for a given switch,
then that host should not be able to reach that switch.

In fact, using this assertion will uncover even the perfor-
mance bug, raising an exception with the class of packets
that violate the assertion. To see why this works, consider
what happens when a packet is sent from H3 to H2. Since
H2 is not in the MAC table for S3, any packet sent from H2
should never have gone through S3, and hence H2 should
not be able to reach S3. However, H2 can reach S3 because
the rule at S2 matches only on input port and destination.

Figure 3 shows how we can add this assertion to the pro-
gram, where the host referred to in our property corresponds
to the destination of the current packet at the controller,
which we are looking up in the MAC table. The filter func-
tion here specifies that the verifier should only consider pack-
ets with data link source equal to the host under consider-
ation. The variable re describes a path that starts at the
host, takes some number of hops, and ends at the current
switch. Finally, the assert_now statement instructs the ver-
ifier to check immediately that any packet passing the filter
does not traverse a path described by re.

Fix. This bug occurs because the application installs
rules that do not distinguish between packet source addresses,
only input port and destination. By installing rules that
match on source, input port, and destination rather than
just input port and destination, this problem will be fixed.
Note that existing data-plane verification tools like Net-
Plumber and VeriFlow [4, 6], are unable to detect this MAC
learning misbehavior because it involves verifying properties

def packet_in(self, event)
pkt, sw, inport = parse(event)
self .macTable[sw][pkt.src] = inport
if pkt.dst not in self.macTable[sw]:

f = filter (dlSrc=pkt.dst)
re = pkt.dst star (DOT) "~ sw
assert_now (Not(traverses (f, re)

flood ()
else:
outport = self.macTable[sw][pkt.dst]
install_rule (sw
inport=inport ,
dst=pkt . dst ,
outport=outport)
packet_out (pkt, outport)

Figure 3: Buggy MAC learning application with assertion

only after the destination of a packet is known to not be in
the controller application’s MAC table.

2.2 Stateful Firewall

We now turn our attention to a stateful firewall example.
We will reuse the same topology shown in Figure 1 from
the MAC learning example. Assume we have a set of hosts
designated as clients consisting of H1 and H2 and a set of
hosts designated as servers consisting of just H3. We wish
to enforce the property that servers can only communicate
with a client after the controller has first seen the client
send a packet to the server. To implement this behavior,
our stateful firewall application installs rules at S2 to drop
and forward packets accordingly.

Like the MAC learning example, the correctness of this
stateful firewall cannot be expressed via current verifica-
tion tools because it requires knowledge of controller state,
namely the set of hosts who have communicated. As this
set changes, we would like to continue to verify that our
property holds for the network. To accomplish this, we can
assert the following formula using the assert_continuously
command

f = Forall ([c], clients,
Forall ([s], servers,
iff ((¢c,s) in sent, reachable(s,c))))

assert_continuously (f)

where sent is a set maintained in the controller applica-
tion that tracks pairs of hosts that have communicated, and
reachable is a library convenience function. The property
states that a server should only be able to communicate with
a client when the client has first communicated with the
server. The assert_continuously statement at the start
of the application also checks that this property holds after
each new rule installation.

If any of the clients, servers, or sent sets are modified,
our tool will generate new verification conditions that are
verified incrementally. For example, when the controller sees
some host initially send a packet to another host, we can add
the following statement to the application:

insert (sent, (pkt.src,pkt.dst))

Assertion
assert_continuously(F)

A = assert_now(F)
\
| stop(F)

= p~re Formula
| —F
| FVF
| FAF
| Vee S, F
| Jee S F
| e€eS
| e=e
M = insert(S,e) | remove(S,e) Modification
= true Predicate
| fev
| 'p
| p&p
| pVp
e w= (T1,...,%n)

re w= x| .|rere|ret+re|re’

Set element

Regular path

Figure 4: Assertion language syntax

The insert statement adds the source-destination tuple to
the sent set and incrementally re-evaluates all assertions
dependent on the set.

3. PROPERTY LANGUAGE

Our assertion language supports debugging SDN applica-
tions by allowing programmers to annotate the applications
with C-style assertions found in traditional programming
languages. Using assertions, the programmer can express
dynamic properties that describe the desired behavior of the
evolution of the network.

Assertions. Several assertion primitives are available
to the programmer in our language, as summarized in Fig-
ure 4. The assert_now statement acts as a traditional as-
sert statement and checks the assertion at the exact point
in time at which it is invoked. In the MAC learning ex-
ample, this allowed the programmer to check an assertion
only after ensuring that a given destination address was not
in the MAC table for a switch. The assert_continuously
and stop commands work together to control the scope of
the verification process by checking assertions declared with
the assert_continuously command after each new rule is
emitted from the controller to the data plane until the stop
command is invoked. They enable the description of the
same properties as assert_now, but provide guidance to the
verifier, as to the appropriate timing of verification. In the
stateful firewall example we used assert_continuously to
verify that a property always holds. However, if it required
multiple rule installations to set up a path from a server to
a client, we could temporarily disable verification with the
stop command while a series of rules are installed before
resuming verification.

Formulas. Formulas describe both invariants that hold
for a network snapshot as well as how these invariants change
over time. Here, the notion of time is twofold: a path in-
variant describes the permitted progression of a packet in a
static network over time in terms of the packet’s location,
and a dynamic property describes the permitted progression
of the network over time in terms of invariants.

We adopt a similar notation for describing path invari-
ants as in previous work [4, 9, 10], which is based on regular
expressions. A predicate selects the class of packets under
consideration, and a corresponding regular expression de-
scribes the possible permitted paths that packets matching
the predicate may traverse. For regular expressions here,
a character x represents a single hop, or network location.
The + operator means one path or the other, the * operator
means a path is repeated zero or more times, consecutive
regular expressions refers to path concatenation, and the
dot symbol is a wild card that refers to any single hop. For
example, the path invariant:

vian =1~ h1." mb." ho

states that packets with vlan=1, starting at h; must traverse
a path that goes through middlebox mb and ends at hs.
Quantifiers enable the programmer to make statements
about groups of objects and let the verification engine con-
tinue to verify these statements efficiently as the groups
change dynamically. For example, the following formula:

Vg € guests,ds € servers, vian=1~ g." mb." s

builds on the previous formula to state that all guests in
some set of guests can reach at least one server through a
middlebox for any packet with vlan=1.

Set Modifications. In addition to providing quan-
tified formulas ranging over sets of network entities, our
language gives the programmer the ability to dynamically
modify these sets, generating new verification conditions to
be checked by the underlying VeriFlow engine as a result.
Specifically, the programmer can insert a single element into
a set or remove a single element from a set. For example, we
can add a guest g to the set of guests with the statement:

insert(guests, g)

After each modification, our tool will incrementally re-verify
every formula dependent on the modified set.

4. IMPLEMENTATION

4.1 Incremental Data Structure

As controller programs dynamically add and remove ele-
ments from sets, they generate new verification conditions
that the existing data plane state must satisfy. To avoid
naively re-checking the entire data plane after each such
modification, we introduce an incremental data structure to
process each modification, tracking changes to the underly-
ing verification conditions for each property, and evaluating
each property by reusing as much previous work as possible.
We illustrate our data structure through an example.

Example. Consider a version of the earlier stateful fire-
wall example where we have three clients and three servers.
The data structure representing the formula for this exam-
ple is shown in Figure 5. The formula is a type of expression
tree with a value stored at each node to represent the va-
lidity of the corresponding sub formula. A circular node
represents a “forall” quantifier in the formula whose children
correspond to set elements, and whose result is the conjunc-
tion of the results of each of its children. A leaf node rep-
resents a concrete property that the data-plane verifier can
check. Imagine initially that every sub formula (i.e, every
node) in the tree has been evaluated to true

v
[(co, 52) € sent «> reachable (s,, co) ‘

Figure 5: Inserting an element into the set of clients

Insertion. Now imagine that we are adding a new client
co to the clients set. After co is added to the set of clients,
each relevant node quantifying over the set of clients builds
a new branch representing the sub formula for the added
element. The new branch is evaluated with the data-plane
verifier, and afterwards, the result is propagated up to the
parent of the node. While the propagated result leads to
a change in the result stored at the parent, the change will
continue to propagate up the tree. For example, if the new
sub formula:

(co, 82) € sent <= reachable(sz2, co)

evaluates to false, then the parent “forall” node becomes
false, and and hence the formula becomes false. The dark
nodes in Figure 5 indicate where this propagation occurs.
Removal. Removing an element from a set proceeds in
a similar fashion. The branch corresponding to the removed
element is deleted and a simple check can determine whether
or not the result of the parent node should change. If so,
the change is propagated up to the parent node as before.

4.2 Combined Incremental Checking

Incremental verification occurs in multiple dimensions for
our debugging tool. The tool incrementally verifies the same
formula given a change in the underlying network data plane
(i.e., arule installation), and the tool incrementally verifies a
new formula resulting from modifications to a programmer-
defined set. To verify an assertion made via either the as-
sert_now or or assert_continuously commands7 we must
check that the corresponding formula holds initially for the
network data plane and this is accomplished by verifying
the network formula against all existing packet classes in
the network. As new rules are installed from the controller,
the assertion is incrementally verified using the VeriFlow al-
gorithm. On the other hand, when a relevant programmer-
defined set is modified, we must now check that the new
formula holds for the network configuration given that the
old formula did. This is accomplished by checking the newly
generated nodes in the tree against all packet classes and by
propagating their results through the data structure.

Our modified VeriFlow engine and debugging library are
responsible for coordinating these two types of change. In
the case that both a change in the formula and in the net-
work configuration occur, we can safely compose these two
verification procedures together by first verifying the new
formula against the old network by incrementally checking
the new formula given the old formula, and then by verify-
ing the new formula against the new network configuration
by checking those packet classes that have been modified.

100

801
S
o 60f
[e2
E
c
S a0l
[5)
o Bl # VC reduction 1 quantifier
2ot [# VC reduction 2 quantifier
Ml # VC reduction 3 quantifier
Il # VC reduction 4 quantifier
0]]] - -
10 20 30 40 50
Insertions

Figure 6: VC Reduction

In the case where an assertion is not currently active
(i.e., assert_continuously after the stop command is in-
voked), the assertion is not re-checked after each rule instal-
lation and set modification, but instead, the relevant changes
are buffered for that assertion. Later, if the formula is re-
asserted, the debugging tool can reuse existing work by only
verifying the relevant, new changes.

4.3 Precomputing Properties

Although regular expressions are expressive enough to de-
scribe many useful path invariants, their full power is often
not needed. For a restricted subset of regular expressions,
we can effectively precompute a formula so that evaluating
new verification conditions as they arise is a constant-time
operation. This restricted subset of regular expressions al-
lows the use of the * operator only for the special case of
* . and disallows the use of the + operator. For example,
the regular expression hi .* (mby + mbz) .* he is disallowed
whereas h1 .* mbi .* ho is allowed.

To see why this restriction is useful, consider the path
expression:

h1 .. mb1 mbg .* h2

Checking that a packet traverses a path corresponding to
this regular expression given a network forwarding graph can
be broken down into a series of simple reachability queries.
For the above example, we can check if hy can reach mb;
in three hops, if mb1 can reach mbz in a single hop, and
if mbz can reach hs in any number of hops. We can ei-
ther precompute reachability between all source-destination
pairs, or compute reachability between a single source and
all destinations on-the-fly.

For instance, we can precompute the above regular path
expression on-the-fly by first checking if h; can reach mb;
in three hops. Because we do not consider loops, we can
efficiently find all other locations h; can reach in three hops
or fewer using a simple breadth-first search. This process is
repeated for each of the other reachability checks, and the
results are stored in a cache. The cache is a function:

cache : (packet class, src, dst, hops) — bool

where hops is either an exact number or a lower bound.
The precomputation here has the same time complexity for
evaluating path expressions as using no precomputation.
Alternatively, we could precompute the path expression
for all source and destination pairs. In this case, there is

12

10

Time (ms)

2

5 10 15 20
Hosts

Figure 7: MAC Learning Average Assertion Overhead

additional overhead to verify each property after a rule in-
stallation since we must now check the path expression for
all sources, however any newly generated verification condi-
tions are guaranteed to be evaluated in constant time.

5. PERFORMANCE

To evaluate the performance of our tool, we conducted a
series of simple tests in Mininet [2], using the Pyretic [8] and
Pox [1] platforms to measure the reduction in the number
of verification conditions that our modified VeriFlow engine
must verify over a naive re-evaluation strategy, as well as
the overall run time of the tool. All tests were performed on
an 8 core, 2.4 GHz machine with 8GB of RAM.

In general, the performance of the debugging tool is dom-
inated by the number of newly generated verification condi-
tions, since each must initially be checked against all existing
packet classes in the network. As a result, verification time
varies dramatically depending on the number of assertions,
structure of the properties, and sizes of the user-defined sets.

Because our tool must enumerate objects in user-defined
sets, the number of verification conditions for each relevant
assertion after a set insertion is proportional to the product
of the set sizes for nested quantifiers (set removal generates
no new verification conditions). However, our incremental
data structure is able to significantly reduce the number
of newly generated verification conditions through the effi-
cient reuse of previous computation. To demonstrate the
effectiveness of our incremental data structure, we perform
a number of random insertions into sets for various formu-
las of a given maximum quantifier nesting depth. The re-
sults are averaged over 10 iterations, and we record the per-
cent reduction in the number of verification conditions that
our VeriFlow engine must re-verify compared to a naive re-
evaluation strategy. Figure 6 shows the results. The percent
reduction in the number of verification conditions increases
as the size of the user-defined sets increases in all cases.

For the MAC learning application, we varied the number
of hosts in the network and measured the average verification
time per assertion after running a ping between each pair of
hosts. The results are shown in figure 7. The MAC learning
application is expensive since it can generate a large number
of new assertions, each of which must be checked against the
entire data plane. As a result, the average verification time
per assertion for the MAC learning application grows with

the number of packet classes in the network, which increases
roughly linearly with the number of hosts in this case.

By comparison, the stateful firewall application, which
is conceptually more complex, generates relatively few new
verification conditions due to the incremental checking of
the single continuous assertion. As a result, verification time
never exceeded 1ms for either set modifications or rule in-
stallations up to 20 hosts.

Depending on the particular use of assertions, they may or
may not be feasible for real-time, online verification. How-
ever they are still useful for finding bugs in application logic
in a testing environment where performance is not critical.
For example, we found a flaw in the MAC learning appli-
cation using a simple 3 switch, 3 host setup. Additionally,
because checking a property against all packet classes in the
network can result in a large performance overhead, and be-
cause each packet class can be checked independently for a
given property, it would be possible to speed up verification
by evaluating a property against packet classes in parallel.

6. RELATED WORK

Recently, we have seen many works on network verifica-
tion and debugging. ANTEATER (7] translates high-level
network invariants into instances of the boolean satisfiabil-
ity problem (SAT), checks them against the network using
a SAT solver, and reports counter-examples if violations are
found. Header Space Analysis [5] builds a finite state ma-
chine out of the network state and topology and uses ternary
symbolic simulation to traverse the state machine to verify
properties. Both are offline static verifiers.

Our work is based on the VeriFlow framework [6], which
builds a set of equivalence classes to represent the packets
that observe the same network forwarding behavior. When-
ever a networking event occurs (e.g. a rule installation),
VeriFlow only needs to traverse the affected equivalence
classes’ forwarding graphs to detect property violations. Sim-
ilar to VeriFlow, real time Header Space Analysis [4] lever-
ages the fact that a network event only changes a small
portion of the rule space, builds a dependency graphs be-
tween rules, and traverses the dependency graph to check
properties.

OFRewind [11] helps debug network applications by re-
playing the events that lead to a particular situation. Net-
Sight [3] is an extensible platform that records packet histo-
ries, enabling applications to retrieve packet histories of in-
terest. Using NetSight, the authors implemented a network
debugger based on packet traces. However this project fo-
cuses on the debugging at the packet level, whereas we focus
on debugging via high-level assertion statements.

7. CONCLUSION

In conventional languages like C, the use of assertions is
helpful for catching bugs before deployment. We believe
the same is true in network programming environments. In
this work, we developed an assertion language that supports
verifying and debugging SDN applications with dynamically
changing verification conditions. To efficiently check these
changing verification conditions, we proposed a verification
procedure that combines the VeriFlow verification algorithm
with an incremental data structure. We have implemented
our assertion language as a debugging library that is easily
integrated into existing controllers with minimal changes.

We evaluated our tool on several small examples, demon-
strating its feasibility for network debugging.

8. ACKNOWLEDGEMENT

This work was supported in part by Princeton Fellowship,
NSF grant TC-1111520, C-FAR, one of the six SRC STAR-
net Centers, sponsored by MARCO and DARPA.

9. REFERENCES

[1] Pox. http://www.noxrepo.org/pox/about-pox/.

[2] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., LANTZ,
B., AND McKEOWN, N. Reproducible network
experiments using container-based emulation. In
Proceedings of the 8th International Conference on
Emerging Networking Fxperiments and Technologies
(2012), CoNEXT ’12, ACM, pp. 253-264.

[3] HaNDIGOL, N., HELLER, B., JEYAKUMAR, V.,
MAZIERES, D., AND McKEOWN, N. I know what your
packet did last hop: Using packet histories to
troubleshoot networks. In 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 14) (Apr. 2014), USENIX Association,
pp. 71-85.

[4] KazeMIAN, P., CHANG, M., ZENG, H., VARGHESE,
G., McKEOWN, N.;, AND WHYTE, S. Real time
network policy checking using header space analysis.
In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation
(2013), pp. 99-112.

[5] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N.
Header space analysis: Static checking for networks. In
Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
12) (San Jose, CA, 2012), USENIX, pp. 113-126.

[6] KHURSHID, A., Zou, X., ZHou, W., CAESAR, M.,
AND GODFREY, P. B. Veriflow: Verifying
network-wide invariants in real time. In Proceedings of
the 10th USENIX Conference on Networked Systems
Design and Implementation (2013), pp. 15-28.

[7] Mar1, H., KHURSHID, A., AGARWAL, R., CAESAR, M.,
GODFREY, P. B., AND KING, S. T. Debugging the
data plane with anteater. 290-301.

[8] MonsaNToO, C., REICH, J., FOSTER, N., REXFORD,
J., AND WALKER, D. Composing software-defined
networks. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and
Implementation (2013), nsdi’13, pp. 1-14.

[9] REITBLATT, M., CANINI, M., GUHA, A., AND
FosTER, N. Fattire: Declarative fault tolerance for
software-defined networks. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (2013), pp. 109-114.

[10] SouLE, R., Basu, S., KLEINBERG, R., SIRER, E. G.,
AND FOSTER, N. Managing the network with merlin.
In Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks (2013), pp. 24:1-24:7.

[11] WuNDsAM, A., LEVIN, D., SEETHARAMAN, S., AND
FELDMANN, A. Ofrewind: Enabling record and replay
troubleshooting for networks. In Proceedings of the
2011 USENIX Conference on Annual Technical
Conference (2011), pp. 29-29.

