
SoftCell: Scalable and Flexible
Cellular Core Network Architecture

Xin Jin†, Li Erran Li?, Laurent Vanbever†, and Jennifer Rexford†

Princeton University†, Bell Labs?

ABSTRACT
Existing cellular networks suffer from inflexible and expen-
sive equipment, and complex control-plane protocols. To
address these challenges, we present SoftCell, a scalable ar-
chitecture that supports fine-grained policies for mobile de-
vices in cellular core networks, using commodity switches
and servers. A controller realizes high-level service polices
that direct traffic through sequences of middleboxes based
on subscriber attributes and applications. To enable small
forwarding tables in core switches, SoftCell aggregates traf-
fic along multiple dimensions—the service policy, the base
station, and the mobile device—at different switches in the
network. Since most traffic originates from mobile devices,
SoftCell performs fine-grain packet classification at the ac-
cess switches at the base stations, where software switches
can easily handle the state and bandwidth requirements. Soft-
Cell guarantees that packets in the same connection traverse
the same sequence of middleboxes in both directions, even in
the presence of mobility, without requiring expensive packet
classification at the high-bandwidth gateway edge switches.
We demonstrate that SoftCell improves the scalability and
flexibility of cellular core networks through analysis of LTE
workloads, micro-benchmarks on our prototype controller,
and large-scale simulations.

1. INTRODUCTION
With the rapid proliferation of cellular devices (e.g.,

smart phones, tablets, and smart meters and other M2M
(machine-to-machine) devices [1]), cellular data traffic
has exploded in recent years. This trend is likely to con-
tinue. For instance, Cisco predicts a 18 times increase
of cellular data traffic between 2011 and 2016 [2]. New
cellular technologies, like Long Term Evolution (LTE),
helped cellular providers to keep up with the traffic
growth by increasing their radio access capacity. How-
ever, they now face the challenge of keeping up with the
increasing demand in their core networks, which carry
the User Equipment (UE) traffic between the Base Sta-
tion (BS) and the Internet, as shown in Figure 1.

Unlike traditional IP networks, cellular providers rely
extensively on customized policies based on a wide va-
riety of subscriber attributes (e.g., the cell-phone model
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or M2M device type, the operating-system version, the
billing plan, options for parental controls, whether the
total traffic exceeds a usage cap, whether a user is roam-
ing), as well as applications types (e.g., transcoding for
video traffic, caching for Web traffic, and exemption
from usage caps for applications that pay the carrier on
the user’s behalf) [3]. For example, the carrier may di-
rect traffic for older phones through an echo-cancellation
gateway, video traffic through a transcoder during times
of congestion, M2M fleet tracking traffic through a low
latency path, and all traffic through a firewall.

To route traffic and perform fine-grained packet pro-
cessing, cellular providers rely on specialized and pro-
prietary devices, namely: Serving Gateways (S-GWs)
and Packet data network Gateways (P-GWs). S-GWs
are mainly used as mobility anchors to provide seam-
less mobility. P-GWs sit at the boundary of the cellu-
lar network and the Internet. P-GWs centralize most
network functions like content filtering, traffic optimiza-
tion, firewalls, and lawful intercept [4]. The base sta-
tions, S-GWs, and P-GWs communicate using GPRS
Tunneling Protocol (GTP).

Centralizing nearly all data-plane functionalities in
the P-GWs makes cellular core networks remarkably in-
efficient, complex and inflexible [5, 3]. Indeed, cellular
core networks must forward all traffic through the P-
GW—including device-to-device traffic and local con-
tent distribution network services. This increases the
network delay and congestion. Since P-GWs are not



modular, carriers often end up paying for functionali-
ties they do not need. In contrast, when a functionality
is not available, carriers have no choice but to replace
the P-GWs, even if they are sufficient for most pur-
poses. Finally, carriers cannot “mix and match” capa-
bilities from different vendors (e.g., use a firewall from
one vendor, and a transcoder from another), or “scale
up” the resources devoted to a specific function [3, 6].

Rather than perform all these functions at the Inter-
net boundary, we argue that cellular providers should
adopt a network design more akin to modern data cen-
ters. The network should consist of a fabric of simple
core switches, with most functionality moved to low-
bandwidth access switches (at the base stations) and
a distributed set of middleboxes that the carrier can
expand as needed to meet the demands. These middle-
boxes could be dedicated appliances, virtual machines
running on commodity devices [6], or packet-processing
rules installed directly in the switches [7, 8]. A logically-
centralized controller can then route traffic through the
appropriate middleboxes, via efficient network paths, to
realize a high-level service policy (e.g., directing a UE’s
video traffic through a transcoder and a firewall).

However, implementing such design in cellular net-
works introduce unique scalability challenges. First, the
fine-grained policies used in cellular networks are de-
fined along many dimensions, leading to large number
of packet classifiers. Yet, commodity switches can only
store a few thousand to tens of thousands of rules [9].
Second, nearly all traffic in cellular networks goes to
and from the Internet, whereas data centers [10, 11, 12]
are dominated by traffic between servers. This places
heavier bandwidth and state requirements on the cel-
lular gateway switches. Third, device mobility is fre-
quent and unplanned, requiring additional state to en-
sure seamless connectivity and direct all packets in a
connection through the same sequence of middleboxes.

To address these challenges, we present SoftCell, a
scalable architecture for supporting fine-grained policies
for mobile devices in cellular core networks. SoftCell
employs the following two novel techniques:

Muti-dimensional aggregation: SoftCell significantly
reduces the size of switch tables by aggregating entries
along multiple dimensions, combining the benefits of
traditional location-based routing and tag-based rout-
ing. The SoftCell controller aggregates the forwarding
entries dynamically, using an online algorithm.

Smart access edge, dumb gateway edge: SoftCell
obviates the need to perform packet classification at the
Internet gateway edge. Instead, SoftCell performs all
packet classification at the access edge, using software
switches along with local software controllers. To avoid
reclassifying the return traffic at the Internet edge, Soft-
Cell embeds policy identifiers directly in the IP packet
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headers, enabling the Internet edge to only perform ba-
sic packet forwarding.

We built a SoftCell controller on top of Floodlight [13].
We then evaluated it using: i) real traces from a large
LTE deployment; ii) micro-benchmarks on our proto-
type; and iii) large-scale simulation experiments. Our
experiments and analysis show that SoftCell can easily
handle the workload of a large LTE network and sup-
port thousands of service-policy clauses with just a few
thousand TCAM entries in the core switches.

2. SOFTCELL ARCHITECTURE
SoftCell’s goal is to support numerous fine-grained

policies, in a scalable manner. In this section, we intro-
duce the components in a SoftCell network, the specifi-
cation of service policies, and the key design decisions.

2.1 SoftCell Core Network Components
A SoftCell network interconnects unmodified UEs (via

base stations) and the Internet (via gateway switches),
as shown in Figure 2. SoftCell does not require the spe-
cialized network elements (e.g., S-GWs and P-GWs) or
point-to-point tunneling (e.g., user-level GTP tunnels)
used in today’s LTE networks.

Controller: The controller realizes high-level service
policies by computing and installing switch-level rules
that direct traffic through middleboxes. Service policies
are specified on subscriber attributes and application
types. To compute these paths, the controller has ac-
cess to the (mostly static) attributes (e.g., billing plan,
phone model, and usage cap) of each UE.

Access switches: Each base station has an access
switch that performs fine-grained packet classification
on traffic from UEs. Access switches can be software
switches (e.g., Open vSwitch [14]) that run on com-
modity servers. The server also runs a local agent (LA
in Figure 2) that caches packet classifiers for attached
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UEs, to minimize interaction with the central controller.

Core switches: The rest of the network consists of
core switches, including a few gateway switches con-
nected to the Internet. We assume that they can per-
form arbitrary wildcard matching on the IP addresses
and TCP/UDP port numbers (as in today’s merchant
silicon [15]), or can cache flat rules after processing wild-
card rules locally in software (as in DevoFlow [16]).
SoftCell gateway switches are much cheaper than P-
GWs; they just perform packet forwarding, and relegate
sophisticated packet processing to middleboxes.

Middleboxes: SoftCell supports commodity middle-
boxes implemented as dedicated appliances, virtual ma-
chines, or packet-processing rules on switches. Each
middlebox function (e.g., transcoder) may be available
at multiple locations. SoftCell supports stateful mid-
dleboxes that require all packets in both directions of a
connection to traverse the same middlebox instance.

The radio access networks consist of base stations
that connect to unmodified UEs using existing proto-
cols. Just as today, a UE retains a single IP address as
it moves between base stations in the same cellular core
network. SoftCell uses a different, location-dependent
IP address for routing within the core network and the
Internet (§ 3). Access switches perform address transla-
tion, transparent to UEs (§ 4). SoftCell does not require
any change to the radio hardware at the base station,
or common functions such as scheduling, radio resource
management, and paging. Similarly, SoftCell does not
require changes to commodity middleboxes, or any sup-
port from the rest of the Internet.

2.2 Flexible, High-Level Service Policies
The SoftCell controller directs traffic over network

and middlebox paths, based on the service policy. Ser-
vice policies are defined at a high level of abstraction,
based on subscriber attributes and applications. The
controller handles low-level details like ephemeral net-
work identifiers, the locations of middleboxes and switches,
and application identification. A service policy is com-
posed of multiple clauses that specify which traffic (spec-
ified by a predicate) should be handled in what way
(specified by an action):

Predicates: A predicate is a boolean expression on
subscriber attributes and application types. Subscriber
attributes consist of device type, billing plan, device
capabilities, provider, etc. Application types include
web browsing, real-time streaming video, VoIP, etc.

Service action: An action consists of a set of middle-
boxes, along with quality-of-service (QoS) and access-
control specifications. Specifying the set of middleboxes
as an order allows the carrier to impose constraints (e.g.,
firewall before transcoder). The action does not indicate

Prio Predicates Service Actions

1 provider = B Firewall

2 provider != A Drop

3 app = video ∧ plan = Silver [Firewall, Transcoder]

4 app = VoIP [Firewall, Echo-Cancel]

5 device type=M2M fleet [HighPriority, Firewall]

Table 1: Example service policy for carrier A

a specific instance of each middlebox, allowing the con-
troller to select middlebox instances and network paths
that minimize latency and load.

Priority: The priority is used to disambiguate overlap-
ping predicates. The network handles traffic using the
highest-priority clause with a matching predicate.

Table 1 shows an example service policy for carrier
A. In this example, carrier A has a roaming agree-
ment with carrier B which enables B’s subscribers to
use A’s network as fallback. To avoid abuse, the first
clause directs all traffic of B’s subscribers through a fire-
wall. The second clause disallows traffic of subscribers
from all other carriers. The remaining clauses specify
the handling of A’s own subscribers, with all traffic go-
ing through a firewall. The third clause indicates that
the video traffic to subscribers on the “silver” billing
plan must go through a transcoder after the firewall.
The fourth clause specifies that VoIP traffic must go
through a echo cancellation box (improving voice qual-
ity) after a firewall. The fifth clause requires M2M fleet-
tracking traffic to be forwarded with high priority to en-
sure low latency. In this paper, we focus on middlebox
service policies, since they require more sophisticated
traffic steering rather than simple local processing to
drop packets or mark the type-of-service bits.

2.3 SoftCell Design Challenges and Solutions
Before going into the details of SoftCell, we first give

an overview of the design challenges and solutions.

Challenge 1: support service routing with small
switch tables. Fine-grained service policies in large
networks can easily lead to an explosion in the data-
plane state needed to direct traffic through the right
middleboxes. For instance, suppose a service policy has
1000 clauses (very reasonable for a future network con-
sists of billions of M2M devices used in all kinds of set-
tings such as tele-health, asset tracking, and building
security) in a network with 1000 base stations. Sup-
pose for each policy clause, we must instantiate a policy
path (that traverses the right middlebox instances) be-
tween each base station and the gateway switch. This
results in 1 million paths. Existing service routing tech-
niques [17] are not able to install such a huge amount
of paths with limited switch flow tables.

Solution: multi-dimensional aggregation. Soft-
Cell tackles this challenge by leveraging aggregation. As
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simply aggregating on destination IP addresses does not
provide enough flexibility and scalability to implement
fine-grained service policies, SoftCell introduces multi-
dimensional aggregation, which combines the benefits
of traditional location-based routing and tag-based rout-
ing to scale to large networks with large service policies.

Challenge 2: support fine-grained packet classifi-
cation in asymmetric topology. To enforce service
policies, we must first classify packets at the network
edge to decide which policy clause to apply. This is rel-
atively easy in data centers as most traffic is “east west”
(between servers in the data center). Packets are typ-
ically classified by software switches in hypervisors or
first-hop hardware switches [10, 11, 12], and the load is
equally distributed over all classification switches at the
edge. However, in cellular core networks most traffic is
“north south” (between the Internet and UEs). The ac-
cess edge connecting to UEs, consists of thousands of
base stations. An access switch at a base station han-
dles traffic from up to 1000 UEs attached to the base
station. The total traffic volume is around 20 Mbps to
1 Gbps [18, 19]. The gateway edge facing the Internet
consists of just a few gateway switches that direct traf-
fic to those thousands of base stations, and the traffic
volume can be several Tbps. Thus, classifying packets
at the gateway edge at line rate is very difficult.

Solution: smart access edge, dumb gateway
edge. SoftCell exploits the unique property of cellular
networks that traffic is initiated by UEs, and classifies
packets only at the access edge. Using a novel state-
embedding technique, SoftCell “piggybacks” the classi-
fication results in the source IP address and port num-
ber, so the gateway switches can easily forward return
traffic by examining the destination address and port.

Challenge 3: scalable handling of network dy-
namics. Cellular networks operate under considerable
churn due to UE mobility. Whereas data-center oper-
ators can plan VM migration in advance, cellular car-
riers have little control over UE mobility (beyond lim-
ited load balancing between nearby base stations). Ex-
isting research on mobility management shows how to
minimize packet loss during handover, but does not ad-
dress service policies. Stateful middleboxes rely on pol-
icy consistency, where all packets of a connection must
traverse the same middlebox instance. Besides policy
consistency, centralized control introduces a new failure
mode—controller failure—that must be addressed.

Solution: smart local agent at base stations.
Each access switch acts as a mobility anchor for at-
tached UEs. Upon a UE handoff, ongoing flows con-
tinue to reach the old access switch via the old path.
This ensures policy consistency, while leveraging the
vast number of access switches to achieve scalability.
New flows traverse the new access switch, and new pol-

icy paths, to minimize path stretch. To ensure fast
recovery from controller failures, SoftCell runs multi-
ple controller replicas and maintains a consistent, dis-
tributed store of the control state. Most state changes
slowly, lowering the overhead of maintaining strong con-
sistency. The most dynamic state is UE location. A
backup controller can fetch up-to-date UE location data
directly from the local agent at each base station.

3. SCALABLE SERVICE ROUTING WITH
MULTI-DIMENSIONAL AGGREGATION

To implement service policies, SoftCell routes traf-
fic over sequences of middleboxes that are distributed
throughout the network. While more flexible than a
centralized P-GW, SoftCell’s service routing requires
fine-grained forwarding rules. SoftCell overcomes this
scalability challenge by aggregating forwarding rules along
multiple dimensions. In this section, we present the
SoftCell aggregation strategy, and an online algorithm
for computing the forwarding entries.

3.1 Multi-Dimensional Aggregation
In traditional IP networks, routers forward traffic based

solely on the destination prefix, and operators align IP
prefixes with the topology to enable aggregation of con-
tiguous prefixes. However, destination-based forward-
ing is not flexible enough for cellular networks, where
forwarding can depend on subscriber attributes or ap-
plication types. To enable more flexible forwarding, a
classical solution is to forward traffic using VLAN tags
or MPLS labels. However tag-based forwarding scales
poorly as it enforces“flat-routing”and removes the abil-
ity to aggregate contiguous entries, even if the destina-
tion is the same. While label stacking and label swap-
ping can reduce the number of tags, carrying multiple
MPLS labels in the packet header incurs large overhead,
and existing middleboxes do not necessarily understand,
or even preserve, MPLS labels.

SoftCell combines the benefits of location-based rout-
ing and tag-based routing, by leveraging the ability of
commodity switches to selectively match on different
packet fields. In particular, SoftCell forwarding rules
aggregate on three dimensions: (i) policy, (ii) location,
and (iii) UE.

Aggregation by policy (policy tag): Subscriber at-
tributes are not easily translated or aggregated with
network addresses. Consider for instance the third clause
in Table 1. As UEs with a “silver plan” can have a vari-
ety of IP addresses, this policy requires a rule for each
flow in the worst case. We could conceivably assign
“silver plan” UEs IP addresses under the same subnet,
allowing us to assign one rule that matches on the IP
prefix. However, we cannot do this for every attribute,
not to mention that many service policies are defined
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Figure 3: Examples of multi-dimensional aggregation rules for traffic arriving from the Internet

on combinations of attributes. To minimize the rules
in core switches, we use a policy tag to aggregate flows
on the same policy path. This tag is associated at the
access switch, allowing core switches to forward packets
based on policy tags.

Aggregation by location (hierarchical IP address):
In many core switches, traffic destined to the same base
station traverses the same outgoing link, even if the
packets go through different middleboxes. By including
location information in the UE addresses, we can ag-
gregate traffic by IP prefix. Furthermore, cellular core
networks have a natural hierarchical structure. There-
fore, we assign each base station an IP prefix, called
base station ID, and IDs of nearby base stations can be
further aggregated into larger blocks. We can aggregate
even more by combining policy tags and IP addresses.
Suppose two policy paths going to two base stations
share a long path segment before branching. If assigned
the same policy tag, a single rule matching on the tag
can forward packets along the shared segment until the
branching point, where traffic is divided based on the
base station prefix.

Aggregation by UE (UE ID): Some middleboxes
(like intrusion detection systems) need a way to identify
groups of flows associated with the same UE. Clearly,
this is impossible if all flows for the same base station
share the same address. Packets therefore need an UE
identifier (UE ID) that differs from other UEs at the
same base station. Having an UE ID in each packet
also enables optimizations for handling mobility, by in-
stalling switch rules that forward in-progress flows to
the UE at its new location. Together, the base sta-
tion prefix and the local UE ID form a hierarchical
location-dependent address (LocIP) for the UE. This
LocIP is transparent to the UE and is used for routing
in the core network and the Internet, but not the ra-

dio access network. The UE is allocated a permanent
IP address via DHCP when it first attaches to the net-
work. This permanent IP address doesn’t change, while
LocIP changes when the UE moves between base sta-
tions. Access switches perform the translation between
the permanent IP address and LocIP.

We can furthermore maximize the aggregation of the
data-plane state by selectively matching on multiple
field. We describe three examples.

Location-based routing: In Figure 3(a), core switch
CS1 matches on the base-station prefix to forward traf-
fic to CS2 and CS3. CS2 and CS3 then decide whether
to direct traffic to a transcoder based on the policy tag.
Notice that CS1 does not need to base its forwarding
decision on the tag.

UE mobility: In Figure 3(b), CS1 forwards traffic
to base stations according to the destination IP prefix.
When UE1 moves from access switch AS1 to AS2, we
install a high-priority rule at CS1 to match on both the
base station prefix and the UE ID. This ensures that
ongoing flows reach UE1 at AS2 over a direct path.
More advanced mobility handling that ensures policy
consistency is discussed later in § 5.1.

Flexible policy: Figure 3(c) illustrates how to im-
plement the third clause in Table 1 with “tag1.” CS1
forward “tag1” packets to the Firewall1. Suppose we as-
sign AS1 and AS2 traffic to Transcoder1, and AS3 and
AS4 traffic to Transcoder2. CS2 matches on both the
tag and the prefix (more precisely, the aggregated pre-
fix of two base stations) to forward AS1 and AS2 traffic
to Transcoder1, and AS3 and AS4 traffic to CS3. CS3
finally forwards AS3 and AS4 traffic to Transcoder2.

3.2 Rule Minimization in Core Switches
We now present a greedy online algorithm that per-

1Traffic from middleboxes is identified based on the inport.
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forms multi-dimensional aggregation given a stream of
policy paths as input (see Algorithm 1). The algo-
rithm operates in an online fashion because policy paths
can be dynamically installed or removed due to policy
changes or middlebox load balancing. We only briefly
explain the algorithm here and defer the reader to [20]
for a more detailed explanation.

Basic multi-dimensional aggregation algorithm:
Intuitively, the algorithm performs multi-dimensional
aggregation of a policy path p in two stages: aggregat-
ing first by policy, then by location. A policy path p
is a sequence (sw0, . . . , swk) of adjacent switches such
that sw0 represents an access switch connected to a base
station and swk a gateway switch connected to the In-
ternet. Given p, the algorithm first computes candTag,
the set of tags used on any switch belonging to p, except
sw0

2. For each tag t ∈ candTag, the algorithm com-
putes the total number of forwarding rules that must
be created if that tag is reused to set-up p (line 1–6).

To do so, the algorithm iterates over each consecutive
pairs of switches (swi, swi+1) in p and checks whether
the forwarding rule associated with t on swi can be
reused as such to forward traffic using p, i.e. whether its
next-hop is swi+1 (line 4). If the next-hop differs, the al-
gorithm (function extraRules(path, swi)) accounts for
extra forwarding rules matching both t and the loca-
tion address unless that extra rule can be aggregated
with another existing rule (line 5). If the next hop is
a middlebox, we need rules for traffic to and from the
middlebox. To ensure correctness, the algorithm aggre-
gates two rules if and only if their location prefixes are
contiguous. At the end of the loop, the algorithm re-
turns the tag that minimizes the number of new rules
or returns a new tag if needed (lines 7–10). Finally, the
algorithm installs the forwarding rules to switches using
consistent updates techniques [21] and aggregating the
entries where it can (line 11–16).

Dealing with loops: In some cases, policy paths con-
tain one or more loops. As an illustration, consider
a policy path enforcing outbound video traffic to go
through a firewall before a video transcoder in Fig-
ure 2. A loop that enters the same switch twice but
through different links can easily be differentiated based
on the input ports. However, a loop that enters the
same switch twice from the same link is more difficult
to handle. In such a case, the algorithm uses additional
tags to disambiguate the forwarding decisions (omitted
in the algorithm for space constraints). More specifi-
cally, the algorithm breaks the loop into two segments
and uses different tags for each segment. At the switch
that connects these two segments, the algorithm installs
a rule to “swap” these two tags. This approach can be

2Otherwise, it would be impossible to distinguish among
different policy paths originated from the same sw0.

Algorithm 1 Install a new policy path

Input:
– path: the policy path to install
– prefix: the IP prefix of the origin base station
– candTag: the set of candidate tags for the base station

Output: switch rules and a tag for this policy path

Step 1: Choose a tag to minimize new rules
1: for t in candTag do
2: newRule[t] = 0 . new rules needed if tag t is used
3: for (swi, swi+1) in path do
4: if swi.getNextHop(t, prefix)! = swi+1 then
5: if !swi.canAggregate(t, prefix, swi+1) then
6: newRule[t]+ = extraRules(path, swi)

7: if candTag ! = ∅ then
8: tag∗ = arg min

t
{newRule[t]}

9: else
10: tag∗ = new tag

Step 2: Install the path with the prefix and tag
11: for (swi, swi+1) in path do
12: if swi.getNextHop(tag∗, prefix)! = swi+1 then
13: if swi.canAggregate(tag∗, prefix, swi+1) then
14: swi.aggregateRule(tag∗, prefix, swi+1)
15: else
16: swi.installRule(tag∗, prefix, swi+1)

generalized to support nested loops.

Discussion of offline algorithm: Our online algo-
rithm is optimal if each policy path is processed one at a
time. For extremely constrained environments, we can
couple the online algorithm with an offline algorithm
that would regularly recompute the optimal forwarding
entries. We leave a description of the offline algorithm
to separate work as Algorithm 1 already supports orders
of magnitude more policy paths on commodity switches
than what is required today by operators.

4. SCALABLE PACKET CLASSIFICATION
WITH ASYMMETRIC EDGE DESIGN

Each packet entering the network must be associated
with the appropriate policy tag and location-dependent
IP address. This imposes overhead in both the data
plane (to apply packet-classification rules) and the con-
trol plane (to fetch the rules). SoftCell places key func-
tionality at the low-bandwidth access edge, to limit the
data-plane overhead on the gateway switches and the
control-plane overhead on the controller.

4.1 Packet Classification at the Access Edge
Each time a packet arrives at a base station, the ac-

cess switch needs to translate the permanent IP address
to the location-dependent IP address assigned to the
UE, and attach the appropriate policy tag. To realize
this, SoftCell installs one rule for each microflow at the
access switch. A base station has at most 1000 UEs with
(say) ten flows each, resulting in 10,000 microflows—
easily supported in a software switch [22]. To avoid clas-

6



Public	
  Prefix	
   UE	
  ID	
  Base	
  Sta5on	
  ID	
  

Policy	
  Tag	
   Flow	
  ID	
  

IP: 

Port: 

Figure 4: Embedding location and policy infor-
mation in source IP address and source port
number. Thus the information can be implic-
itly piggybacked in return traffic.

sifying packets again at the gateway switches (which ag-
gregates traffic for thousands of base stations), SoftCell
embeds the packet-classification result in the packet.

Embedding state in packet headers: Rather than
encapsulating packets, as is commonly done in data-
center networks, we embed the policy tag, base station
ID, and UE ID in the packet header. This ensures that
the return traffic from the Internet carries these fields.
For example, we could encode the state as part of the
UE’s IP address (e.g., in IPv6), or a combination of the
UE’s IP address and TCP/UDP port number (e.g., in
IPv4) as shown in Figure 4. The access switch rewrites
the source IP address to the location-dependent IP ad-
dress (i.e., the carrier’s public prefix, as well as the base
station and UE IDs), and embeds the policy tag as part
of the source port. UEs do not have many active flows,
leaving plenty of room for carrying the policy tag in the
port-number field. With this embedding mechanism,
our three identifiers are implicitly “piggybacked” in re-
turn traffic arriving from the Internet. The gateway
switch can simply forward incoming packets based on
the destination IP address and port number.

Dealing with security and privacy issues: Directly
applying this approach may raise some security and pri-
vacy challenges. Malicious Internet hosts may spoof
policy tags and congest network links or middleboxes,
though these attacks can be blocked using conventional
firewalls. In addition, changing a UE’s local IP address
each time it moves to a new base station would make
it easier for Internet servers to infer the user’s location.
To address these concerns, SoftCell can perform net-
work address translation (NAT) as packets arrive from
the Internet. Specifically, we require the NAT function
to pick a different IP address and/or port number for
every flow, whether or not the UE moves. In addition,
these public IP address and port pairs cannot be cor-
related with the UE’s location (or with the decision to
change locations). In practice, NATs are already exten-
sively deployed today, as cellular providers are short of
public IP addresses for each UE [23]. As such, SoftCell
gives the same level of security and privacy protection
as today’s cellular networks. Due to the lack of space,
we do not provide any formal proof.

4.2 Local Control Agent at the Access Edge
Sending the first packet of every microflow from the

access switch to the controller would introduce high
overhead. Instead, SoftCell introduces a local software
agent running at each base station to scale the control
plane. Note that the gateway switches don’t perform
fine-grained packet classification and thus do not need
local agents, as the policy tags are piggybacked in the
packet headers.

The local agent caches a list of packet classifiers for
each UE at the behest of the controller. The packet
classifiers are a UE-specific instantiation of the service
policy that matches on header fields and identifies the
appropriate policy tag, if a policy path already exists.
When the UE arrives at the base station, the controller
computes the packet classifiers based on the service pol-
icy, the UE’s subscriber attributes, and the current pol-
icy tags. When the UE starts a new flow, the local agent
consults these classifiers to determine the right policy
tag for these packets, and installs a microflow rule in
the access switch, similar to the DevoFlow “clone” func-
tion [16]. The local agent only contacts the controller
if no policy tag exists for this flow—that is, if a packet
is the first one at this base station, across all UEs, that
needs a particular policy path.

For example, suppose UE7 arrives at base station 1
with prefix 10.0.0.0/16. The local agent first assigns a
UE ID 10 to the UE. Now UE7 is associated with the
location-dependent address 10.0.0.10. The local agent
contacts the controller to fetch a list of packet classi-
fiers for this UE. Suppose the list includes two packet
classifiers:

1. match:dst_port=80, action:tag=2
2. match:dst_port=22, action:send-to-controller

When a packet with destination port 80 from UE7 ar-
rives, the access switch does not find any existing mi-
croflow rule, and directs the packet to the local agent.
The local agent determines that the traffic matches the
first packet classifier. Since the policy path already ex-
ists, the local agent simply installs a microflow rule in
the access switch which (i) rewrites the UE IP address
to 10.0.0.10 and (ii) pushes “tag=2” to the source port
number, without contacting the central controller. Sup-
pose another packet arrives from UE7 with destination
port 22. This flow matches the second packet classifier
and the action is “send to controller”, meaning that the
policy path has not been installed yet. The local agent
sends a request to the central controller to install a new
policy path and return the policy tag. Then, the lo-
cal agent can update the packet classifier and install a
microflow rule for the packets of this flow.

In this way, local agents cache UE-specific packet
classifiers and process most flows locally, significantly
reducing the control-plane load on the controller.

5. HANDLING NETWORK DYNAMICS
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Figure 5: Tunnels and shortcuts for old flows

In this section, we present how SoftCell handles net-
work dynamics, mainly UE mobility and controller fail-
ure. SoftCell handles churn in a scalable fashion, through
the clean division of labor between core and edge.

5.1 Policy Consistency Under Mobility
Seamless handling of device mobility is a basic re-

quirement for cellular networks. UEs move frequently
from one base station to another, and carriers have no
control over when and where a UE moves. In addi-
tion to minimizing packet loss and delay, carriers must
ensure that ongoing flows continue traversing the origi-
nal sequence of middleboxes (though not necessarily the
same switches), while reaching the UE at its new loca-
tion. Such policy consistency is crucial for traffic going
through stateful middleboxes, like firewalls and intru-
sion prevention systems. However, new flows should
traverse middlebox instances closer to the UE’s new lo-
cation, for better performance. As such, SoftCell must
differentiate between old and new flows, and direct flows
on the appropriate paths through the network.

Differentiate between old and new flows: Incom-
ing packets for old flows have a destination IP address
corresponding to the UE’s old location, so these pack-
ets naturally traverse the old sequence of middleboxes
to the old base station. SoftCell merely needs to di-
rect these packets to the new base station, which then
remaps the old location-dependent address to the UE’s
permanent address. During the transition, the con-
troller does not assign the old location-dependent ad-
dress to any new UEs. For the traffic sent from the UE,
the old access switch has a complete list of microflow
rules for the active flows. Copying these rules to the
new access switch ensures that packets in these flows
continue to use the old IP address, to avoid a disrup-
tion in service. Each UE has a relatively small number
of active connections (say, 10), limiting the overhead of
copying the rules. To minimize hand-off latency, the
SoftCell controller could copy these rules in advance, as
soon as a UE moves near a new base station.

Efficiently reroute the old flows: To handle ongo-
ing connections during mobility events, SoftCell main-
tains long-lived tunnels between nearby base stations,
as shown in Figure 5. These tunnels can carry traffic

for any UEs that have moved from one base station
to another. This “triangle routing” ensures policy con-
sistency and minimizes packet loss, at the expense of
higher latency and bandwidth consumption. The many
short-lived connections would not experience any sig-
nificant performance penalty. To handle long-lived con-
nections more efficiently, the controller can establish
temporary shortcut paths for directing traffic between
the new base station and the old policy path, as shown
in Figure 5. The controller can learn the list of ac-
tive microflows from the access switch at the old base
station, and install rules in the core switches to direct
incoming packets over the shortcut paths. A single UE
may need multiple shortcuts, since different traffic may
go through different middleboxes. As such, these short-
cut paths are created when a UE moves, and removed
when a soft timeout expires—indicating that the old
flow has ended.

5.2 Handling Control Plane Failures
We now describe how SoftCell handles control-plane

failures. We focus on control-plane failure because the
controller can easily handle topology changes (e.g., switch
failures) by recomputing paths and modifying rules in
the affected switches.

Handling controller failure: Controller failure is han-
dled by maintaining a distributed, consistent copy of the
control-plane state. The state of the central controller
mainly includes: the service policy, the subscriber at-
tributes, the policy paths, and the UE locations and lo-
cal IP addresses. SoftCell enables fast failure recovery
by simply replicating the controller. Indeed, the first
three parts of the controller state change very slowly,
making it affordable to maintain strong consistency.
Also, although the UE locations change relatively of-
ten, a UE only associates with one base station at a
time. Upon a controller failure, a replica can correctly
rebuild the UE location state by querying local agents.

Handling local agent failure: The state of a local
agent mainly includes: (i) the packet classifiers (gener-
ated from the service policy and subscriber attributes
by the central controller), and (ii) the UEs’ location-
dependent IP addresses. Nonetheless, that state is never
updated by the local agent (read-only to the local agent);
only the central controller can update the state. Upon
a local-agent failure, SoftCell restarts the local agent,
which fetches the related state from the controller again.
Observe that the impact of a failure is purely local and
does not affect the agents at other base stations.

6. PERFORMANCE EVALUATION
In this section, we demonstrate the scalability and

performance of our SoftCell architecture. Although in
the current stage we are not able to integrate and deploy
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Figure 6: Measurement Results of a LTE network

SoftCell in a real cellular network, we extensively eva-
lute SoftCell with real traces from a large LTE deploy-
ment, micro-benchmark on our prototype controller, and
large-scale simulaiton experiments. We show that Soft-
Cell is able to sustain several times of the load in current
LTE networks and handle thousands of service policy
clauses on commodity switches.

6.1 LTE Workload Characteristics
As a first step towards SoftCell deployment, we mea-

sured the workload of a real cellular network to under-
stand the performance requirements of the controller.
In contrast to other LTE measurement works, we study
the aggregate arrival rates of UEs and flows and show
the implications on control plane load.

Dataset description: We collected about 1TB traces
from a large ISP’s LTE network during one week in
January 2013. The dataset covers a large metropolitan
area with roughly 1500 base stations and 1 million mo-
bile devices (including mobile phones and tablets). The
trace is bearer -level and includes various events such as
radio bearer creation, UE arrival to the network, UE
handoff between base stations, etc. A radio bearer is
a communication channel between a UE and its asso-
ciated base station with a defined Quality of Service
(QoS) class. When a flow arrives and there is an exist-
ing radio bearer with the same QoS class, the flow will
use the existing radio bearer. Since radio bearers time
out in a few seconds, a long flow may trigger several ra-
dio bearer creation and deletion events. Since we do not
have flow-level information, we use radio bearers to es-
timate flow activities. We present measurement results
for a typical weekday.

Network-wide characteristics: Figure 6(a) shows
the CDF of UE arrivals and handoffs in the whole net-
work. A UE arrival means a UE first attaches to the
network (e.g., after a UE is powered on). A UE hand-
off event means a UE moves from one base station to
another. From the figure, we can see that the 99.999
percentile of UE arrivals and handoffs per second are
214 and 280, respectively. As each of these events re-

quire the central controller to contact local agents (send
packet classifiers) or update core switches (install short-
cuts for long flows), it implies that the controller should
be able to handle hundreds of such events per second.

Load on each base station: Figure 6(b) shows the
CDF of active UEs per base station. We see that a typ-
ical base station handles hundreds of active UEs with a
99.999 percentile of 514. Figure 6(c) depicts the radio
bearer arrival rate at each base station. The number is
relatively small, only 34 for the 99.999 percentile. As
one radio bearer typically carries a handful of concur-
rent flows [24, 25], we expect the actual flow arrival rate
to be around several hundred per second. These results
imply that the local agent has to keep state for several
hundred UEs and process a maximum of tens of thou-
sands new flows per second. As most policy paths would
have already been installed in the network, new flow
requests only require the local agent to install packet
classification rules at the access switch.

6.2 Controller Micro Benchmark
We have implemented a SoftCell control-plane pro-

totype on top of the popular Floodlight [13] OpenFlow
controller. The prototype implements both the SoftCell
central controller and the SoftCell local agent. In the
following, we perform micro-benchmarks on the proto-
type with Cbench [26], and compare the results with the
measurement results in § 6.1. Cbench emulates a num-
ber of switches, generates packet-in events to the tested
controller, and counts how many events the controller
processes per second (throughput). Each test server has
an Intel XEON W5580 processor with 8 cores and 6GB
of RAM.

Central controller performance: First, we evalu-
ate the throughput of the controller. Recall that the
controller must send packet classifiers to local agents
when a UE attaches or moves to a base station. We use
Cbench to emulates 1000 switches and let these switches
keep sending packet-in events to the controller. From
the controller viewpoint, these packet-in events corre-
spond to packet-classifier requests coming from 1000 of

9



1000 2000 3000 4000 5000 6000 7000 8000
0

2500

5000

7500

10000

12500

15000

Number of service policy clauses

S
w

it
c
h

 t
a

b
le

 s
iz

e
 (

n
u

m
b

e
r 

o
f 

ru
le

s
)

 

 

Maximum

Median

(a) Effect of the number of policy clauses

4 5 6 7 8
0

500

1000

1500

2000

2500

Service policy clause length (number of middleboxes)

S
w

it
c
h
 t

a
b
le

 s
iz

e
 (

n
u
m

b
e

r 
o
f 

ru
le

s
)

 

 

Maximum

Median

(b) Effect of service policy clause length

1280 2500 4320 6860 10240 14580 20000
0

500

1000

1500

2000

2500

Network size (number of base stations)

S
w

it
c
h
 t
a
b
le

 s
iz

e
 (

n
u
m

b
e
r 

o
f 
ru

le
s
)

 

 

Maximum

Median

(c) Effect of network size

Figure 7: Large-scale simulation result. Thanks to multi-dimensional aggregation, SoftCell data plane
is able to support thousands of service policy clauses on commodity switches.

Cache Hit Ratio 0% 20% 40% 60% 80% 100%
Throughput 1.8K 2.3K 3.0K 4.5K 8.6K 505.8K

Table 2: Effect of cache hit ratio on local agent
throughput

local agents. The controller then replies to these re-
quests with packet classifiers as fast as it can. The result
is that the controller can process 2.2 million of requests
per second with 15 threads. This is more than enough
to handle the hundreds of UE arrivals or handoffs per
second for the LTE network in § 6.1.

Local agent performance: Second, we evaluate the
throughput of the local agent. Recall that the local
agent handles new flows based on packet classifiers fetched
from the central controller. Thus its throughput de-
pends on how frequently it needs to contact the cen-
tral controller. Table 2 shows the evolution of the local
agent throughput in function of the cache hit ratio. A
cache hit ratio of 80% means that the local agent can
handle 80% of the flows locally and needs to contact
the central controller for the remaining 20%. From the
table, it is easy to see that local agent throughput is
sufficient to handle the number of new flows at a base
station (a small tens of thousands per second). Indeed,
even in the worst case where the local agent has to con-
tact the controller for every flow, it is still able to handle
1.8K events per second. Further performance gains are
possible by prefetching packet classifiers from the con-
troller when a UE moves in range of the base station.

The result also validates the need to employ a hier-
archical control plane. If there were no local agents,
requests from those thousands of base stations would
all go to the central controller. Such load (tens or hun-
dreds of millions of requests per second) is difficult to
handle by a single controller.

6.3 Large-Scale Simulations
We now demonstrate the scalability of the SoftCell

data plane through large-scale simulations.

Methodology: We use a synthetic topology based on

[18, 27]. The topology has three layers: access, aggre-
gation and core. The access layer consists of clusters
of 10 base stations interconnected in a ring [27]. The
aggregation layer consists of k pods, each of which has
k switches connected in full-mesh. In each pod, k/2
switches are connected to k/2 base station clusters; the
remaining k/2 switches are connected to k/2 switches in
the core layer. The core layer has k2 switches connected
in full-mesh. They finally connect to a gateway switch.
The whole topology with parameter k has 10k3/4 base
stations. For example, k = 8 (resp. k = 20) gives
a network with 1280 (resp. 20000) base stations. For
each topology, we assume that they are k different types
of middleboxes. We randomly connect one instance of
each type in each pod in the aggregation layer and two
instances of each type in the core layer. On top of this
topology, we generate n policy paths for each base sta-
tion to the gateway switch. A policy path traverses m
randomly chosen middlebox instances. Finally, we mea-
sure the number of rules in each switch flow table. In
the base case, we consider n = 1000, m = 5 and k = 8.
We vary k, n and m to show how the switch state is
affected by the number of service policy clauses, the
policy length and the network size, respectively.

Effect of number of service policy clauses: Fig-
ure 7(a) shows the maximum and median size of the
switch forwarding table with respect to the number of
service policy clauses. We can see that switch table
size increases linearly with the number of service policy
clauses with a small slope (less than 2). In particular,
to support 1000 service policy clauses (1.28 million pol-
icy paths!), switches store a median of 1214 rules and a
maximum of 1697 rules. This good performance is a di-
rect consequence of the multi-dimensional aggregation
(see § 3). It is true that one service policy clause may
instantiate one policy path to every base station (thus
thousands of policy paths for just one policy clause).
But the corresponding entries can be aggregated like
CS1 in Figure 3(c) if only one middlebox instance is
used for this clause or like CS2 and CS3 if multiple in-
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stances are used.

Effect of service policy clause length: Figure 7(b)
shows the switch table size with respect to the policy
length. When the policy length is 8, the maximum
table size is 1934. As before, we see that table size
increases linearly with the policy length with a small
slope. The reason is also similar. When a policy clause
is longer, more middleboxes are traversed. But most af-
fected switches on the path only require one additional
rule that matches on the tag as CS1 in Figure 3(c); only
a few switches require multiple rules to dispatch traffic
to multiple middlebox instances as CS2 and CS3.

Effect of network size: Figure 7(c) shows the switch
table size with respect to the network size. We see the
table size decreases as the network grows. It is true that
with more base stations, we have to install more policy
paths for the same service policy clause, thus need more
rules. But remember that we can do aggregation on
policy tags and base station prefixes. The increase of
rules is small due to aggregation, but all rules are now
distributed over the more switches as the network is
larger. This leads to the result that when the network
grows, switches maintain smaller tables for the same
number of service policy clauses.

In summary, SoftCell can support thousands of ser-
vice policy clauses in a network of thousands of base
stations with a few thousand TCAM entries. The gain
essentially comes from the ability to selectively match
on multiple dimensions.

7. DISCUSSION

Leveraging multi-table capabilities: As described
in Section 3, SoftCell mainly has three types of flow en-
tries: 1) matching both tags and IP prefixes, 2) match-
ing tags only and, 3) matching IP prefixes only. Soft-
Cell could leverage the multi-table capabilities offered
by modern switches [9]. This is interesting as only Type
1 entries would require the use of TCAMs (which are
expensive and power hungry). In contrast, Type 2 and
Type 3 entries would be stored in tables using exact
match and IP-prefix match, respectively. We leave the
details to future work.

Traffic initiated from the Internet: Although most
traffic in cellular networks today are initiated from UEs,
some carriers [28] also offer public IP address options.
When a gateway switch receives packets destined to
these public IP addresses, the gateway will act like an
access switch. It will install packet classifiers that trans-
late the public IP addresses and port numbers to LocIPs
and policy tags. Note that these packet classifiers are
not microflow rules and don’t require communication
with the central controller for every microflow. They
are coarse grained (match on the UE public IPs and

port numbers) and can be installed once.

Asymmetric Internet routing: For ease of descrip-
tion, we have assumed that flows leaving a gateway
switch return to the same gateway switch. However,
Internet routing is not guaranteed to be symmetric. If
gateway switches are not border routers peering with
other autonomous systems, border routers can be con-
figured to route return traffic to the same gateway switch.
Otherwise, the controller can install corresponding switch
rules for return traffic in all possible gateway switches
(mostly a small fraction of all the gateway switches).

On-path middleboxes: The only problem with on-
path middleboxes is that it is unavoidable to traverse
them in some cases. If service policy specifies that cer-
tain flows can not traverse certain middleboxes (which
we have not considered in our service policy), then the
path computation has to avoid them. In case no feasible
path exists, the policy path request will be denied.

8. RELATED WORK
Our quest is to build a scalable architecture to sup-

port fine-grained policies for mobile devices in cellular
core networks. SoftCell differs from prior work as sum-
marized by the following four categories.

Cellular network architecture: Recently work has
exposed the complexity and inflexibility of current cel-
lular data networks [5, 3]. There are several efforts [5,
3, 29, 30, 31] attempting to fix the problem. However,
only [31, 30] have concrete designs. OpenFlow Wire-
less [31] focuses on virtualizing the data path and con-
figuration. [30] proposes an integration of OpenFlow
with GTP tunnels. None of them present a scalable
network architecture for fine-grained policies.

Scalable data centers: Our addressing scheme shares
some similarity to prior work on scalable data center [10,
11, 12]. However, they mainly deal with“east west”traf-
fic. To deal with Internet traffic, [12] require intelligent
Internet gateways. In contrast, our gateways are much
simpler because we “embed” policy and location infor-
mation in the packet header, rather than relying on the
controller to install fine-grain packet-classification rules
at gateway switches. Also, these earlier papers do not
present techniques for enforcing service policies.

Software defined networks: Recent work like De-
voFlow [16] and DIFANE [32] improves upon Ethane [7]
by moving some processing from the control plane to
the data plane. Their techniques cannot address fine-
grained middlebox policies, nor do they ensure policy
consistency under mobility. Fabric [33] and SDIA [34]
describe the idea of core/edge separation, which argues
to put most intelligence at the edge and keep the core
simple. Though sharing similar high-level idea, SoftCell
presents the new concept of asymmetric edge and gives
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a novel solution of “smart acess edge, dumb gateway
edge” to scale the system. SoftCell also gives a spe-
cific solution in the core to support fine-grained service
routing, which is not addressed in Fabric and SDIA.

Middleboxes: There have been many works on mid-
dleboxes recently [17, 35, 36]. The closest ones are
PLayer [17] and SIMPLE [35]. PLayer is a pioneering
work talking about how to enforce flexible middlebox
traversals. SIMPLE takes a further step to enable bet-
ter load balancing and support middleboxes that mod-
ify packets. SoftCell differs from them by identifying
the specific challenges to enable fine-grained policies for
large cellular networks and providing novel techinques
to make the whole system scalable.

9. CONCLUSION
Today’s cellular core networks are expensive and in-

flexible. In this paper, we propose SoftCell, a scalable
architecture for supporting fine-grained policies in cel-
lular core networks. SoftCell achieves scalability in the
data plane by (i) pushing packet classification to low-
bandwidth access switches and (ii) minimizing the state
in core network through effective, multi-dimensional ag-
gregation of forwarding rules. SoftCell achieves scalabil-
ity in the control plane by caching packet classifiers and
policy tags at local agents that update the rules in the
access switches. Our prototype and evaluation demon-
strate that SoftCell significantly improves the scalabil-
ity and flexibility of cellular core networks.
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