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ABSTRACT
Measurement results show that updating rules on switches
poses major latency overhead during the course of the
policy update. However, current SDN policy compilers do
not handle policy updates well and generate large amount
of redundant rule updates, most of which modify only
the priority field. Our analysis shows that the lack of
knowledge on the rule dependency and the consecutively
distributed priority numbers are the fundamental problems
behind the redundancy. In this paper, we propose to
tackle the problems through 1) an extended policy compiler
that builds rule dependency along with the compilation,
and 2) an online optimization algorithm that maintains a
scattered priority distribution. Our preliminary evaluation
demonstrates that our proposed patch can eliminate nearly
all the priority updates.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operations—Network management

Keywords
Software-defined Networking; OpenFlow; Compiler; Incre-
mental Update

1. INTRODUCTION
Control plane modules are dynamic. The forwarding

policies generated by the controller modules often have to
dynamically react to network events with changes to the
forwarding behaviors. Static forwarding policies that are
too large to fit in a single flow table may also need dynamic
swapping in reaction to the changing traffic patterns [4].
Although SDN allows a centralized approach to modify the
forwarding policies installed in distributed switches, it does
not avoid the significant latency overhead in altering the
states of switches. According to the recent measurement
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results [3], state-of-the-art OpenFlow (OF) switches can
only process tens to a few hundreds of flow-mod instructions
per second, which implies that a full refresh of a 5K-
length flow table could lead to tens of seconds of volatile
inconsistent window on the data plane. Although recent
proposals on consistent updates can eliminate the poten-
tial erroneous forwarding behaviors, they also significantly
increase the latency overhead by introducing multi-stage
synchronization. Therefore, given a policy change, it is
desirable to generate rule updates as compact as possible.

Policy composition of SDN policy languages makes the
generation of compact updates challenging. In fact, par-
allel composition and sequential composition interleave the
dependency relation among many rules and end up with
one rule dependent on the policies from multiple modules.
Our experiments show that a single-rule insert often results
in modifying over half of the rules in a flow table with
a straightforward update strategy on NetKAT [1]. The
obscure dependency among rules forces the compiler to
reassign a priority value to a rule even when its content
aligns with an existing rule. The same problem applies
to all current compilers that support policy composition.
In our observation, we identify two major types of rule
updates: content updates and priority updates. Content
updates, which involve the modification of the predicates or
actions of the rules, are mostly direct results of the changing
policy content. On the other hand, priority updates, which
only modify the rule priorities, are mostly caused by poorly
distributed priority levels and unnecessary priority shifts.
Surprisingly, the priority updates often dominate the size of
the total updates, implying that the poorly handled priority
is the major blame for the inflated update size. In this paper,
we focus on eliminating unnecessary priority updates.

Our observation reveals two fundamental problems that
prevent the compilers from generating good priority up-
dates.

1. Missing rule dependency clue. Although OF
rules are associated with sequential priority values, the
dependency relationship among rules actually forms a
directed acyclic graph (DAG) [4]. Unlike the DAG
representation that characterizes the minimum set of
dependencies, the sequential representation actually
brings in plenty of non-existent dependencies and
oftentimes makes avoidable priority updates necessary.
Figure 1 shows an example where the dependency clue
is essential to eliminate unnecessary priority updates.
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(a) An example of rule update.
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(b) Update without dependency clue.
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(c) Update with dependency clue.

Figure 1: Comparison of incremental update with vs. without dependency clue. In (b), due to the unawareness of
the independency of the left and right rule chains, the update generator has to honor the priority levels set by the
compiler and modify the priority of Rule 5, 6 and 7. While in (c), the optimal update requires only inserting Rule 8
in a new priority level.

2. Consecutive rule priority values. All state-of-
the-art SDN policy compilers generate rules with
consecutive priority values for simplicity. However,
consecutive priority values prevent an update genera-
tor from inserting rules between two adjacent priority
levels without affecting either of them. In fact, OF
specification allocates a 16-bit integer for flow priority
that allows 65536 different priority levels, whereas the
total number of priority levels is usually much smaller
than 65536, implying the possibility to scatter priority
values.

In order to eliminate unnecessary priority updates, in
this paper we propose 1) to guide update generation with
rule dependency, and 2) to actively maintain the value gaps
between priority levels.
The challenge of the first goal rests on how to ob-

tain the dependency DAG. Intuitively, we can restore the
dependency DAG directly from the output rules of the
compiler with an existing algorithm [4]. However, we
find such algorithm entails unacceptable O(n4) worst case
computation complexity, where n is the size of the flow
table. For this reason, we explore to build the dependency
DAG incrementally along the compilation process, which
significantly reduces the number of header space arithmetic
operations and thus leads to more efficient algorithms. With
the dependency DAG, we can generate a provable minimum-
size update with regard to continuous priority levels (i.e.,
new levels can be arbitrarily inserted between two levels).
When mapping to discrete priority values, priority up-

dates are sometimes necessary to make room for new levels.
Intuitively, scattered priority values reduce the chance of
future priority shifts. Abstractly, to maintain scattered
priorities requires an online optimization strategy that
makes proactive priority updates to minimize the estimation
of future priority shifts for an undetermined policy update
sequence. In this paper, we propose k-factor strategy that
maintains the lengths of all gaps between [ 1

k
, k] times the

average gap length. K-factor strategy achieves k-factor gap
distribution with O(1) amortized cost of priority shifts.
Our incremental update compilation framework is general

to all SDN policy language compilers. To quantitatively
estimate the benefit, we implement an initial prototype as
an extension to NetKAT policy compiler, and evaluate it
through benchmarks. As shown in Figure 2, our experiments
demonstrate that the dependency information and a scat-
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Figure 2: The update sizes of 100 successive policy
updates on trace fw1. Two percent of the filters are
replaced in each update.

tered priority distribution enable the compiler to eliminate
nearly all the priority updates, and reduce the update size
by an order of magnitude.

2. BACKGROUND
Related Work.

Several SDN policy languages (e.g., Frenetic [2], Net-
Core [6] Maple [11] and NetKAT [1]) have been proposed
in recent years. Generally, a policy language compiler
takes high-level policy descriptions and generates flow tables
that fulfill the semantics of the policies. Except Maple,
most compilers do not provide any support for incremental
policy updates. In practice, they simply compile the new
policies and replace the entire flow table of each switch.
A straightforward improvement can be made by updating
only the rules whose content or priority changes. Yet
for the aforementioned problems, a considerable number of
unnecessary rule updates still have to be conducted. On
the other hand, although Maple does not support policy
composition, it introduces tree-style abstraction to support
incremental flow table updates. However, Maple compiler
still makes a large amount of priority updates due to the
consecutive priority values.

Another related topic is the incremental updates to T-
CAM. Many proposals have been made to reduce the update
cost, which is measured by the number of entry moves
in TCAM, in various context in terms of match method



Figure 3: The intersection of Rule A and B is shadowed
by Rule C. Thus A and B are independent, i.e. the
vertical order does not change their match space.

(longest-prefix match, range match, etc.) and number of
matching fields (single-match or multiple-match) [7, 8, 10,
5]. Architecturally, our incremental update problem of SDN
flow tables is orthogonal but complementary to that of
TCAM in a sense that minimizing the updates to a flow table
reduces the number of updates to TCAM, while incremental
updating TCAM reduces the cost of each TCAM update.

Rule Dependency.
Intuitively, two rules are independent when their priority

order does not change the header space classification. It is
straightforward that two rules with disjoint predicates are
independent. However, the opposite statement is not always
true. For example, in Figure 3 the predicates of A and B
intersect at a non-empty area, which is shadowed by the
predicate of another rule C with higher priority. In this case,
although A ∩ B ̸= ∅, they do not depend on each other in
terms of representing the correct semantics. Therefore, we
define two rules as directly independent if and only iff the
predicates of two rules are disjoint or their intersection is
entirely shadowed by other rules they both depend on. This
is different from the dependency defined in several other
works [11, 4], which do not consider the shadowing area.
Further, we define the indirect dependency, or dependency

for short, by taking a transitive closure on the direct
dependency relations. Obviously, the dependency relation
induces a strict partial order in a flow table, and therefore
forms a DAG of rules. The dependency DAG reveals
the inherent relationship among rules in a sense that it
represents the minimum set of the priority constraints in
order to keep the flow space classification semantics.

3. SOLUTION OVERVIEW
Ideally, a minimum policy update only involves the rules

whose content has changed. Having the existing flow table
and the updated one, it is easy to find the rules whose
content (except priority level) holds. However, the priority
values of these content-invariant rules may have changed in
the new table. To avoid changing the content-invariant rules,
we have to shift their priorities in the new table to the old
values. Meanwhile, such shifts may require further changes
on the rules that are dependent on the content-invariant
rules, or the rules those content-invariant rules depend on.
Therefore, the minimum set of rule dependency of the new
table is the key in generating of the minimum policy update.
Such logic leads us to the design of the update generation
framework as shown in Figure 4.

Preserving Dependency in Compilation.
In our framework, the policy compiler outputs the rule

dependency DAG to describe the dependency among rules.

Since the current compilers typically maintain the dependen-
cy via priority value, it is feasible to restore the dependency
DAG from the flow table through calculation. However, due
to the high computation complexity of the restoration, we
opt for the alternative approach to track the dependency
during compilation (§4).

Comparing Updated Flow Table with Existing One.
To find the minimum rule update, the comparer identifies

all the content-invariant rules by comparing the updated
flow table with the existing one. For those content-invariant
rules, we will try the best to reuse their current priority
values unless there is a new priority level inserted into two
priority levels that are currently mapped to two consecutive
priority values. Other newly arrived rules are tagged on the
dependency DAG to feed the prioritizer. At the end, those
newly arrived rules are realized either by modifying retired
rules or inserting new ones.

Assigning Priority Values to Priority Levels.
Initially, the priority levels should be evenly scattered on

the priority value space. Upon each update, the prioritizer
assigns priority values to priority levels based on their old
values and the new dependency relation. The prioritizer
maintains the distribution of the priority gaps with certain
online strategy.

4. PRESERVING RULE DEPENDENCY
There are two ways to obtain rule dependency: to restore

from flow table after compilation, or to gradually construct
during the compilation, especially the module composition.
In our analysis, we find the dependency construction algo-
rithm proposed in CacheFlow [4] has time complexity of
O(n3) ∼ O(n4) with regard to the length of the flow table1.
Meanwhile, we explore the latter approach and find a a series
of O(n2) algorithms to build the dependency DAG during
compilation. In this section, we describe these algorithms on
the abstractions of NetKAT local compiler. The algorithms
can be easily adapted to other compilers that conduct similar
policy composition.

4.1 SDN Compiler Background
The compilation of high-level SDN policy languages typ-

ically contains three major tasks, as depicted in Figure 5.
First, the syntax compiler transforms a module’s policy from
the high-level language to an intermediate representation
(IR) of rule tables. Second, the composition compiler
combines the potentially conflicting rule tables from differ-
ent modules into a consistent rule table, according to the
composition relationship among modules. Third, the rule
generator translates the IR of rule tables into OpenFlow-
compatible flow table.

NetKAT uses OpenFlow Normal Form (ONF), a subset
of NetKAT language, as the intermediate representation
towards OpenFlow flow table. An ONF flow table is
comprised of abstract ONF rules, or atoms. Structurally,
ONF forms a degenerate if-else binary tree representing the
abstract atom sequence. Conceptually, the predicate of each
abstract atom can be seen as a flow space filter with an

1The algorithm description and the complexity analysis can
be find in the technical report [12].
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outline match and possibly some holes representing the effect
of the atoms it depends on, as depicted in Figure 6.
The compilation of NetKAT can be mapped to the

compilation framework in Figure 4. NetKAT compiler first
transforms the predicates and actions into if-else binary
trees, corresponding to the syntax compilation step. Then,
the compiler eliminates the composition operators through
ONF tree transformation, corresponding to the composition
compilation step. Finally, the rule generator transforms the
abstract atoms into concrete flow rules, corresponding to the
rule generation step.
As depicted in Figure 4, our goal is to explicitly build

the dependency DAGs along each step of the the com-
pilation. Particularly, during the compilation each ONF
fragment should be associated with a dependency DAG,
whose vertices represent ONF atoms and edges represent
the dependency between atoms.

4.2 Initiating Dependency DAG in Syntax Com-
pilation

After syntax compilation, NetKAT policies are essentially
ONF fragments connected by composition operators. Par-
ticularly, at this stage each ONF fragment contains only one
ONF atom. Therefore, the dependency DAGs associated
with all of the ONF fragments are the same single-node
graphs.

4.3 Preserving Dependency DAG in Composi-
tion

At this stage, NetKAT compiler recursively eliminates
the composition operators and gradually combines the ONF
fragments into a single ONF flow table. In each recursion,
the compiler combines two ONF fragments connected by a
composition operator into a single ONF fragment. Since
each composition operator also combines the dependency
DAGs of two ONF fragments, the goal of our extension is to
combine and maintain the dependency DAG during NetKAT
policy composition.

Parallel Composition.
Generally, the result of parallel composition contains three

parts of policies, i.e., S1 = P1 − P2, S2 = P2 − P1 and S3 =
P1 ∩P2, as shown in Figure 7. Since dependency essentially
can be seen as the holes in the match space, intuitively
each of the three parts inherits a subset of the dependency
(or holes) from the operands. The parallel composition of
two ONF fragments is calculated by taking cross-product
of predicates and actions of the two operands [1]. Thus,
each rule in S1 (or S2) originates from a rule in P1 (or P2).
Because the match of the new rule is a subset of that of the
original rule, it inherits a subset of the dependency from
the original rule. Similarly, the rules in S3 may inherit
dependency from both operands. Therefore, a superset of
the result dependency DAG can be obtained by taking the
cross-product of the operands’ dependency DAGs, i.e., we
have Ri,m depends on Rj,n in the result iff either Rleft

i

depends on Rleft
j and m = n, or Rright

m depends on Rright
n

and i = j.
Then, the edges of the result DAG have to be validated.

We can simply take the intersection of the two rules on both
ends of an edge. The dependency is still valid if and only if
the intersection is not empty.

At last, one special treatment has to be made on the holes
in S3. Since these holes are compiled to new rules, we need
to add dependency between them and S3.

Sequential Composition.
The result of sequential composition only contains one

part of rules, i.e., P1 ∩ P ′
2 in Figure 8. In fact, the sequence

of two ONF fragments P1 and P2 can be seen as the union of
P1 and P ′

2, which is the projection of P2 prior to the actions
of P1. Since OF actions preserve the dependency relations,
the result ONF fragment inherits a subset of the dependency
from both operands. In other words, considering a result
rule Ri,j that originated from Rleft

i ∈ P1 and Rright
j ∈ P2,

Ri,j may depend on every rule that originates from Rleft
i

and Rright
j . Like in parallel composition, all the dependency
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relations have to be validated by checking the overlapping
of the two relevant rules.

Priority Composition.
To demonstrate the flexibility of the dependency DAG,

we also devise a new binary composition operator, priority
composition. The semantics of the priority composition is
like setting different priority levels for two operands, as
depicted in Figure 9. In other words, the second operand
only takes effect on the flows that do not match the first
operand. Generally, the priority union of two ONFs is
calculated by taking a literal union of the operands’ ONF
rules with proper priority configuration.
The compilation of priority composition is made possible

by the flexibility of dependency DAG. As the example in
Figure 9, we just need to set the rules from P1 to be
inferior to all the rules from P2. Then, similar with other
compositions, we validate the added dependency by checking
the overlapping. In addition, the holes have to be treated
specially.

4.4 Maintaining Dependency DAG in Rule
Generation

In the rule generation stage, the rule generator splits an
ONF atom into one base OF rule plus multiple shadow OF
rules (i.e., the holes). The effect to the dependency DAG is
treated in Algorithm 1.

5. MAINTAINING SCATTERED PRIORITY
VALUES

Assigning priority values is an online strategy: upon each
update, the prioritizer assigns the priority values to all new
rules and possibly some old rules without the knowledge
of the future updates. Intuitively, a more evenly scattered
distribution of priority values reduces the chance of future
priority updates with the cost of proactive priority updates.
In this section, we describe the k-factor strategy, which
actively maintains all gap lengths within the range of [ 1

k
, k]

times the average gap length la, where k is a configurable
parameter within the range [1,+∞). The k-factor strategy
costs amortized O(1) maintenance updates to achieve its gap
distribution.
Without loss of generality, we assume the update is an

insert or delete of a single rule. K-factor strategy works as
follows. It first assigns all content-invariant rules with old
priority values.

• If the update is a single-rule insert, the priority
level of the new rule must be located between two
existing priority levels on the priority DAG. Thus, the

input : Dependency DAG G = (V,E), Mappings from
DAG vertices to OF base rule and shadow rules
M : v → {b, S}

output: New dependency DAG G′ = (V ′, E′)

G′ = (∅, ∅);
foreach Mapping ui → {b, S} do

V ′ = V ′ + {vb, v1s , ..., v
|S|
s };

foreach Edge e = (u, ui) ∈ E, u ̸= ui do
E′ = E′ + (u, vb);

end
foreach Edge e = (ui, u) ∈ E, u ̸= ui do

foreach i ∈ [1, |S|] do
if vis.match ∩ u.match ̸= ∅ then

E′ = E′ + (vis, u);
end

end
end
foreach i ∈ [1, |S|] do

E′ = E′ + (vb, v
i
s);

end
end

Algorithm 1: Maintaining Dependency DAG in Rule Gen-
eration

prioritizer allocates a new priority value between the
two levels, and the gap is halved. If the lengths of the
new gaps are less than the lower bound limit la/k, the
prioritizer must shift the neighboring levels to meet
the limit. Particularly, denoting the new level as mth
level, the prioritizer determines the least number of
neighboring levels n that satisfies ⌊(Σm+n

i=m li)/n⌋ ≥ la/k
or ⌊(Σm

i=m−nli)/n⌋ ≥ la/k. Finally, the prioritizer
shifts the priority values of the n neighboring levels
to equally partition the gaps.

• The process is similar for a rule delete except that the
prioritizer now tests the upper bound limit kla instead
of the lower bound limit la/k.

The parameter k balances the evenness of the gap distribu-
tion and the maintenance cost. At one end of the spectrum,
when k equals 1, the prioritizer always maintains a uniform
priority distribution, which costs more priority shifts for
maintenance. At the other end, if k is large enough, the
prioritizer only make priority shifts when no middle value is
available for assignment.

6. EVALUATION
In this section, we evaluate how much size of the rule

updates our proposed techniques can reduce.



Total 2% 4% 6%
#Rules Naive DAG Optimal Naive DAG Optimal Naive DAG Optimal

fw1 898 592.40 52.03 37.06 589.39 92.10 66.03 493.81 113.25 79.23
fw2 376 215.06 19.94 14.78 240.21 31.81 23.36 251.64 44.37 32.31
acl1 121 56.50 3.19 2.61 71.58 7.18 5.46 80.37 11.71 8.77
acl2 594 91.17 8.00 6.30 420.76 78.08 55.58 346.50 84.45 60.84
ipc1 303 119.79 11.69 9.05 130.38 18.67 13.94 173.18 32.69 23.96
ipc2 243 100.00 6.98 5.27 105.47 12.30 9.27 173.67 28.99 20.76

Table 1: Number of rules and mean size of rule updates of 100 successive policy updates. Correspondingly 2, 4 or 6
percent of the filters are replaced in each round of policy update.

Methodology.
We implement a prototype of the update generation

framework based on NetKAT policy compiler. Our exten-
sion comprises two components: the DAG generator and
the k-factor prioritizer. The DAG generator constructs
the dependency graphs from prioritized OF rules with
an algorithm adapted from CacheFlow [4]. The k-factor
prioritizer compares the new rules with the existing ones
and assigns priority value to the incremental rules with the
k-factor strategy. We slightly modify NetKAT to allow the
bit-wise IP prefix matches in our policy benchmark. We set
parameter k to 2.
We build the base policies from filter sets generated by

ClassBench [9]. We generate policy updates by randomly
replacing a portion (2%, 4% or 6%) of filters from the
previous filter set. For each configuration, we evaluate 100
successive rounds of policy updates. We compare the update
size generated by our framework with 1) a naive strategy
that updates the diff of flow tables, and 2) the optimal
updates that contain no priority updates.

Results.
Table 1 shows the mean size of the 100 rounds of updates

for each configuration. And Figure 2 shows all the size
comparison of all 100 rounds of updates at the configuration
[fw1, 2%], which represents a typical case in our experiments.
We observe that the update size of the DAG cases is close
to the optimal cases and is usually one order of magnitude
smaller than that of the naive cases.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose an update generation framework

that utilizes the rule dependency information to minimize
the number of rules to be modified in a policy update. We
present the key techniques in the framework including how
to obtain dependency information and how to maintain the
scattered distribution of priority values. We further evaluate
the benefit of our framework through benchmarks.
For future work, we would like to implement the incre-

mental dependency construction on NetKAT policy compiler
and evaluate the runtime performance gain. We will also
explore other priority assignment strategies, especially the
one that makes constant priority shifts in worst cases.
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