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ABSTRACT
Limiting the overhead of frequent events on the control
plane is essential for realizing a scalable Software-Defined
Network. One way of limiting this overhead is to process
frequent events in the data plane. This requires modifying
switches and comes at the cost of visibility in the control
plane. Taking an alternative route, we propose Kandoo,
a framework for preserving scalability without changing
switches. Kandoo has two layers of controllers: (i) the bot-
tom layer is a group of controllers with no interconnection,
and no knowledge of the network-wide state, and (ii) the
top layer is a logically centralized controller that maintains
the network-wide state. Controllers at the bottom layer run
only local control applications (i.e., applications that can
function using the state of a single switch) near datapaths.
These controllers handle most of the frequent events and
effectively shield the top layer. Kandoo’s design enables
network operators to replicate local controllers on demand
and relieve the load on the top layer, which is the only
potential bottleneck in terms of scalability. Our evaluations
show that a network controlled by Kandoo has an order of
magnitude lower control channel consumption compared to
normal OpenFlow networks.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Network
Architecture and Design

Keywords
Software-Defined Networks, Data Center Networks, Dis-
tributed Control Plane

1. INTRODUCTION
Frequent and resource-exhaustive events, such as flow

arrivals and network-wide statistics collection events, stress
the control plane and consequently limit the scalability
of OpenFlow networks [5, 18, 4]. Although one can
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suppress flow arrivals by proactively pushing the network
state, this approach falls short when it comes to other
types of frequent events such as network-wide statistics
collection. Current solutions either view this as an intrinsic
limitation or try to address it by modifying switches.
For instance, HyperFlow [18] can handle a few thousand
events per second, and anything beyond that is considered
a scalability limitation. In contrast, DIFANE [21] and
DevoFlow [5] introduce new functionalities in switches to
suppress frequent events and to reduce the load on the
control plane.

To limit the load on the controller, frequent events should
be handled in the closest vicinity of datapaths, preferably
without modifying switches. Adding new primitives to
switches is undesirable. It breaks the general principles of
Software-Defined Networks (SDNs), requires changes to the
standards, and necessitates the costly process of modifying
switches. Thus, the important question is: “How can
we move control functionalities toward datapaths, without
introducing new datapath mechanisms in switches?”

To answer this question, we focus on: (i) environments
where processing power is readily available close to switches
(such as data center networks) or can be easily added (such
as enterprise networks), and (ii) applications that are local
in scope, i.e., applications that process events from a single
switch without using the network-wide state. We show
that under these two conditions one can offload local event
processing to local resources, and therefore realize a control
plane that handles frequent events at scale.

We note that some applications, such as routing, require
the network-wide state, and cannot be offloaded to local
processing resources. However, a large class of applications
are either local (e.g., local policy enforcer and Link Layer
Discovery Protocol [2]) or can be decomposed to modules
that are local (e.g., elephant flow detection module in an
elephant flow rerouting application).

Kandoo. In this paper, we present the design and
implementation of Kandoo, a novel distributed control plane
that offloads control applications over available resources
in the network with minimal developer intervention and
without violating any requirements of control applications.
Kandoo’s control plane essentially distinguishes local control
applications (i.e., applications that process events locally)
from non-local applications (i.e., applications that require
access to the network-wide state). Kandoo creates a two-
level hierarchy for controllers: (i) local controllers execute
local applications as close as possible to switches, and
(ii) a logically centralized root controller runs non-local
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Figure 1: Kandoo’s Two Levels of Controllers. Local
controllers handle frequent events, while a logically
centralized root controller handles rare events.

control applications. As illustrated in Figure 1, several
local controllers are deployed throughout the network; each
of these controllers controls one or a handful of switches.
The root controller, on the other hand, controls all local
controllers.

It is easy to realize local controllers since they are
merely switch proxies for the root controller, and they
do not need the network-wide state. They can even be
implemented directly in OpenFlow switches. Interestingly,
local controllers can linearly scale with the number of
switches in a network. Thus, the control plane scales as long
as we process frequent events in local applications and shield
the root controller from these frequent events. Needless
to say, Kandoo cannot help any control applications that
require network-wide state (even though it does not hurt
them, either). We believe such applications are intrinsically
hard to scale, and solutions like Onix [8] and HyperFlow [18]
provide the right frameworks for running such applications.

Our implementation of Kandoo is completely compliant
with the OpenFlow specifications. Data and control
planes are decoupled in Kandoo. Switches can operate
without having a local controller; control applications
function regardless of their physical location. The main
advantage of Kandoo is that it gives network operators
the freedom to configure the deployment model of control
plane functionalities based on the characteristics of control
applications.

The design and implementation of Kandoo are presented
in Sections 2. Our experiments confirm that Kandoo scales
an order of magnitude better than a normal OpenFlow
network and would lead to more than 90% of events
being processed locally under reasonable assumptions, as
described in Section 3. Applications of Kandoo are not
limited to the evaluation scenarios presented in this paper.
In Section 4, we briefly discuss other potential applications
of Kandoo and compare it to existing solutions. We conclude
our discussion in Section 5.

2. DESIGN AND IMPLEMENTATION

Design objectives. Kandoo is designed with the following
goals in mind. First, Kandoo must be compatible with
OpenFlow: we do not introduce any new data plane
functionality in switches, and, as long as they support
OpenFlow, Kandoo supports them, as well. Second, Kandoo
automatically distributes control applications without any
manual intervention. In other words, Kandoo control
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Figure 2: Toy example for Kandoo’s design: In

this example, two hosts are connected using a simple

line topology. Each switch is controlled by one local

Kandoo controller. The root controller controls the

local controllers. In this example, we have two control

applications: Appdetect is a local control application, but

Appreroute is non-local.

applications are not aware of how they are deployed in
the network, and application developers can assume their
applications would be run on a centralized OpenFlow
controller. The only extra information Kandoo needs is a
flag showing whether a control application is local or not.

In what follows, we explain Kandoo’s design using a
toy example. We show how Kandoo can be used to
reroute elephant flows in a simple network of three switches
(Figure 2). Our example has two applications: (i) Appdetect,
and (ii) Appreroute. Appdetect constantly queries each switch
to detect elephant flows. Once an elephant flow is detected,
Appdetect notifies Appreroute, which in turn may install or
update flow-entries on network switches.

It is extremely challenging, if not impossible, to implement
this application in current OpenFlow networks without
modifying switches [5]. If switches are not modified, a
(logically) centralized control needs to frequently query all
switches, which would place a considerable load on control
channels.

Kandoo Controller. As shown in Figure 3, Kandoo has
a controller component at its core. This component has
the same role as a general OpenFlow controller, but it
has Kandoo-specific extensions for identifying application
requirements, hiding the complexity of the underlying
distributed application model, and propagating events in the
network.

A network controlled by Kandoo has multiple local
controllers and a logically centralized root controller.1 These
controllers collectively form Kandoo’s distributed control
plane. Each switch is controlled by only one Kandoo
controller, and each Kandoo controller can control multiple
switches. If the root controller needs to install flow-entries
on switches of a local controller, it delegates the requests
to the respective local controller. Note that for high
availability, the root controller can register itself as the slave
controller for a specific switch (this behavior is supported in
OpenFlow 1.2 [1]).

1We note that the root controller in Kandoo can itself be
logically/physically distributed. In fact, it is straightforward
to implement Kandoo’s root controller using Onix [8] or
Hyperflow [18].
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Figure 3: Kandoo’s high level architecture.

Deployment Model. The deployment model of Kandoo
controllers depends on the characteristics of a network.
For software switches, local controllers can be directly
deployed on the same end-host. Similarly, if we can change
the software of a physical switch, we can deploy Kandoo
directly on the switch. Otherwise, we deploy Kandoo
local controllers on the processing resources closest to the
switches. In such a setting, one should provision the
number of local controllers based on the workload and
available processing resources. Note that we can use a
hybrid model in real settings. For instance, consider a
virtualized deployment environment depicted in Figure 4,
where virtual machines are connected to the network using
software switches. In this environment, we can place local
controllers in end-hosts next to software switches and in
separate nodes for other switches.

In our toy example (Figure 2), we have four Kandoo
controllers: three local controllers controlling the switches
and a root controller. The local controllers can be physically
positioned using any deployment model explained above.
Note that, in this example, we have the maximum number
of local controllers required.

Control Applications. Control applications function
using the abstraction provided by the controller and are not
aware of Kandoo internals. They are generally OpenFlow
applications and can therefore send OpenFlow messages
and listen on events. Moreover, they can emit Kandoo
events (i.e., internal events), which can be consumed by
other applications, and they can reply to the application
that emitted an event. Control applications are loaded in
local name spaces and can communicate using only Kandoo
events. This is to ensure that Kandoo does not introduce
faults by offloading applications.

In our example, Eelephant is a Kandoo event that carries
matching information about the detected elephant flow (e.g.,
its OpenFlow match structure) and is emitted by Appdetect.

A local controller can run an application only if the
application is local. In our example, Appreroute is not local,
i.e., it may install flow-entires on any switch in the network.
Thus, the root controller is the only controller able to run
Appreroute. In contrast, Appdetect is local; therefore, all
controllers can run it.

Event Propagation. The root controller can subscribe
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Figure 4: Kandoo in a virtualized environment. For
software switches, we can leverage the same end-
host for local controllers, and, for physical switches,
we use separate processing resources.

to specific events in the local controllers using a simple
messaging channel plus a filtering component. Once the
local controller receives and locally processes an event, it
relays the event to the root controller for further processing.
Note that all communications between Kandoo controllers
are event-based and asynchronous.

In our example, the root controller subscribes to events
of type Eelephant in the local controllers since it is running
Appreroute listening on Eelephant. Eelephant is fired by an
Appdetect instance deployed on one of the local controllers
and is relayed to root controller. Note that if the
root controller does not subscribe to Eelephant, the local
controllers will not relay Eelephant events.

It is important to note that the data flow in Kandoo is not
always bottom-up. A local application can explicitly request
data from an application deployed on the root controller by
emitting an event, and applications on the root controllers
can send data by replying to that event. For instance, we can
have a topology service running on the root controller that
sends topology information to local applications by replying
to events of a specific type.

Reactive vs. Proactive. Although Kandoo provides a
scalable method for event handling, we strongly recommend
pushing network state proactively. We envision Kandoo to
be used as a scalable, adaptive control plane, where the
default configuration is pushed proactively and is adaptively
refined afterwards. In our toy example, default paths can
be pushed proactively, while elephant flows will be rerouted
adaptively.

Implementation Details. We implemented Kandoo in a
mixture of C, C++, and Python. Our implementation has
a low memory footprint and supports dynamically loadable
plug-ins, which can be implemented in C, Python, and
Java. It also provides an RPC API for more general
integration scenarios. Our implementation of Kandoo
is extremely modular; any component or back-end can
be easily replaced, which simplifies porting Kandoo to
physical switches. Currently, Kandoo supports OpenFlow
1.0 (OpenFlow 1.1 and 1.2 support is under development).

For the applications, we created a “central application
repository” and developed a simple package management
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system, which supports application dependency. When
booting up, a controller downloads the information about
all applications from the repository and then retrieves the
applications it can run.

Single-node Performance. Single-node performance of
Kandoo is of significant importance since local controllers
process frequent events from single switches. For this reason,
our implementation is efficient and has low overhead. A
single Kandoo controller can reach a throughput of more
than 1M pkt-in per second from 512 switches using a single
thread on a Xeon E7-4807.

3. EVALUATION
We have evaluated Kandoo using different applications in

an emulated environment. For the sake of space, we present
only the results obtained for the elephant flow detection
problem. This evaluation demonstrates the feasibility of
Kandoo to distribute the control plane at scale and strongly
supports our argument.

Setup. In our experiments, we realize a two-layer hierarchy
of Kandoo controllers as shown in Figure 5. In each
experiment, we emulate an OpenFlow network using a
slightly modified version of Mininet [9] hosted on a physical
server equipped with 64G of RAM and 4 Intel Xeon(R)
E7-4807 CPUs (each with 6 cores). We use OpenVSwitch
1.4 [11] as our kernel-level software switch.

Host Host Host Host

Local Controller 0

Local Controller 1 Local Controller N

Root Controller

Appreroute

Appdetect

Appdetect

Appdetect

Learning
Switch

Learning
Switch

Learning
Switch

Core Switch

ToR Switch 1 ToR Switch N

Figure 5: Experiment Setup. We use a simple tree
topology. Each switch is controlled by one local
Kandoo controller. The root Kandoo controller
manages the local controllers.

Elephant Flow Detection. We implemented Elephant
Flow Detection applications (i.e., Appreroute and Appdetect)
as described in Section 2. As depicted in Figure 5,
Appdetect is deployed on all Kandoo local controllers,
whereas Appreroute is deployed only on the root controller.
Our implementation of Appdetect queries only the top-of-rack
(ToR) switches to detect the elephant flows. To distinguish
ToR switches from the core switch, we implemented a simple
link discovery technique. Appdetect fires one query per flow
per second and reports a flow as elephant if it has sent
more than 1MB of data. Our implementation of Appreroute

installs new flow entries on all switches for the detected
elephant flow.

Learning Switch. In addition to these two applications,
we use a simple learning switch application on all controllers
to setup paths. This application associates MAC addresses
to ports and installs respective flow entries on the switch.
We note that the bandwidth consumed for path setup
is negligible compared to the bandwidth consumption for
elephant flow detection. Thus, our evaluation results would
still apply, even if we install all paths proactively.

Methodology. In our experiments, we aim to study how
this control plane scales with respect to the number of
elephant flows and network size compared to a normal Open-
Flow network (where all three applications are on a single
controller). We measure the number of requests processed
by each controller and their bandwidth consumption. We
note that our goal is to decrease the load on the root
controller in Kandoo. Local controllers handle events locally,
which consume far less bandwidth compared to events sent
to the root controller. Moreover, Kandoo’s design makes it
easy to add local controllers when needed, effectively making
the root controller the only potential bottleneck in terms of
scalability.

Our first experiment studies how these applications scale
with respect to the number of elephant flows in the network.
In this experiment, we use a tree topology of depth 2 and
fanout 6 (i.e., 1 core switch, 6 top-of-rack switches, and 36
end-hosts). Each end-host initiates one hundred UDP flows
to any other host in the network. This synthetic workload
stresses Kandoo since most flows are not local. As reported
in [3], data center traffic has locality, and Kandoo would
therefore perform better in practice.

As depicted in Figure 6, control channel consumption and
the load on the central controller are considerably lower
for Kandoo, even when all flows are elephant2: five times
smaller in terms of packets (Figure 6(a)), and an order of
magnitude in terms of bytes (Figure 6(b)). The main reason
is that, unlike the normal OpenFlow, the central controller
does not need to query the ToR switches. Moreover,
Appdetect fires one event for each elephant flow, which results
in significantly less events.

To study Kandoo’s scalability based on the number of
nodes in the network, we fix ratio of the elephant flows
at 20% and experiment with networks of different fanouts.
As illustrated in Figure 7, the role of local controllers is
more pronounced when we have larger networks. These
controllers scale linearly with the size of the network and
effectively shield the control channels from frequent events.
Consequently, Kandoo’s root controller handles significantly
less events compared to a normal OpenFlow network.

Based on these two experiments, Kandoo scales signif-
icantly better than a normal OpenFlow network. It is
important to note that the performance of Kandoo can be
improved further by simple optimization in Appdetect. For
example, the load on the central controller can be halved if
Appdetect queries only the flow-entries initiated by the hosts
directly connected to the respective switch.

2When all flows are elephant, Appdetect fires an event for
each flow. Thus, it reflects the maximum number of events
Kandoo will fire for elephant flow detection.
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Figure 6: Control Plane Load for the Elephant
Flow Detection Scenario. The load is based on the
number of elephant flows in the network.

4. RELATED WORK

Datapath Extensions. The problem that we tackle in
this paper is a generalization of several previous attempts
at scaling SDNs. A class of solutions, such as DIFANE [21]
and DevoFlow [5], address this problem by extending data
plane mechanisms of switches with the objective of reducing
the load towards the controller. DIFANE tries to partly
offload forwarding decisions from the controller to special
switches, called authority switches. Using this approach,
network operators can reduce the load on the controller and
the latencies of rule installation. DevoFlow, on the other
hand, introduces new mechanisms in switches to dispatch far
fewer “important” events to the control plane. Kandoo has
the same goal, but, in contrast to DIFANE and DevoFlow,
it does not extend switches; instead, it moves control plane
functions closer to switches. Kandoo’s approach is more
general and works well in data centers, but it might have
a lower throughput than specific extensions implemented in
hardware.

Interestingly, we can use Kandoo to prototype and test
DIFANE, DevoFlow, or other potential hardware extensions.
For instance, an authority switch in DIFANE can be
emulated by a local Kandoo controller that manages a subset
of switches in the network. As another example, DevoFlow’s
extensions can also be emulated using Kandoo controllers
directly installed on switches. These controllers not only
replace the functionality of DIFANE or DevoFlow, but they
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Figure 7: Control Plane Load for the Elephant
Flow Detection Scenario. The load is based on the
number of nodes in the network.

also provide a platform to run any local control application
in their context.

Distributed Controllers. HyperFlow [18], Onix [8],
SiBF [10], and Devolved Controllers [17] try to distribute
the control plane while maintaining logically centralized,
eventually consistent network state. Although these ap-
proaches have their own merits, they impose limitations on
applications they can run. This is because they assume
that all applications require the network-wide state; hence,
they cannot be of much help when it comes to local control
applications. That said, the distributed controllers can be
used to realize a scalable root controller, the controller that
runs non-local applications in Kandoo.

Middleboxes. Middlebox architectures, such as Flow-
Stream [7], SideCar [15] and CoMb [13], provide scalable
programmability in data plane by intercepting flows using
processing nodes in which network applications are de-
ployed. Kandoo is orthogonal to these approaches in the
sense that it operates in the control plane, but it provides
a similar distribution for control applications. In a network
equipped with FlowStream, SideCar or CoMb, Kandoo can
share the processing resources with middleboxes (given that
control and data plane applications are isolated) in order
to increase resource utilization and decrease the number of
nodes used by Kandoo.

Active Networks. Active Networks (AN) and SDNs repre-
sent different schools of thought on programmable networks.
SDNs provide programmable control planes, whereas ANs
allow programmability in networking elements at packet
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transport granularity by running code encapsulated in the
packet [20, 12, 19] or installed on the switches [16, 6]. An
extreme deployment of Kandoo can deploy local controllers
on all switches in the network. In such a setting, we can
emulate most functionality of ANs. That said, Kandoo
differs from active networks in two ways. First, Kandoo does
not provide in-bound packet processing; instead, it follows
the fundamentally different approach proposed by SDNs.
Second, Kandoo is not an all-or-nothing solution (i.e., there
is no need to have Kandoo support on switches). Using
Kandoo, network operators can still gain efficiency and
scalability using commodity middle boxes, each controlling
a partition of switches.

5. CONCLUSION
Kandoo is a highly configurable and scalable control

plane. It uses a simple yet effective approach for creating
a distributed control plane: it processes frequent events in
highly replicated local control applications and rare events
in a central location. As confirmed by our experiments,
Kandoo scales remarkably better than a normal OpenFlow
implementation, without modifying switches or using sam-
pling techniques.

Kandoo can co-exist with other controllers by using either
FlowVisor [14] or customized Kandoo adapters. Having said
that, extra measures should be taken to ensure consistency.
The major issue is that Kandoo local controllers do not
propagate an OpenFlow event unless the root controller
subscribes to that event. Thus, without subscribing to
all OpenFlow events in all local controllers, we cannot
guarantee that existing OpenFlow applications work as
expected.

Moving forward, we are extending Kandoo to support new
categories of control applications that are not necessarily
local but that have a limited scope. Such applications
can operate by having access to the events generated by
a subset of switches. Using a hierarchy of controllers (as
opposed to the two-level hierarchy presented in this paper),
we can extend Kandoo to run such applications. Finally,
we have started porting Kandoo to physical switches.
Switches equipped with Kandoo can natively run local
control applications.
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