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ABSTRACT
Data-center administrators perform traffic-management tasks
(e.g., performance monitoring, server load balancing, and
traffic engineering) to optimize network performance for di-
verse applications. Increasingly, traffic-management func-
tionality is moving from the switches to the end hosts, which
have more computational resources and better visibility into
application behavior. However, traffic management is com-
plicated by the heterogeneous interfaces for monitoring and
controlling hosts and switches, and the scalability challenges
of collecting and analyzing measurement data across the data
center. We present a scalable and programmable platform
for joint HOst-NEtwork (HONE) traffic management. HONE’s
programming environment gives a simple, integrated, and
logically-centralized view of the data center for defining mea-
surement, analysis, and control tasks across hosts and swit-
ches. Programmers can think globally and rely on HONE to
distribute the program for local execution and scalable ag-
gregation of data across hosts and switches. HONE success-
fully balances the inherent tension between ease-of-use and
performance. We evaluate HONE by implementing several
canonical traffic-management applications, measuring its ef-
ficiency with micro-benchmarks, and demonstrating its scal-
ability with larger-scale experiments on Amazon EC2.

1. INTRODUCTION
Modern data centers run diverse applications that

generate a large amount of network traffic. To opti-
mize performance, data-center administrators perform
many traffic-management tasks, such as performance
monitoring, server load balancing, access control, flow
scheduling, rate limiting, and traffic engineering. In-
creasingly, data-center traffic management capitalizes
on the opportunity to move functionality from the swit-
ches to the end hosts [10, 14, 15, 24, 27, 28, 32, 34, 37].
Compared to hardware switches, hosts have better vis-
ibility into application behavior, greater computational
resources, and more flexibility to adopt new function-
ality. By harnessing both the hosts and the switches,
data-center administrators can improve application per-
formance and make more efficient use of resources.

To build an effective joint host-network traffic-ma-

nagement system, we need to achieve three main goals:
Uniform interface: Data-center administrators use

a variety of interfaces on hosts to collect socket logs, ker-
nel statistics, and CPU/memory utilization (e.g., Win-
dows ETW [1], Web10G [31], and vCenter [30]), and
perform rate limiting, access control, and routing (e.g.,
Linux tc [16], iptables [19], and Open vSwitch [21]).
Similarly, switches offer various measurement and con-
trol interfaces (e.g., NetFlow/sFlow, SNMP, OpenFlow,
and command-line interfaces). Data-center administra-
tors rely on numerous scripts and configuration files to
automate their management tasks. A good manage-
ment system would shield the administrators from these
details by offering an uniform interface for measure-
ment, analysis, and control across hosts and switches.

Programmability: Rather than settle on a single
traffic-management solution in advance, a good sys-
tem would be programmable, so administrators can sup-
port multiple management tasks at a time, and adopt
new solutions as the application mix and network de-
sign evolve. The most general programming framework
would allow administrators to deploy arbitrary code on
the hosts, but this by itself does little to lower the bar-
rier to creating new management applications. Instead,
the system should raise the level of abstraction by of-
fering a simple, logically-centralized view of the data
center, and automatically handling the details of collect-
ing and analyzing data, and enforcing control actions,
across a distributed collection of hosts and switches.

Efficiency and scalability: Data centers have a
large number of switches and hosts, each with many
connections. Collecting and analyzing a diverse set of
measurement from these devices in real time introduces
a major scalability challenge. Parallelizing the collec-
tion and analysis of the data is crucial. Although au-
tomatically parallelizing an arbitrary program is noto-
riously difficult, a carefully designed programming lan-
guage can expose opportunities to distribute the work
over components in the system. In particular, the hosts
should collect measurement data, and locally filter and
aggregate the data, to reduce the load on the controller.

In this paper, we present a scalable, programmable



 
 
 

 
 
 

Network  
 

Server OS      

HONE 
Agent 

APP 

Controller 

HONE Runtime System 

Management 
Program 

Hosts 

Legend: 
       Programmer’s 
       work 
       HONE  
       Component 

Figure 1: Overview of HONE system

platform for joint HOst-NEtwork (HONE) traffic manage-
ment. As shown in Figure 1, a management program
running on the controller defines what measurement
data to collect, what analysis to perform, and what
control actions to take. HONE’s declarative program-
ming environment enables programmers to think glob-
ally without worrying about how the hosts and switches
act locally to execute the program. The controller di-
vides the program logic, and scalably filters and aggre-
gates the results. On each host, a HONE agent performs
fine-grained measurement across several layers, and per-
forms local analysis, at the behest of the controller.

To balance the inherent tension between ease-of-use
and performance, we make several contributions:

Uniform host-network data model: HONE ab-
stracts the data center as a database, using global tables
of statistics to uniformly represent data from a diverse
array of sources. The controller handles the low-level
details of collecting the necessary measurement data
from hosts and switches using a variety of interfaces.

Lazy materialization of measurement data: The
uniform data model, with diverse statistics available at
arbitrary time granularity, is too expensive to support
directly. Instead, the controller analyzes the queries to
have the hosts collect only the necessary statistics for
the appropriate connections and time periods.

Uniform data-processing interface: Programs an-
alyze measurement data using data-parallel streaming
operators, allowing programmers to think globally and
sequentially. The controller handles the low-level de-
tails of distributing the computation, communicating
with hosts and switches, and combining the results.

Host-based filtering and aggregation: The con-
troller automatically partitions the analysis to use end-
host resources to filter and aggregate the data locally.
The controller groups hosts into a hierarchy to apply
user-defined (commutative and associative) functions to
combine analysis results across the data center.

Case studies of management applications: To
demonstrate the power of our programming environ-
ment, we build a collection of canonical management
applications, such as flow scheduling [3, 8], distributed
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Figure 2: Three stages of traffic management

rate limiting [25, 26], network diagnosis [34], etc. These
examples demonstrate the expressiveness of our lan-
guage, as well as the scalability of our data collection
and analysis techniques.

Prototype implementation and evaluation: Our
prototype host agent collects socket logs and TCP sta-
tistics [17, 31], and performs traffic shaping using Linux
tc. Our controller also monitors and configures switches
using OpenFlow [18]. Experiments show that HONE can
measure and calculate an application’s throughput, and
aggregate the results across 128 EC2 instances within a
90th-percentile latency of 58ms.
HONE’s measurement and analysis framework has some

similarities with streaming databases [4, 7] and MapRe-
duce [9]. However, these general-purpose systems do
not meet the needs of joint host-network traffic ma-
nagement in data centers. HONE enables programmers to
collect diverse measurement data on demand, whereas
streaming databases usually operate on streams that
were defined a priori (e.g., sampled packets). Similarly,
unlike HONE, MapReduce is not designed for processing
data inherently tied to a specific host (e.g., socket logs
and kernel statistics), nor for real-time analysis.

2. HONE PROGRAMMING FRAMEWORK
HONE’s programming framework is designed to enable

a wide range of traffic-management tasks. Traffic ma-
nagement is usually oriented around a three-stage “con-
trol loop” of measurement, data analysis, and control.
Figure 2 presents two representative applications that
serve as running examples throughout the paper:

Server load balancing: The first application dis-
tributes incoming requests across multiple server repli-
cas. After measuring the request rate and the server
load (e.g., CPU, memory, and bandwidth usages) at
each host, the application estimates the total request
rate, computes a new target division of requests over
the hosts, and configures switches accordingly.

Elephant flow scheduling: The second application
is inspired by how Hedera [3] and Mahout [8] schedule
large flows. After measuring the backlog in the socket
buffer for each TCP connection, the application identi-
fies the elephant flows and directs them over paths that
minimize network congestion.

2.1 Measurement: Query on Global Tables
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Table Name Row for each Columns

Connections Connection
App, TCP/UDP five-tuple,
TCP-stack statistics.

Applications Process
Host ID, PID, app’s name,
CPU/memory usages.

Machines Host
Host ID, total CPU usage,
total memory usage, IP.

Links Link
IDs/ports of two ends,
capacity.

SwitchStats
Switch Switch ID, port, timestamp,

interface per-port counters.

Table 1: Global tables supported in HONE prototype

HONE’s data model unifies the representation of sta-
tistics across a range of formats, locations, types of de-
vices, and modes of access. The HONE controller offers
a simple abstraction of a central set of database tables.
Programmers can launch sophisticated queries, and rely
on HONE to distribute the monitoring to the devices, ma-
terialize the necessary tables, transform the data to fit
the schema, perform local computations and data re-
duction, and aggregate the data. The data model re-
duces a complex and error-prone distributed program-
ming task to a set of simple, tabular queries that can
usually be crafted in just tens of lines of code.

The HONE data model is organized around the proto-
col layers and the available data sources. Table 1 shows
the tables that our current prototype supports. On the
hosts, HONE collects socket logs and TCP connection
statistics, to capture the relationship between applica-
tions and the network stack while remaining application
agnostic. On the switches, HONE collects the topology,
the routing configurations, and per-port counters us-
ing OpenFlow. However, we can easily extend our pro-
totype to support more interfaces (e.g., NetFlow) by
adding new tables, along with implementations for col-
lecting the data.
HONE offers programmers a familiar, SQL-like query

language for collecting the data, as summarized in Ta-
ble 2. The query language gives programmers a way to
state declaratively what data to measure, rather than
how. More sophisticated analysis, transformation, fil-
tering, and aggregation of the data take place in the
analysis phase. To illustrate how to create a HONE pro-
gram, consider the three example queries needed for
elephant-flow scheduling:

Backlog in socket buffer: This query generates the
data for computing the backlog in the socket buffers:

def ElephantQuery ():
return (

Select ([SrcIp , DstIp , SrcPort , DstPort ,
BytesWritten , BytesSent ]) *

From(Connections) *
Every(Seconds 1) )

The query produces a stream of tables, with one ta-

Query := Select(Stats) *
From(Table) *
Where(Criteria) *
Groupby(Stat) *
Every(Interval)

Table := Connections | Applications | Links |
SwitchStats | Machines

Stats := Columns of Table

Interval := Integer in Seconds or Milliseconds

Criteria := Stat Sign value

Sign := > | < | ≥ | ≤ | = | 6=

Table 2: Measurement query language syntax

ble every second.1 In each table, each row corresponds
to a single connection and contains the endpoint IP ad-
dresses and port numbers, as well as the amount of data
written into the socket buffer and sent into the network.
Later, the analysis phase can use the per-connection
BytesWritten and BytesSent to compute the backlog
in the socket buffer to detect elephant flows.

Connection-level traffic by host pair: This query
collects the data for computing the traffic matrix:

def TrafficMatrixQuery ():
return(

Select ([SrcIp , DstIp , BytesSent ,
Timestamp ]) *

From(Connections) *
Groupby ([SrcIp ,DstIp]) *
Every(Seconds 1) )

The query uses the Groupby operator to convert each
table (at each second) into a list of tables, each contain-
ing information about all connections for a single pair
of end-points. Later, the analysis phase can sum the
BytesSent across all connections in each table in the
list, and compute the difference from one time period
to the next to produce the traffic matrix.

Active links and their capacities: This query
generates a stream of tables with all unidirectional links
in the network:

def LinkQuery ():
return(

Select ([ BeginDevice , EndDevice ,
Capacity ]) *

From(Links) *
Every(Seconds 1) )

Together, these queries provide the information needed
for the elephant-flow application. They also illustrate
the variety of different statistics that HONE can collect
from both hosts and switches—all within a simple, uni-
fied programming framework. Under the hood, the HONE
runtime system keeps track of which data should come
from each host and each switch (to minimize the data-
collection overhead) and parallelize the analysis.

1The star operator (*) glues together the various query com-
ponents. Each query term generates a bit of abstract syntax
that our runtime system interprets.
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2.2 Analysis: Data-Parallel Operators
HONE enables programmers to analyze data across mul-

tiple hosts, without worrying about the low-level de-
tails of communicating with the hosts or tracking their
failures. HONE’s functional data-parallel operators allow
programmers to say what analysis to perform, rather
than how. Programmers can associate their own func-
tions with the operators to apply these functions across
sets of hosts, as if the streams of tabular measurement
data were all available at the controller. Yet, HONE gives
the programmers a way to express whether their func-
tions can be (safely) applied in parallel across data from
different hosts, to enable the runtime system to reduce
the bandwidth and processing load on the controller by
executing these functions at the hosts. HONE’s data-
parallel operators include the following:

• MapSet(f): Apply function f to every element of a
stream in the set of streams, producing a new set of
streams.
• FilterSet(f): Create a new set of streams that

omits stream elements e for which f(e) is false.
• ReduceSet(f,i): “Fold” function f across each ele-

ment for each stream in the set, using i as an initial-
izer. In other words, generate a new set of streams
where f(. . . f(f(i, e1), e2) . . . , en) is the nth element
of each stream when e1, e2, ..., en were the first n
elements of the original stream.
• MergeHosts(): Merge a set of streams on the hosts

into one single global stream. (Currently in HONE,
the collection of switches already generate a single
global stream of measurement data, given that our
prototype integrates with an SDN controller to access
data from switches.)

MapSet, FilterSet, and ReduceSet operate in pa-
rallel on each host, and MergeHosts merges the re-
sults of multiple analysis streams into a single stream
on the controller. HONE also enables analysis on a sin-
gle global stream with corresponding operators, such
as MapStream, FilterStream, and ReduceStream. To
combine queries and analysis into a single program, the
programmer simply associates his functions with the op-
erators, and “pipes” the result from one query or oper-
ation to the next (using the >> operator).

Consider again the elephant-flow scheduling applica-
tion, which has three main parts to the analysis:

Identifying elephant flows: Following the approach
suggested by Curtis et al. [8], the function IsElephant

defines elephant flows as the connections with a socket
backlog (i.e., the difference between bytes bw written by
the application and the bytes bs acknowledged by the
recipient) in excess of 100KB:

def IsElephant(row):
[sip ,dip ,sp,dp ,bw,bs] = row
return (bw-bs > 100)

def DetectElephant(table):
return (FilterList(IsElephant , table))

EStream = ElephantQuery () >>
MapSet(DetectElephant) >>
MergeHosts ()

DetectElephant uses FilterList (the same as fil-

ter in Python) to apply IsElephant to select only the
rows of the connection table that satisfy this condition.
Finally, DetectElephant is applied to the outputs of
ElephantQuery, and the results are merged across all
hosts to produce a single stream EStream of elephant
flows at the controller.

Computing the traffic matrix: The next analy-
sis task computes the traffic matrix, starting from ag-
gregating the per-connection traffic volumes by source-
destination pair, and then computing the difference across
consecutive time intervals:

TMStream = TrafficMatrixQuery () >>
MapSet(MapList(SumBytesSent) >>
ReduceSet(CalcThroughput , {}) >>
MergeHosts () >>
MapStream(AggTM)

The query produces a stream of lists of tables, where
each table contains the per-connection traffic volumes
for a single source-destination pair at a point in time.
MapList (i.e., the built-in map in Python) allows us to
apply a custom function SumBytesSent that aggregates
the traffic volumes across connections in the same table,
and MapSet applies this function over time. The result is
a stream of tables, which each contains the cumulative
traffic volumes for every source-destination pair at a
point in time. Next, the ReduceSet applies a custom
function CalcThroughput to compute the differences in
the total bytes sent from one time to the next. The
last two lines of the analysis merge the streams from
different hosts and apply a custom function AggTM to
create a global traffic matrix for each time period at
the controller.

Constructing the topology: A last part of our
analysis builds a network topology from the link tables
produced by LinkQuery, which is abstracted as a single
data stream collected from the network:

TopoStream = LinkQuery () >>
MapStream(BuildTopo)

The auxiliary BuildTopo function (not shown) converts
a single table of links into a graph data structure useful
for computing paths between two hosts. The MapStream
operator applies BuildTopo to the stream of link tables
to generate a stream of graph data structures.

2.3 Control: Uniform and Dynamic Policy
In controlling hosts and switches, the data-center ad-

ministrators have to use various interfaces. For exam-
ple, administrators use tc, iptables, or Open vSwitch
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Policy := [Rule]+

Rule := if Criteria then Action

Criteria := Predicate [(and | or) Predicate]*

Predicate := Field = value

Field := AppName | SrcHost | DstHost | Headers

Headers := SrcIP | DstIP | SrcPort | DstPort | · · ·
Action := rate-limit value | forward-on-path path

Table 3: Control policy supported in HONE prototype

on hosts to manage traffic, and they use SNMP or Open-
Flow to manage the switches. For the purpose of man-
aging traffic, these different control interfaces can be
unified because they share the same pattern of generat-
ing control policies: for a group of connections satisfying
criteria, define what actions to take. Therefore, HONE
offers administrators a uniform way of specifying con-
trol policies as criteria + action clauses, and HONE takes
care of choosing the right control implementations, e.g.,
we implement rate-limit using tc and iptables in the
host agent.

The criteria can be network identifiers (e.g., IP ad-
dresses, port numbers, etc.). But this would force the
programmer to map his higher-level policies into lower-
level identifiers, and identify changes in which connec-
tions satisfy the higher-level policies. Instead, we allow
programmers to identify connections of interest based
on higher-level attributes, and HONE automatically tracks
which traffic satisfies these attributes as connections
come and go. Our predicates are more general than
network-based rule-matching mechanisms in the sense
that we can match connections by applications with the
help of hosts. Table 3 shows the syntax of control poli-
cies, each of which our current prototype supports.

Continuing the elephant-flow application, we define
a function Schedule that takes inputs of the detected
elephant flows, the network topology, and the current
traffic matrix. It assigns a routing path for each ele-
phant flow with a greedy Global First Fit [3] strategy,
and creates a HONE policy for forwarding the flow along
the picked path. Other non-elelphant flows are ran-
domly assigned to an available path. The outputs of
policies by Schedule will be piped into RegisterPol-

icy to register them with HONE.

def Schedule(elephant , topo , traffic ):
routes = FindRoutesForHostPair(topo)
policies = []
for four_tuples in elephant:

path = GreedilyFindAvailablePath(
four_tuples , routes , traffic)

criteria = four_tuples
action = forward -on-path path
policies.append ([criteria , action ])

return policies

2.4 All Three Stages Together

Combining the measurement, analysis, and control
phases, the complete program merges the data streams,
feeds the data to the Schedule function, and registers
the output of policies. With this concrete example of
an elephant-flow detection and scheduling application,
we have demonstrated the simple and straightforward
way of designing traffic-management tasks in HONE pro-
gramming framework.

def ElephantFlowDetectionScheduling ():
MergeStreams (

[EStream , TopoStream , TMStream ]) >>
MapStream(Schedule) >>
RegisterPolicy ()

3. EFFICIENT & SCALABLE EXECUTION
Monitoring and controlling many connections for many

applications on many hosts could easily overwhelm a
centralized controller. HONE overcomes this scalability
challenge in four main ways. First, a distributed di-
rectory service dynamically tracks the mapping of ma-
nagement tasks to hosts, applications, and connections.
Second, the HONE agents lazily materialize virtual tables
based on the current queries. Third, the controller auto-
matically partitions each management task into global
and local portions, and distributes the local part over
the host agents. Fourth, the hosts automatically form
a tree to aggregate measurement data based on user-
defined aggregation functions to limit the bandwidth
and computational overhead on the controller.

3.1 Distributed Directory Service
HONE determines which hosts should run each ma-

nagement task, based on which applications and con-
nections match the queries and control policies. HONE

has a directory service that tracks changes in the active
hosts, applications, and connections. To ensure scal-
ability, the directory has a two-tiered structure where
the first tier (tracking the relatively stable set of active
hosts and applications) runs on the controller, and the
second tier (tracking the large and dynamic collection
of connections) runs locally on each host. This allows
the controller to decide which hosts to inform about a
query or control policy, while relying on each local agent
to determine which connections to monitor or control.

Tracking hosts and applications: Rather than
build the first tier of the directory service as a special-
purpose component, we leverage the HONE programming
framework to run a standing query:

def DirectoryService ():
(Select ([HostID , App]) *
From(Applications) *
Every(Seconds 1) ) >>

ReduceSet(GetChangeOfAppAndHealth ,[]) >>
MergeHosts () >>
MapStream(NotifyRuntime)
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Figure 3: Partitioned execution plan of elephant-flow scheduling program

which returns the set of active hosts and their applica-
tions. GetChangeOfAppAndHealth identifies changes in
the set of applications running on each host, and the
results are aggregated at the controller. The controller
uses its connectivity to each host agent as the host’s
health state, and the host agent uses ps to find active
applications.

Tracking connections: To track the active connec-
tions, each host runs a Linux kernel module we build
that intercepts the socket system calls (i.e., connect,
accept, send, receive, and close). Using the kernel
module, the HONE agent associates each application with
the TCP/UDP connections it opens in an event-driven
fashion. This avoids the inevitable delay of poll-based
alternatives using Linux lsof and /proc.

3.2 Lazily Materialized Tables
HONE gives programmers the abstraction of access to

diverse statistics at any time granularity. To minimize
measurement overhead, HONE lazily materializes the sta-
tistics tables by measuring only certain statistics, for
certain connections, at certain times, as needed to sat-
isfy the queries. Returning to the elephant-flow appli-
cation, the controller analyzes the ElephantQuery and
decides to run the query on the hosts. Since the query
does not constrain the set of hosts and applications, the
controller instructs all local agents to run the query.

Each HONE agent periodically measures the values of
SrcIP, DstIP, SrcPort, DstPort, and BytesSent from
the network stack (via Web10G [31]), and collects the
BytesWritten from the kernel module discussed ear-
lier in §3.1. Similarly, HONE queries the switches for the
LinkQuery data; in our prototype, we interact with net-
work devices using the OpenFlow protocol. HONE does
not collect or record any unnecessary data. Lazy ma-
terialization supports a simple and uniform data model
while keeping measurement overhead low.

3.3 Host-Controller Partitioning
In addition to selectively collecting traffic statistics,

the hosts can significantly reduce the resulting data vol-
ume by filtering or aggregating the data. For example,
the hosts could identify connections with a small con-
gestion window, sum throughputs over all connections,
or find the top k flows by traffic volume.

However, parallelizing an arbitrary controller program
would be difficult. Instead, HONE provides a MergeHosts

operator that explicitly divides a task into its local and
global parts. Analysis functions before MergeHosts run

locally on each host, whereas functions after Merge-

Hosts run on the controller. HONE hides the details
of distributing the computation, communicating with
end devices, and merging the results. Having an ex-
plicit MergeHosts operator obviates the need for com-
plex code analysis for automatic parallelization.
HONE coordinates the parallel execution of tasks across

a large group of hosts.2 We first carry out industry-
standard clock synchronization with NTP [20] on all
hosts and the controller. Then the HONE runtime stamps
each management task with its creation time tc. The
host agent dynamically adjusts when to start executing
the task to time tc+nT+ε, where n is an integer, ε is set
to 10ms, and T is the period of task (as specified by the
Every statement). Furthermore, the host agent labels
the local execution results with a logical sequence num-
ber (i.e., n), in order to tolerate the clock drift among
hosts. The controller buffers and merges the data bear-
ing the same sequence number into a single collection,
releasing data to the global portion of task when either
receiving from all expected hosts or timing out after T .

Using our elephant-flow-scheduling application, Fig-
ure 3 shows the partitioned execution plan of the ma-
nagement program. Recall that we merge EStream,
TMStream, and TopoStream to construct the program.
The measurement queries are interpreted as parallel
Measure operations on the host agents, and the query
of switch statistics from the network module. HONE exe-
cutes the EStream and TMStream tasks on each host in
parallel (to detect elephant flows and calculate through-
puts, respectively), and streams these local results to
the controller (i.e., ToController). The merged local
results of TMStream pass through a throughput aggre-
gation function (AggTM ), and finally merge together
with the flow-detection data and the topology data from
TopoStream to feed the Schedule function.

3.4 Hierarchical Data Aggregation
Rather than transmit (filtered and aggregated) data

directly to the controller, the hosts construct a hier-
archy to combine the results using user-specified func-
tions. HONE automatically constructs a k-ary tree

2The HONE controller ships the source code of the local por-
tion of management tasks to the host agent. Since HONE
programs are written in Python, the agent can execute them
with its local Python interpreter, and thus avoids the diffi-
culties of making the programs compatible with diverse en-
vironments on the hosts.
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Figure 4: Aggregation tree: 8 hosts in branching of 2

rooted at the controller3 and applies a TreeMerge op-
erator at each level. All hosts running the task are
leaves of the tree. For each group of b hosts, HONE

chooses one to act as their parent in the tree. These
parents are grouped again to recursively build the tree
towards the controller. User-defined functions associ-
ated with TreeMerge are applied to all non-leaf nodes
of the tree to aggregate data from their children. HONE

is unique among research efforts on tree-based aggrega-
tion [29, 33], since prior works focus on aggregating data
with a priori knowledge of the data structure, and don’t
allow users to specify their own aggregation functions.

Many aggregation functions used in traffic manage-
ment are both commutative and associative; such func-
tions can be applied hierarchically without compromis-
ing correctness. For example, determining the top k
values for heavy-hitter analysis is amenable to either
direct processing across all data or to breaking the data
into subsets for intermediate analysis and combining the
results downstream. Calculating the total throughput
of connections across all hosts can also be calculated in
such a distributed manner, as the arithmetic sum is also
a commutative and associative function.

Making the user-defined aggregation functions be as-
sociative and commutative ensures that HONE can ap-
ply them correctly in a hierarchical manner. Using
TreeMerge, HONE assumes that the associated functions
have the required properties, avoiding the semantics
analysis. TreeMerge is similar to MergeHosts in the
sense that they both combine local data streams from
multiple hosts into one data stream on the controller,
and intermediate hosts similarly buffer data until they
receive data from all their children or a timeout occurs.
But with TreeMerge, HONE also applies a user-defined
aggregation function, while MergeHosts simply merges
all hosts’ data at the controller without reduction.

The algorithm of constructing the aggregation tree is
an interesting extensible part of HONE. We can group
hosts based on their network locality, or we can dynam-
ically monitor the resource usages on hosts to pick the
one with most available resource to act as the inter-
mediate aggregator. In our prototype, we leave those
interesting algorithms to future works, but offer a ba-
sic one of incrementally building the tree by when hosts
join the HONE system. Subject to the branching factor b,

3The runtime uses information from the directory service to
discover and organize hosts.

the newly joined leaf greedily finds a node in one level
up with less than b children, and links with the node
if found. If not found, the leaf promotes itself to one
level up, and repeats the search. When the new node
reaches the highest level and still cannot find a place,
the controller node moves up one level, which increases
the height of the aggregation tree. Figure 4 illustrates
an aggregation tree under the basic algorithm when 8
hosts have joined and b is 2.

4. PERFORMANCE EVALUATION
In this section, we present micro-benchmarks on our

HONE prototype to evaluate measurement overhead, the
execution latency of management programs, and the
scalability; §5 will demonstrate the expressiveness and
ease-of-use of HONE using several canonical traffic-ma-
nagement applications.

We implement the HONE prototype in combination of
Python and C. The HONE controller provides the pro-
gramming framework and runtime system, which par-
titions the management programs, instructs the host
agents for local execution, forms the aggregation hier-
archy, and merges the data from hosts for the global
portion of program execution. The host agent schedules
the installed management tasks to run periodically, ex-
ecutes the local part of the program, and streams the
serialized data to the controller or intermediate aggrega-
tors. We implement the network part of the prototype
as a custom module in Floodlight [11] to query switch
statistics and install routing rules.

Our evaluation of the prototype focuses on the fol-
lowing questions about our design decisions in §2 and
§3.

1. How efficient is the host-based measurement in HONE?
2. How efficiently does HONE execute entire management

tasks?
3. How much overhead does lazy materialization save?
4. How effectively does the controller merge data from

multiple hosts using hierarchical aggregation?

We run the HONE prototype and carry out the experi-
ments on Amazon EC2. All instances have 30GB me-
mory and 8 virtual cores of 3.25 Compute Units each.4

4.1 Performance of Host-Based Measurement
The HONE host agent collects TCP connection statis-

tics using the Web10G [31] kernel module. We evaluate
the measurement overhead in terms of time, CPU, and
memory usage as we vary the number of connections
running on the host. To isolate the measurement over-
head, we run a simple management task that queries a
few randomly-chosen statistics of all connections run-
ning on the host every one second (we choose the four
4One EC2 Compute Unit provides the equivalent CPU ca-
pacity of a 1.0-1.2 GHz 2007 Opteron or Xeon processor.
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Figure 5: Overhead of collecting connection statistics

tuples, bytes of sent data, and the congestion window
size). Our experiment consists of three EC2 instances—
one for the controller, and two running the HONE agent.

To collect the statistics, the host agent must first
identify what connections to measure. Then the agent
queries the kernel via Web10G to retrieve the statis-
tics. Finally, the agent organizes the statistics in the
schema specified by the query and feeds the result to
the management program. In Figure 5, we break down
the latency in each portion. For each fixed number of
connections, we run the management task for five min-
utes (i.e., about 300 iterations), and plot the average
and standard deviation of time spent in each portion.

Figure 5 shows that the agent performs well, mea-
suring 5k connections in an average of 532.6ms. The
Web10G measurement takes the biggest portion–432.1ms,
and the latency is linear in the number of active con-
nections. The time spent in identifying connections to
measure is relatively flat, since the agent tracks the rele-
vant connections in an event-driven fashion via the ker-
nel module of intercepting socket calls. The time spent
in organizing the statistics rises slowly as the agent must
go through more connections to format the results into
the query’s schema. The results set lower limit for the
periods of management tasks that need measurement of
different numbers of connections. The CPU and mem-
ory usages of the agent remain stable throughout the
experiments, requiring an average of 4.55% CPU of one
core and 1.08% memory of the EC2 instance.

4.2 Performance of Management Tasks
Next, we evaluate the end-to-end performance of sev-

eral management tasks. To be more specific, we evalu-
ate the latency of finishing one round of a task: from
the agent scheduling a task to run, measuring the corre-
sponding statistics, finishing the local analysis, sending
the results to the controller, the controller receiving the
data, till the controller finishing the remaining parts of
the management program. We run three different kinds
of management tasks which have a mix of leverages of
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Figure 7: Breakdown of execution latency

hosts, switches, and the controller in HONE, in order to
show the flexibility of HONE adapting to different traffic-
management tasks. All experiments in this subsection
run on a 8-host-10-switch fat-tree topology [2]. The
switches are emulated by running Open vSwitch on an
EC2 instance.

• Task1 calculates the throughputs of all iperf con-
nections on each host, sums them up, and aggregates
the global iperf throughput at the controller. This
task performs most of the analysis at the host agents,
leaving relatively little work for the controller. Each
host launches 100 iperf connections to another ran-
domly chosen host.
• Task2 queries the topology and switch statistics from

the network, and uses the per-port counters on the
switches to calculate the current link utilization. This
task uses the network module in HONE a lot to measure
data, and runs computation work on the controller.
Task2 is performed under the same setting of running
iperf as Task1.
• Task3 collects measurement data from the hosts to

detect connections with a small congestion window
(i.e., which perform badly). It also queries the net-

8



CPU Mem CPU Mem
Agent Agent Controller Controller

Task1 3.71% 0.94% 0.67% 0.10%

Task2 N/A N/A 0.76% 1.13%

Task3 7.84% 1.64% 1.03% 0.11%

Table 4: Avg. CPU and memory usages of execution

work to determine the forwarding path for each host
pair. The task then diagnoses the shared links among
those problematic flows as possible causes of the bad
network performance. Task3 is a joint host-network
job, which runs its computation across hosts, net-
work, and the controller. Task3 is still under the
same setting, but we manually add rules on two links
to drop 50% of packets for all flows traversing the
links, emulating a lossy network.

Figure 6 illustrates the cumulative distribution func-
tion (CDF) of the latency for finishing one round of
execution, as we run 300 iterations for each task. We
further break down the latency into three parts: the
execution time on the agent or the network, the data-
transmission time from the host agent or network mod-
ule to the controller, and the execution time on the
controller. In Figure 7, we plot the average latency
and standard deviation for each part of the three tasks.
Task1 finishes one round with a 90th-percentile latency
of 27.8ms, in which the agent takes an average of 17.8ms
for measurement and throughput calculation, the data
transmission from 8 hosts to the controller takes an-
other 7.7ms, and the controller takes the rest. Having
a different pattern with Task1, Task2 ’s 140.0ms 90th-
percentile latency is consisted of 87.5ms of querying
the switches via Floodlight and 8.9ms of computation
on the controller (the transmission time is near zero
since Floodlight is running on the controller machine).
Task3 ’s latency increases as it combines the data from
both hosts and the network, and its CDF also has two
stairs due to different responsiveness of the host agents
and the network module.

Table 4 summarizes the average CPU and memory
usages on the host agent and the controller when run-
ning the task. The CPU percentage is for one core of
8 cores of our testbed machines. The results show that
HONE’s resource usages are bind to the running manage-
ment tasks: Tasks3 is the most complex one with flow
detection/rate calculation on the hosts, and having the
controller join host and network data.

4.3 Effects of Lazy Materialization
HONE lazily materializes the contents of the statistics

tables. We evaluate how much overhead the feature can
save for measurement efficiency in HONE.

We set up two applications (A and B) with 1k ac-
tive connections each on a host. We run multiple ma-
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Figure 8: Effects of lazy materialization

nagement tasks with different queries over the statistics
to evaluate the measurement overhead in terms of la-
tency. Figure 8 illustrates the average and standard
deviation of the latencies for different queries. The first
program queries all 122 TCP-stack statistics available
in Web10G of all 2k connections, and all applications’
CPU and memory usages. The following ones query var-
ious statistics of Connections or Applications tables
with details shown on Figure 8.

The lazy materialization of the tables lowers the mea-
surement overhead by either measuring a subset of ta-
bles (Query1 vs. others), rows (number of connec-
tions in Query1 vs. Query2 and Query3 ), and columns
(number of statistics in Query2 vs. Query3 ). The high
overhead of Query4 is due to the implementation of
CPU measurement, which is, for each process, one of
the ten worker threads on the agent keeps running for
50ms to get a valid CPU usage.

4.4 Evaluation of Scalability in HONE
We will evaluate the scalability of HONE from two per-

spectives. First, when HONE controller partitions the
management program into local and global parts of ex-
ecution, the controller will handle the details of merging
the local results processed in the same time period from
multiple hosts, before releasing the merged result to the
global part of execution. Although the host clocks are
synchronized via NTP as mentioned in §3.3, the clocks
still drift slightly over time. It results in a buffering de-
lay at the controller. Now we will evaluate how well the
buffering works in terms of the time difference between
when the controller receives the first piece of data and
when the controller receives all the data bearing the
same sequence number.

To focus on the merging performance, we use the
Task1 in §4.2. All hosts will directly send their local
results to the controller without any hierarchical aggre-
gation. Each run of the experiment lasts 7 minutes,
containing about 400 iterations. We repeat the experi-
ment, varying the number of hosts from 16 to 128.
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Figure 9: Controller’s buffering delay of
merging data from multiple host agents

Figure 9 shows the CDFs of the latencies for these ex-
periments. The 90th-percentile of the controller’s buffer-
ing delay is 4.3ms, 14.2ms, 9.9ms, and 10.7ms for 16, 32,
64, and 128 hosts respectively. The results show that
the synchronization mechanism on host agents work
well in coordinating their local execution of a manage-
ment task, and the controller’s buffering delay is not a
problem in supporting traffic-management tasks whose
execution periods are typically in seconds.

After evaluating how the controller merges distributed
collection of data, we would evaluate another important
feature of HONE for scalability, which is the hierarchical
aggregation among the hosts. We continue using the
same management task of summing the application’s
throughputs across hosts. But we change to use the
TreeMerge operator to apply the aggregation function.
In this way, the task will be executed by HONE through
a k -ary tree consisted of the hosts.

In this experiment, we fix the branching factor k of
the hierarchy to 4. We repeat the experiment with 16,
32, 64, and 128 hosts, in which case the height of the
aggregation tree is 2, 3, 3, and 4 respectively. Figure 10
shows the CDFs of the latencies of one round of ex-
ecution, which captures the time difference from the
earliest agent starting its local part to the controller
finishing the global part. The 90th-percentile execu-
tion latency increases from 32.2ms, 30.5ms, 37.1ms, to
58.1ms. Table 5 shows the average CPU and memory
usages on the controller and the host agent. The host
agent’s CPU and memory usages come from the agent
that multiplexes as local-data generator and the inter-
mediate aggregators in all levels of the k -ary tree. It
shows the maximum overhead that the host agent in-
curs when running in a hierarchy.

From the results above, we can conclude that HONE’s
own operations pose little overhead to the execution of
management tasks. The performance of management
tasks running in HONE will be mainly bound by their
own program complexities, and the amount of data they
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Figure 10: End-to-end latency of execution
under hierarchical aggregation

Num of CPU Mem CPU Mem
Hosts Agent Agent Controller Controller

16 4.19% 0.96% 1.09% 0.05%

32 4.93% 0.96% 1.27% 0.05%

64 5.26% 0.97% 1.31% 0.06%

128 4.80% 0.97% 2.36% 0.07%

Table 5: Avg. CPU and memory usages
in hierarchical aggregation experiments

need to process or transmit.

5. CASE STUDIES
We have shown the micro-benchmark evaluation of

HONE to demonstrate its efficiency and scalability. Now
we will illustrate the expressiveness and ease-of-use of
HONE by building a diversity of traffic-management tasks
in data centers. Table 6 lists all the management tasks
that we have built, ranging from conventional manage-
ment operations in data centers (e.g., calculating link
utilizations) to recent proposals (e.g., network perfor-
mance diagnosis [34]). Those conventional traffic-ma-
nagement tasks can actually serve as basic building blocks
for more complex management tasks. The administra-
tors can compose the code of those HONE programs to
construct their own. HONE is an open-source project,
and code for the management programs are also avail-
able at http://hone.cs.princeton.edu/examples.

In the following subsections, we pick two management
tasks as case studies to illustrate more details, and eval-
uate the HONE-based solutions.

5.1 Elephant Flow Scheduling
In data centers, it is important to detect elephant

flows with high traffic demands and properly route them
to minimize network congestion. With HONE, we can
easily build an application to schedule the elephant flows
based on Hedera [3] and Mahout [8]. We implement
Hedera’s Global-first-fit routing strategy with 140 lines
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Management Task Lines of Code

Summing application’s throughputs 70

Monitoring CPU and memory usages 24

Collecting connection TCP statistics 19

Calculating traffic matrix 85

Calculating link utilizations 48

Discovering network topology 51

Network performance diagnosis 56

HONE’s directory service 31

Elephant flow scheduling 140

Distributed rate limiting 74

Table 6: Traffic-management tasks we build in HONE.
Source available at http://hone.cs.princeton.edu/

of code in HONE. The code of the management task has
been already shown in previous sections as an example.

We deploy HONE on EC2 instances to emulate a data-
center network with a 8-host-10-switch fat-tree topology
(the switches are instances running Open vSwitch). We
repeat an all-to-all data shuffle of 500MB (i.e., a 28GB
shuffle) for 10 times. The HONE-based solution finishes
the data shuffle with an average of 82.7s, compared to
103.1s of using ECMP. The improvement over shuffle
time is consistent with Hedera’s result.

5.2 Distributed Rate Limiting
Distributed rate limiting in data centers is used to

control the aggregate network bandwidth used by an
application, which runs on multiple hosts. It can help
the application’s owner to control the total cost of using
a pay-per-use cloud provider.

Prior works [25, 26] proposed mechanisms to make
distributed rate-limiters collaborate as a single, aggre-
gate global limiter inside the network. HONE enables
distributed rate limiting from the host side, which in-
troduces less overhead as the hosts have more compu-
tational power than the switches, and better visibility
into the traffic demand of applications.

In HONE, the administrators do not need to worry
about the complexity of collecting throughputs from
multiple hosts in a synchronized way. Instead, they just
need to write a simple program that sums up through-
puts of an application’s connections on each host, aggre-
gates the throughputs across hosts, and then calculates
their rate-limiting policies accordingly. The code writ-
ten in HONE are shown below:

def DistributedRateLimiting ():
(Select ([App , SrcIp , DstIp ,

BytesSent , Timestamp ]) *
From(Connections) *
Where(App == X) *
Every(Seconds 1) ) >>

ReduceSet(CalculateThroughput , {}) >>
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Figure 11: Time series of rates for an application.
Every 10 seconds, a host launches the application.

MapSet(LocalAgg) >>
ReduceSet(MovingAverage , initValue)>>
MergeHosts () >>
MapStream(GenerateRateLimitPolicy) >>
RegisterPolicy ()

We run the task to limit the aggregate throughput
of application X to 100Mbps. The application X is
set to send traffic on each host for 80 seconds with a
default rate of 50Mbps. We launch X on 5 hosts, one
by one every 10 seconds. Figure 11 shows the time series
of the aggregate and individual traffic rates of X. The
management task succeeds in limiting the total rate of X
running on a distributed set of hosts to 100Mbps. Note
that it takes one round of execution for the management
task to discover new traffic and update the rate-limiting
policies. That is why there are several 1-second spikes
when X starts on new hosts.

6. RELATED WORKS
Recent projects have sought to incorporate end hosts

into network management [10, 15]. But these solutions
view the hosts only as software switches or as trusted
execution environments for the network. OpenTCP [13]
explores more control APIs specifically over TCP. HONE
aims at supporting diverse traffic-management tasks,
and thus provides more measurement, data analysis,
and control functionalities across hosts and switches.

There have also been industry efforts in simplifying
cloud management, such as various commercial tools
from vendors [5, 6, 22, 30]. They aim at enabling bet-
ter visualization and infrastructure control at hosts and
switches in the cloud. HONE is complementary to these
systems by focusing more on monitoring and analysis in
traffic-management tasks and providing programmable
interfaces for these tasks.

Prior works also adopt the stream abstraction for
network traffic analysis [4, 7]. But they mainly focus
on extending the SQL language, while we use func-
tional programming to define traffic-management me-
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chanisms more expressively. Further, some of these
works [4, 23] focus on a specific problem (e.g., intru-
sion detection) when designing their programming lan-
guage, while HONE aims for a more generic programming
interface for traffic management.

Finally, there are recent works proposing network pro-
gramming languages, such as ProgME [36], Frenetic [12],
OpenSketch [35], and Netcalls [27]. They focus on a
much narrower class of programming units–raw packets
or traffic counters on a single switch, while HONE mainly
moves the programmability to the end hosts, aims at an
extensible platform for various types of measurement,
and encompasses a joint host-network scenario.

7. CONCLUSION
HONE is a programmable and scalable platform for

joint host-network traffic management in data centers.
HONE offers data-center administrators (i) an integrated
model of diverse, fine-grained statistics from both hosts
and switches and (ii) a simple, expressive, centralized
programming framework for defining the measurement,
analysis, and control functionality of traffic-management
tasks. The programming framework combines a domain-
specific query language with a data-parallel analysis
framework and a reactive control schema. The system
scales through lazy materialization of the measurement
data, filtering and aggregating data on each host, and
performing hierarchical aggregation of data across mul-
tiple hosts. Micro-benchmarks and experiments with
real management tasks demonstrate the performance
and expressiveness of our system.

In our future work, we plan to build a wider range of
management tasks, both to further demonstrate HONE’s
expressiveness and to continue optimizing our proto-
type’s performance. In addition, we plan to include
more support for virtual-machine environment, such as
adding VM-level monitoring and migration, and sup-
port for more robustness, such as preventing the host
agents and the controller from becoming overloaded.
We believe that these capabilities, along with our exist-
ing support for programmable and scalable traffic ma-
nagement, can make HONE an invaluable platform for
data-center administrators.
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