
Frenetic: A Network Programming Language

Nate Foster
Cornell University

Rob Harrison
Princeton University

Michael J. Freedman
Princeton University

Christopher Monsanto
Princeton University

Jennifer Rexford
Princeton University

Alec Story
Cornell University

David Walker
Princeton University

Abstract
Modern networks provide a variety of interrelated services includ-
ing routing, traffic monitoring, load balancing, and access control.
Unfortunately, the languages used to program today’s networks
lack modern features—they are usually defined at the low level of
abstraction supplied by the underlying hardware and they fail to
provide even rudimentary support for modular programming. As a
result, network programs tend to be complicated, error-prone, and
difficult to maintain.

This paper presents Frenetic, a high-level language for program-
ming distributed collections of network switches. Frenetic provides
a declarative query language for classifying and aggregating net-
work traffic as well as a functional reactive combinator library
for describing high-level packet-forwarding policies. Unlike prior
work in this domain, these constructs are—by design—fully com-
positional, which facilitates modular reasoning and enables code
reuse. This important property is enabled by Frenetic’s novel run-
time system which manages all of the details related to installing,
uninstalling, and querying low-level packet-processing rules on
physical switches.

Overall, this paper makes three main contributions: (1) We an-
alyze the state-of-the art in languages for programming networks
and identify the key limitations; (2) We present a language design
that addresses these limitations, using a series of examples to moti-
vate and validate our choices; (3) We describe an implementation of
the language and evaluate its performance on several benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design

Keywords Network programming languages, domain-specific
languages, functional reactive programming, OpenFlow

1. Introduction
Today’s networks consist of hardware and software components
that are closed and proprietary. The difficulty of changing these
components has had a chilling effect on innovation, and forced
network administrators to express policies through complicated and
frustratingly brittle interfaces. As discussed in recent a New York

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

Times article [30], the rise of data centers and cloud computing
have brought these problems into sharp relief and led a number
of networks researchers to reconsider the fundamental assumptions
that underpin today’s network architectures.

In particular, significant momentum has gathered behind Open-
Flow, a new platform that opens up the software that controls the
network while also allowing packets to be processed using fast,
commodity switching hardware [31]. OpenFlow defines a standard
interface for installing flexible packet-forwarding rules on physical
network switches using a programmable controller that runs sep-
arately on a stock machine. The most well-known controller plat-
form is NOX [20], though there are several others [1, 8, 25, 39].
OpenFlow is supported by a number of commercial Ethernet switch
vendors, and has been deployed in several campus and backbone
networks. Using OpenFlow, researchers have already created a va-
riety of controller applications that introduce new network func-
tionality, like flexible access control [9, 33], Web server load bal-
ancing [21, 40], energy-efficient networking [22], and seamless
virtual-machine migration [18].

Unfortunately, while OpenFlow and NOX now make it possible
to implement exciting new network services, they do not make it
easy. OpenFlow programmers must constantly grapple with several
difficult challenges.

First, networks often perform multiple tasks, like routing, access
control, and traffic monitoring. Unfortunately, decoupling these
tasks from each other and implementing them independently in
separate modules is effectively impossible, since packet-handling
rules (un)installed by one module often interfere with overlapping
rules (un)installed by other modules.

Second, the OpenFlow/NOX interface is defined at a very low
level of abstraction. For example, the OpenFlow rule algebra di-
rectly reflects the capabilities of the switch hardware (e.g., bit pat-
terns and integer priorities). Simple high-level concepts such as set
difference require multiple rules and priorities to implement cor-
rectly and more powerful “wildcard” rules are a limited hardware
resource that programmers must manage by hand.

Third, controller programs only receive events for packets the
switches do not know how to handle. Code that installs a forward-
ing rule might prevent another, different event-driven call-back
from being triggered. As a result, writing programs for Open-
Flow/NOX quickly becomes a difficult exercise in two-tiered
programming—programmers must simultaneously reason about
the packets that will processed on switches and those that will be
processed on the controller.

Fourth, because a network of switches is a distributed system,
it is susceptible to various kinds of race conditions. For example, a
common NOX programming idiom is to handle the first packet of
each network flow on the controller and install switch-level rules
to handle the remaining packets. However, such programs can be
susceptible to errors if the second, third, or fourth packets in a

flow arrive before the appropriate switch-level rule is computed and
installed on the switches in the network.

To address these challenges, we present Frenetic, a new pro-
gramming language for networks. Frenetic is organized around two
levels of abstraction: (1) a set of source-level operators for con-
structing and manipulating streams of network traffic, and (2) a
run-time system that handles all of the details of installing and
uninstalling low-level rules on switches. The source-level operators
draw on previous work on declarative database query languages
and functional reactive programming (FRP) and are carefully con-
structed to support the following key principles:

Declarative Design. Where possible, we consider what the pro-
grammer might want, rather than how the hardware implements it.
Hence, in many cases, we provide intuitive, high-level primitives,
even though they are not directly supported by the hardware.

Modular Design. We have designed Frenetic’s primitives to have
limited network-wide effects and semantics that can be stated in-
dependently of the context in which they are used. This facilitates
building modular programs with reuseable parts.

Single-tier Programming. Frenetic programmers do not have to
worry that installing packet-handling rules may prevent the con-
troller from analyzing other traffic. On the contrary, Frenetic sup-
ports a see-every-packet abstraction which guarantees that every
packet is available for analysis, thereby side-stepping the many
complexities of today’s two-tiered programming model.

Race-free Semantics. Because Frenetic queries supply the run-
time system with information about what programmers want, the
run-time can suppress superfluous packets that arrive at the con-
troller due to network race conditions. Automatic race detection
and packet suppression simplifies the programming model.

Cost Control. In general, a danger of adopting high-level, declar-
ative features is that it may difficult for users to understand or con-
trol the computational costs of the abstractions they use. To avoid
this pitfall, Frenetic gives programmers guidance concerning the
costs of programming constructs. In particular, the query language
is carefully defined so that the core query logic can be executed on
network switches, thereby keeping most packets in the fast path.

The above principles make Frenetic programs robust, compact,
easy to write, easy to understand and easy to modify. Hence, to
summarize, this paper makes the following contributions:

• Analysis of OpenFlow/NOX difficulties (Section 3): Using our
combined expertise in programming languages and networks,
we identify weaknesses of the current model that modern pro-
gramming language principles can overcome.

• Frenetic language design (Section 4): Applying ideas from the
disparate fields of database query languages and functional re-
active programming, we present and analyze our design choices
for Frenetic, a language for programming OpenFlow networks.

• Frenetic implementation (Section 5): We describe Frenetic’s
implementation architecture, paying particular attention to the
run-time system—the enabling technology that allows us to
raise the level of abstraction without sacrificing performance.

• Evaluation (Section 6): We discuss several applications imple-
mented in Frenetic and NOX and compare them on several met-
rics: lines of code, controller load, and total traffic. The results
demonstrate that Frenetic programs are more concise than their
NOX counterparts and yet achieve comparable performance.

2. Background on OpenFlow and NOX
This section presents the main features of OpenFlow and NOX. To
keep the presentation simple, we have elided a few details that are

Integers n

Rules r ::= 〈pat , pri , t, [a1, . . . , an]〉
Patterns pat ::= {h1 :n1, . . . , hk :nk}
Priorities pri ::=n

Timeouts t ::=n | None
Actions a ::= output(op) | modify(h, n)
Headers h ::= in port | vlan | dl src | dl dst | dl type |

nw src | nw dst | nw proto | tp src | tp dst

Ports op ::=n | flood | controller

Figure 1. OpenFlow Syntax. Prefixes dl, nw, and tp denote data
link (MAC), network (IP), and transport (TCP/UDP), respectively.

not important for understanding Frenetic. Readers interested in a
complete description may consult the OpenFlow specification [3].

Overview. In an OpenFlow network, a centralized controller
manages a distributed collection of switches. While packets flowing
through the network may be processed by the centralized controller,
doing so is orders of magnitude slower than processing those pack-
ets on the switches. Hence, one of the primary functions of the
controller is to configure the switches so that they process the vast
majority of packets and only a few packets from new or unexpected
flows need to be handled on the controller.

Configuring a switch primarily involves installing entries in its
flow table: a set of rules that specify how packets should be pro-
cessed. A rule consists of a pattern that identifies a set of packets,
an integer priority that disambiguates rules with overlapping pat-
terns, an optional integer timeout that indicates the number of sec-
onds until the rule expires, and a list of actions that specifies how
packets should be processed. For each rule in its flow table, the
switch maintains a set of counters that keep track of basic statistics
concerning the number and total size of packets processed.

Rules are defined formally by the grammar in Figure 1. A pat-
tern is a list of pairs of header fields and integer values, which
are interpreted as equality constraints. For instance, the pattern
{nw src : 10.0.0.1, tp dst : 80} matches packets from source IP
address 10.0.0.1 going to destination port 80. We use stan-
dard notation for values in common header fields—e.g., writing
“10.0.0.1” instead of “167772161.” Any header fields not ap-
pearing in a pattern are unconstrained. We call rules with uncon-
strained fields wildcard rules.

OpenFlow Switches. When a packet arrives at a switch, the
switch processes it in three steps:

1. It selects a rule from its flow table whose pattern matches the
packet. If there are no matching rules, the switch sends the
packet to the controller for processing. Otherwise, if there are
multiple matching rules, it picks the exact-match rule (i.e., the
rule whose pattern matches every header field in the packet) if
one exists, or a wildcard rule with highest priority if not.

2. It updates the byte and packet counters associated with the rule.

3. It applies the actions listed in the rule to the packet in order, or
drops the packet if the list is empty.

The action output(op) instructs the switch to forward the packet
out on port op, which can either be a physical switch port n or
one of the virtual ports flood or controller, where flood for-
wards it out on all physical ports (except the ingress port) and
controller sends it to the controller. The action modify(h, n)
instructs the switch to rewrite the header field h to n. The list
of actions may contain both output and modify actions—e.g.,
[modify(nw src, 10.0.0.1), output(2), output(controller)]

Controller

Switch

1 2

Figure 2. Simple Topology.

rewrites the source IP address of the packet to 10.0.0.1 and then
outputs it on switch port 2 and sends it to the controller.

NOX Controller. The controller manages the set of rules installed
on the switches in the network by reacting to network events. Most
controllers are currently based on NOX, which is a simple operating
system for networks that provides primitives for managing events
as well as functions for communicating with switches [20]. NOX
defines a number of events:

• packet in(switch, port , packet), triggered when switch for-
wards a packet received on physical port to the controller;

• stats in(switch, xid , pattern, packets, bytes), triggered when
switch returns the packets and bytes counters in response to a
request for statistics about rules contained in pattern. The xid
parameter represents an identifier for the request.

• flow removed(switch, pattern, packets, bytes), triggered when
a rule with pattern exceeds its timeout and is removed from
switch’s flow table. The packets and bytes parameters contain
the values of the counters for the evicted rule.

• switch join(switch), triggered when switch joins the network.
• switch exit(switch), triggered when switch exits the network.
• port change(switch, port , up), triggered when the link at-

tached to a given physical port on switch goes up or down. The
up parameter represents the new status of the link.

NOX also provides functions for sending messages to switches:

• install(switch, pattern, priority , timeout , actions), installs
a rule with the given pattern, priority, timeout, and actions in
the flow table of switch.

• uninstall(switch, pattern), removes all rules contained in
pattern from the flow table of switch.

• send(switch, packet , action), sends the given packet to switch
and applies action to it there.

• query stats(switch, pattern), issues a request for statistics
from all rules contained in pattern on switch and returns a
request identifier xid that can be used to match up the asyn-
chronous response from the switch.

The program running on the controller defines a handler for each
of the events built into NOX, but may otherwise be structured as an
arbitrary program.

Example. To illustrate the use of OpenFlow, consider a controller
program written in Python that implements a simple repeater hub.
Suppose that the network has a single switch connected to a pool
of internal hosts on port 1 and a wide-area network on port 2,
as shown in Figure 2. The switch join handler below invokes
the repeater when the switch joins the network. The repeater

function installs rules on switch s that instruct the switch to forward
packets from port 1 to port 2 and vice versa.

def switch_join(switch):
repeater(switch)

def repeater(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
install(switch,pat1,DEFAULT,None,[output(2)])
install(switch,pat2,DEFAULT,None,[output(1)])

Note that both calls to install use the DEFAULT priority level and
use None as the timeout, indicating that the rules are permanent.

3. Analysis of OpenFlow/NOX Difficulties
OpenFlow provides a standard interface for manipulating the rules
installed on switches, which goes a long way toward making net-
works programmable. However, the programming model currently
provided by NOX has several deficiencies that make it difficult to
use in practice. This section presents four of the most substantial
difficulties that arise when writing programs for OpenFlow/NOX.
For concreteness, we focus on the NOX controller but other con-
trollers for OpenFlow such as Onix [25], Beacon [1], and Net-
tle [39] suffer from similar issues.

3.1 Interactions Between Concurrent Modules
The first issue is that NOX programs do not compose. Suppose that
we want to extend the repeater hub to monitor the total number
of bytes of incoming web traffic. Rather than counting the web
traffic at the controller, a monitoring application could install rules
for web traffic, and periodically poll the byte and packet counters
associated with those rules to collect the necessary statistics:

def monitor(switch):
pat = {in_port:2,tp_src:80}
install(switch,pat,DEFAULT,None,[])
query_stats(switch,pat)

def stats_in(switch,xid,pattern,packets,bytes):
print bytes
sleep(30)
query_stats(switch,pattern)

The monitor function installs a rule that matches all incoming
packets with TCP source port 80 and issues a query for the counters
associated with that rule. The stats_in handler receives the re-
sponse from the switch, prints the byte count to the console, sleeps
for 30 seconds, and then issues the next query.

Ideally, we would be able to compose this program with the
repeater program to obtain a program that forwards packets and
monitors traffic:

def repeater_monitor_wrong(switch):
repeater(switch)
monitor(switch)

Unfortunately, naively composing the two programs in this way
will not work due to interactions between the rules installed by each
program. In particular, because the programs install overlapping
rules on the switch, when a packet arrives from port 80 on the
source host, the switch is free to process the packet using either
rule. But using the repeater rule will not update the counters
needed for monitoring, while using the monitor rule will break the
repeater program because its list of actions is empty (i.e., packets
will be dropped).

To obtain the desired behavior, we have to manually combine
the forwarding logic from the first program with the monitoring
policy from the second:

def repeater_monitor(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
pat2web = {in_port:2,tp_src:80}
install(switch,pat1,[output(2)],DEFAULT)
install(switch,pat2web,[output(1)],HIGH)
install(switch,pat2,[output(1)],DEFAULT)
query_stats(switch,pat2web)

Performing this combination is non-trivial: the pat2web rule needs
to include the output(1) action from the repeater program,
and must be installed with HIGH priority to resolve the overlap
with the pat2 rule. In general, composing NOX programs requires
careful, manual effort on the part of the programmer to preserve the
semantics of the original programs. This makes it nearly impossible
to factor out common pieces of functionality into reusable libraries
and also prevents compositional reasoning about programs.

3.2 Low-Level Programming Interface
Another difficulty stems from the low-level nature of the program-
ming interface, which is derived from the features of the switch
hardware rather than being designed for ease of use. This makes
programs unnecessarily complicated, as they must describe low-
level details that do not affect the overall behavior of the program.
For example, suppose that we want to extend the repeater and mon-
itoring program to monitor all incoming web traffic except traf-
fic destined for an internal server (connected to port 1) at address
10.0.0.9. To do this, we need to express a logical “difference” of
patterns, but OpenFlow patterns can only directly express positive
constraints. Thus, to simulate the difference between two patterns,
we have to install two overlapping rules on the switch, using prior-
ities to disambiguate between them.

def repeater_monitor_noserver(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
pat2web = {in_port:2,tp_src:80}
pat2srv = {in_port:2,nw_dst:10.0.0.9,tp_src:80}
install(switch,pat1,DEFAULT,None,[output(2)])
install(switch,pat2srv,HIGH,None,[output(1)])
install(switch,pat2web,MEDIUM,None,[output(1)])
install(switch,pat2,DEFAULT,None,[output(1)])
query_stats(switch,pat2web)

This program uses a separate rule to process web traffic going to the
internal server—pat2srv matches incoming web packets going to
the internal server, while pat2web matches all other incoming web
packets. It also installs pat2srv at HIGH priority to ensure that the
pat2web rule only processes (and counts!) packets going to hosts
other than the internal server.

Describing packets using the low-level patterns supported by
OpenFlow switches is cumbersome and error-prone. It forces pro-
grammers to use multiple rules and priorities to encode patterns that
could be easily expressed using natural operations such as negation,
difference, and union. It adds unnecessary clutter to programs and
further complicates reasoning about their behavior.

3.3 Two-Tiered System Architecture
A third challenge stems from the two-tiered architecture used in
NOX, where a controller program manages the network by in-
stalling and uninstalling switch-level rules. This indirection forces
the programmer to specify the communication patterns between the
controller and switch and deal with tricky concurrency issues such
as coordinating asynchronous events. Consider extending the orig-
inal repeater program to monitor the total amount of incoming traf-
fic by destination host. Unlike the previous examples, we cannot
install all of the rules we need in advance because, in general, we

will not know the address of each host a priori. Instead, the con-
troller must dynamically install rules for the packets seen at run
time.

def repeater_monitor_hosts(switch):
pat = {in_port:1}
install(switch,pat,DEFAULT,None,[output(2)])

def packet_in(switch,inport,packet):
if inport == 2:

mac = dstmac(packet)
pat = {in_port:2,dl_dst:mac}
install(switch,pat,DEFAULT,None,[output(1)])
query_stats(switch,pat)

The repeater_monitor_hosts function installs a single rule that
handles all outgoing traffic. Initially, the flow table on the switch
does not contain any entries for incoming traffic, so the switch
sends all packets that arrive at port 2 to the controller. This causes
the packet_in handler to be invoked; it processes each packet by
installing a rule that handles future packets. Note that the controller
only sees one incoming packet per host—the rule processes future
traffic to that host directly on the switch.

As this example shows, NOX programs are actually imple-
mented using two programs—one on the controller and another
on the switch. While this design is essential for efficiency, the
two-tiered architecture makes applications difficult to read and
reason about, because the behavior of each program depends on
the other—e.g., installing/uninstalling rules on the switch changes
which packets are sent up to the controller. In addition, the con-
troller program must specify the communication patterns between
the two programs and deal with subtle concurrency issues—e.g., if
we were to extend the example to monitor both incoming and out-
going traffic, the controller would have to issue multiple queries for
the statistics for each host and synchronize the resulting callbacks.

Although NOX makes it possible to manage networks using ar-
bitrary general-purpose programs, its two-tiered architecture forces
programmers to specify the asynchronous and event-driven inter-
action between the programs running on the controller and the
switches in the network. In our experience, these details are a sig-
nificant distraction and a frequent source of bugs.

3.4 Network Race Conditions
One of the corollaries of NOX’s explicit two-tier programming
model is that programs are susceptible to subtle network race con-
ditions. For example, a common NOX programming idiom is to
analyze the first packet of every flow and calculate an action to
apply to all future packets in the same network flow. In fact, this
is how the repeater monitor hosts example described in the
previous subsection worked. Unfortunately, our statement that the
packet in handler “processes each packet by installing a rule that
handles all future packets to the same host” was a simplification.
The installed rule usually handles all future packets—but not al-
ways! If a new packet in the same flow arrives before the switch
has been able to install the new rule, that new packet will also be
sent up to the controller. Consequently, if the controller routines
are not carefully crafted to be idempotent when receiving multiple
unexpected packets in the same flow, they will fail.

4. Frenetic Language Design
Frenetic is a new, domain-specific language for programming
OpenFlow networks. It is embedded in Python and comprises two
integrated sublanguages: (1) a limited, but high-level and declara-
tive network query language, and (2) a general-purpose, functional
and reactive network policy management library. The language of-
fers a number of features that make programming more convenient

Queries q ::= Select(a) *
Where(fp) *
GroupBy([qh1, . . . , qhn]) *
SplitWhen([qh1, . . . , qhn]) *
Every(n) *
Limit(n)

Aggregates a ::= packets | sizes | counts
Headers qh ::= inport | srcmac | dstmac | ethtype |

vlan | srcip | dstip | protocol |
srcport | dstport | switch

Patterns fp ::= true fp() | qh fp(n) |
and fp([fp1 , . . . , fpn]) |
or fp([fp1 , . . . , fpn]) |
diff fp(fp1 , fp2) | not fp(fp)

Figure 3. Frenetic query syntax

including a single-tier, “see-every-packet” abstraction; strong com-
positionality properties; a clear cost model; and a simple, race-free
semantics. In the following subsections, we present the main fea-
tures of the language and explain its semantic properties in detail.

4.1 The Network Query Language
The network query sublanguage allows Frenetic programs to read
the state of network. To implement these reads efficiently, the Fre-
netic run-time system changes the state of the network by installing
a variety of low-level rules on switches. However, from the high-
level, abstract viewpoint of the Frenetic programmer, these reads
and their implementation have no observable effect on network
state. As a result, queries compose perfectly—both with each other
and with the operations in the policy management library.

The key challenge in the design of Frenetic’s query sublanguage
involves finding a balance between expressiveness, simplicity, and
control over cost. For example, the cost of evaluating a query can
be defined as the number of packets that must be diverted from the
fast path in the network and processed on the controller. Manag-
ing this cost is important because the latency of processing a di-
verted packet is orders of magnitude worse than processing it in
hardware. Moreover, if many packets are diverted, the link between
the switches and controller can become a bottleneck. Consequently,
we deliberately limit the expressiveness of Frenetic query language
to ensure that it has a simple, easy-to-understand cost model pro-
grammers can depend on.

Basic Concepts. Frenetic queries include constructs for filtering
the set of all packets in the network using high-level patterns, sub-
dividing this set by grouping on the basis of one or more header
fields, further splitting these sets by arrival time or whenever a
header field changes value, limiting the number of values returned,
and aggregating by number or size of packets. The result produced
by a query is an event stream—a data structure that represents an
infinite, discrete, time-indexed stream of values. Though Frenetic
is embedded in Python, an untyped language, it is useful to under-
stand the types of events and event-driven programs.1 The type α E
denotes events carrying values of type α. For example, packet E
is an event of packets and (switch × int) E is an event of pairs of
switch identifiers and integers.

The syntax of Frenetic queries is given in Figure 3. Each top-
level clause is optional, except for the Select, which identifies the
type of event returned by the query—an event carrying packets,
byte counts, or packet counts. In Python code, we use the infix op-

1 Though it is not central to this paper, we have implemented a dynamic
typechecker for Frenetic that checks the types of operators dynamically.

erator * to combine clauses. We briefly explain the main syntactic
elements below and follow up with illustrative examples.

A Select(a) clause aggregates the results returned by the rest
of the query using method a, where a may be one of packets
(return the packets themselves), counts (return the number of
packets) or bytes (return the sum of the sizes of the packets).

A Where(fp) clause filters the results, retaining only those
packets satisfying the filter pattern fp. Simple query patterns define
sets of packets on the basis of packet header fields such as switch
(switch), port (inport), source MAC address (srcmac), destina-
tion IP address (destip) and others. More complicated filter pat-
terns can be constructed using natural set-theoretic operations such
as intersection (and fp), union (or fp), difference (diff fp),
and complement (not fp). These high-level patterns are compiled
to OpenFlow-representable patterns by Frenetic.

A GroupBy([qh1, . . . , qhn]) clause subdivides the set of
queried packets into subsets based on header fields qh1 through
qhn. For example, grouping by srcip and srcport results in one
subset for all packets with source IP 10.0.0.1 and TCP source port
80, a second subset for all packets with source IP 10.0.0.2 and TCP
source port 80, a third subset for all packets with source IP 10.0.0.1
and source port 21, etc.

A SplitWhen([qh1,. . .,qhn]) clause, like a GroupBy, sub-
divides the set of selected packets into subsets. However, whereas
GroupBy produces one subset for all packets with particular val-
ues for the given header fields, SplitWhen does not—it gener-
ates a new subset each time the value of one of the given fields
changes. For example, suppose a query splits on source IP address,
and packets with source IPs 10.0.0.1, 10.0.0.2 and 10.0.0.1 arrive in
sequence. In this case, SplitWhen generates three subsets (the first
and third packets are put in separate sets, because their IP addresses
differ from the address of the preceding packet). If the arrival order
was different, perhaps 10.0.0.1, 10.0.0.1, 10.0.0.2, then only two
subsets would be generated.

An Every(n) clause partitions packets by time, grouping pack-
ets that arrive within the same n-second window together.

Finally, a Limit(n) clause limits the number of packets in each
subset to n. The most common limit is 1.

Example Query. To get a taste of the Frenetic query language,
consider the following web monitoring query, designed for the
single-switch repeater network presented in the previous section.

def web_query():
return \
(Select(sizes) *
Where(inport_fp(2) & srcport_fp(80))) *
Every(30))

The infix operator & used in this query desugars into and fp.
When registered with the run-time system, it selects all packets
arriving on physical port 2 and from TCP source port 80. It sums
the sizes of all such packets every 30 seconds and returns an event
stream carrying integers as a result.

The results of such queries may be used in a variety of ways
in Frenetic programs—for traffic analysis, for security monitoring
and for decisions about the forwarding policy. For now, all we will
do is pipe the results to a printer:

def web_stats():
web_query() >> Print()

Query Composition. To illustrate the modularity properties of
Frenetic programs, let us carry the example a step further and ex-
tend it to monitor incoming traffic by host. As shown in Section 3.1,
implementing this program in NOX is difficult—we cannot run the
two smaller programs side-by-side because the rules for monitor-
ing web traffic overlap with the rules for monitoring traffic by host.

Extending the Frenetic program, however, is simple. The following
query summarizes the total volume of traffic arriving on physical
port 2, grouped by destination host, every 60 seconds.

def host_query():
return (Select(sizes) *

Where(inport_fp(2)) *
GroupBy([dstmac]) *
Every(60))

This query may be composed with the web query using the Merge
operator, a generic combinator that transforms a pair of events into
an event of pairs of optional values.

def all_stats():
Merge(host_query(),web_query()) >> Print()

The programmer who writes this program needs not know the de-
tails of the individual query routines, as neither query can interfere
with the results produced by the other. Why is that? Unlike NOX,
Frenetic supports the abstraction that queries merely read network
state and do not modify it (even though the underlying run-time sys-
tem will, in fact, modify the state of the network by installing rules
on switches). Moreover, by design, Frenetic supports a program-
ming model in which every query can “see every packet” in the
network. Thus, installing one query in the run-time does not silently
inhibit any other queries from seeing certain packets. Note that the
host query and the web queries operate at different frequencies—
60 seconds vs. 30 seconds. Implementing this functionality in Fre-
netic is as easy as declaring the desired intervals. Implementing it
in NOX, on the other hand, would be difficult, as the programmer
would have to code tedious bookkeeping routines in event handlers
to keep track of which statistics to collect at which times. Frenetic’s
run-time system does this bookkeeping automatically. Hence, our
design has changed query composition from a challenging, error-
prone enterprise to a completely trivial one.

Race-Free Semantics. One of the most basic network programs
is a learning switch, which discovers the identity of the hosts con-
nected to each of its ports by recording the source MAC addresses
contained in incoming packets. The following query could be used
to implement the core functionality of a simple learning switch:

def learning_query():
return (Select(packets) *

Where(true_fp()) *
GroupBy([srcmac]) *
SplitWhen([inport]) *
Limit(1))

def connection_printer():
learning_query() >> Print()

When learning query is executed, it generates an event that in-
cludes one packet for each distinct source MAC, unless the port
associated with that source MAC changes (which might happen
if a host, such as a laptop, were to move). This program is unre-
markable except that it prints each new connection that it discov-
ers exactly once because the query is limited to return one packet.
Achieving the same effect in NOX is surprisingly tricky because of
network race conditions. In the time it takes for a NOX program
to generate and install a rule to suppress packets 2, 3, 4 with the
same source MAC, those packets might already have arrived at the
switch, be en route to the controller and be about to be processed
by the handler. Consequently, the NOX programmer will have to
remember to implement complex, error-prone bookkeeping if she
wants to get it right. Such races affect the implementation of the
Frenetic run-time system as well, but they are handled invisibly
(and once-and-for-all) at that level, and are not exposed to the pro-
grammer. Unfortunately, the NOX implementation cannot mimic

Frenetic as it does not have access to the high-level, semantic in-
formation expressed in the queries that allows Frenetic to squash
superfluous packets.

The Query Cost Model. In order for programmers to use Frenetic
effectively, they must have an understanding of the cost of applying
the basic operations in the language. In particular, it is important
that they have an understanding of the number of packets that
must be diverted from the fast path in the network and sent to the
controller due to a query.

The cost of executing a Frenetic query can be understood in
terms of microflows—i.e., sets of related packets that have identical
header fields and arrive at the same switch. To illustrate recall the
simple web query defined earlier:

def web_query():
return \
(Select(sizes) *
Where(inport_fp(2) & srcport_fp(80))) *
Every(30))

An example of a microflow pertinent to this query is the one
represented by a tuple that contains in port 2, srcport 80,
vlan 0, dl src 0, and so on, with a specific value for each
header field. Another microflow pertinent to the query is the one
with in port 2, srcport 80, vlan 1, dl src 0, and so on.
Note the difference between the two flows is only in the value of the
vlan field. Clearly, the total number of microflows is enormous, but
a single microflow may contain arbitrarily many packets so there
are dramatically fewer inhabited microflows—i.e., flows for which
the network actually witnesses a packet.

A statistics query, such as the web query above, measures the
counts or sizes of a particular stream of packets. Such a query
diverts one packet per inhabited microflow to the controller. After
that single packet has been diverted, the run-time system installs
a rule on the switch for processing subsequent packets in that
microflow.2 Every 30 seconds, the system gathers statistics for the
query, not by diverting additional packets, but by querying the
counters maintained by the switches.

There are two additional considerations in this cost analysis for
statistics queries. First, if multiple statistics queries are interested in
information about the same microflow, then the costs are shared—
no matter how many statistics queries are interested in a microflow
at most one packet will diverted to the controller. Second, if the
underlying forwarding policy changes then the installed microflow
rules must be uninstalled as the actions associated with the rules
may be wrong. The reason is that the rules used to collect statistics
on the switch are also used to perform forwarding and may, for
example, be forwarding the given microflow out on one port in the
old policy and a different port in the new policy. Thus, when the
policy changes, additional packets may be diverted from the fast
path as the network adapts to the change.

The above analysis applies specifically to statistics queries,
as statistics can be tabulated on switches and collected later by
the controller. Packet queries are different because every packet
that appears in the result of a packet query must go to the con-
troller. Hence packet queries without a Limit clause are inherently
expensive—in effect, the switch hardware cannot be used at all be-
cause every packet in each pertinent microflow must be diverted
to the controller. With a Limit clause, the costs are reduced. For
example, with a Limit(1), as in the query used in the learning

2 Of course, due to network race conditions and the non-zero latency of
switch-controller communication, it may be the case that prior to installing
the new rule, a few additional packets in the same microflow hit the switch
and are diverted to the controller. Hence, to be perfectly accurate, one packet
“modulo network race conditions” is diverted from the fast path.

switch, the cost of a packet query is similar to the cost of an analo-
gous statistics query.

Deep Packet Inspection. To implement deep packet inspection in
Frenetic, one only needs to write a query that returns the packets to
inspect—e.g., the following query returns all web traffic:

def web_packets_query():
return (Select(packets) *

Where(srcport_fp(80)))
def dpi():
web_packets_query() >> analyze_packet()

Of course, as just explained, unrestricted packet queries such as
this one do not make effective use of switch hardware and divert
many packets to the controller. However, this is not a limitation
of the Frenetic design, it is a limitation of the popular OpenFlow
platform on which Frenetic sits. In the future, OpenFlow switches
may well be extended to allow efficient querying of additional bits
of every packet in hardware. When such extensions are available,
we anticipate it will be straightforward to extend the Frenetic query
language to support deep packet inspection efficiently. For now, to
maintain a clear cost model for Frenetic queries—i.e., one where
cost depends on the number of microflows, not the number of
packets in a microflow (except for packets returned by the query)—
we do not support deep packet inspection in queries themselves.

Summary. The Frenetic query language supports a collection of
orthogonal, high-level query operators. The Frenetic run-time sys-
tem supports the abstraction that these operators read, but do not
modify network state. The key consequence of this abstraction is
that queries compose seamlessly with one another. The Frenetic
run-time system also suppresses superfluous packets that occur due
to race conditions in the underlying network, giving queries a sim-
ple race-free semantics. Finally, Frenetic queries have a simple,
clear cost model that depends primarily on the number of inhab-
ited microflows, not the number of packets within a microflow.

4.2 The Network Policy Management Library
Frenetic programmers manage the policy that governs the forward-
ing of packets through the network using a combinator library for
functional, reactive programming (FRP). The library design is in-
spired by Yampa [12] (a language for programming robots) and
its implementation is based on the strategy used in FlapJax [32]
(a library for web programming). However, there is still significant
novelty in applying these old ideas to a new domain. In addition,
Frenetic’s query language, its representation of network state in the
run-time system, and its library of FRP combinators, are all care-
fully designed to work well together.

Basic Concepts. One of the basic operations performed by a
Frenetic program is to construct packet-forwarding rules for in-
stallation on switches. These rules are created using the Rule
constructor, which takes a pattern and a list of actions as argu-
ments. Patterns are similar to the filter patterns used in the query
language—the only difference is that rule patterns do not mention
switches. Actions include forwarding through a particular port p
(forward(p)), flooding through all ports (flood()), sending the
packet to the controller (controller()), and modifying header
field f to a new value v (modify(f,v)). There is no explicit drop
action. The empty list is interpreted as a directive to drop packets.

To associate rules with switches, Frenetic programs must create
network policies. We represent policies in Python as dictionaries
mapping switches to lists of rules.

Frenetic programs control the installation of policies in a net-
work over time by generating policy events. Policy events are infi-
nite, time-indexed streams of values, just like the events generated
from queries that we saw in the previous subsection. In addition

Events
Seconds ∈ int E

SwitchJoin ∈ switch E
SwitchExit ∈ switch E
PortChange ∈ (switch× int× bool) E

Once ∈ α→ α E

Basic Event Functions
>> ∈ α E→ α β EF→ β E

Lift ∈ (a→ β)→ α β EF
>> ∈ α β EF→ β γ EF→ α γ EF

ApplyFst ∈ α β EF→ (α× γ) (β × γ) EF
ApplySnd ∈ α β EF→ (γ × α) (γ × β) EF

Merge ∈ (α E× β E)→ (α option× β option) E
BlendLeft ∈ α× α E× β E→ (α× β) E

BlendRight ∈ β × α E× β E→ (α× β) E
Accum ∈ (γ × (α× γ → γ)→ α γ EF
Filter ∈ (α→ bool)→ α α EF

Listeners
>> ∈ α E→ α L→ unit

Print ∈ α L
Register ∈ policy L

Send ∈ (switch× packet× action) L
Rules and Policies

Rule ∈ pattern× action list→ rule
MakeForwardRules ∈ (switch× port× packet) policy EF

AddRules ∈ policy policy EF

Figure 4. Selected Frenetic Operators.

query returning one packet per source IP
def src_ips() =

return (Select(packets) *
Where(inport_fp(1)) *
GroupBy([srcip]) *
Limit(1))

helper to add switch to a port-packet pair
def add_switch(port,packet):

return (switch(header(packet)),port,packet)

parameterized load balancer
def balance(balancer):

return \
(src_ips() >> # (IP*packet) E
ApplyFst(balancer) >> # (port*packet) E
Lift(add_switch) >> # (switch*port*packet) E
MakeForwardRules() >> # policy E
AddRules()) # policy E

Figure 5. A Parameterized Load Balancer

to policy events and query-generated events, Frenetic also contains
the primitive events Seconds, which contains the number of sec-
onds since the epoch, SwitchJoin and SwitchExit, which con-
tains the identifiers of switches joining or leaving the network, and
PortChange, which contains triples comprising a switch, a port
number, and a boolean value. In this last event, the boolean value
indicates whether the given port on the switch is enabled.

Frenetic also contains Listeners, which represent event con-
sumers. One example of a listener is the primitive Print listener,
which consumes string events by printing them to the console. An-
other example is the Send listener, which consumes events car-
rying a switch, packet, and action list by sending each packet to
the switch and applying the actions to it there. The Register lis-

tener applies a network policy to a network. The type of listeners
of events α E is written α L.

Frenetic programs analyze or transform events using event func-
tions. The type of event functions from α E to β E is written
α β EF. Many such event functions are based on standard oper-
ators found in previous work on FRP. For example, Merge, which
we saw in previous sections, transforms a pair of events into an
event of pairs of options. Lift(f) transforms an ordinary function
f of type (α → β) into an event function of type α β EF that
applies f to each value in its input event. Frenetic also supplies a
derived library of event functions useful specifically in a network-
ing context. For example, MakeForwardRules converts an event
of triples containing a switch, port number, and packet into a for-
warding policy that forwards packets with the same header out the
given port. AddRules folds over the values in its incoming policy
event by repeatedly merging the policies it receives and returning,
at each time step, the total accumulated policy so far.

In the following paragraphs, we will further explain these con-
cepts using examples. For reference, Figure 4 lists a selected set
of the most important Frenetic operators and their types. Note that
the composition operator >> is overloaded and can be used to com-
pose events with event functions, event functions with other event
functions, and events with listeners.

A First Example. The simplest forwarding program just installs
static packet-forwarding rules. The Frenetic program below mimics
the NOX repeater hub presented in Section 3:

rules = [Rule(inport_fp(1),[forward(2)]),
Rule(inport_fp(2),[forward(1)])]

def repeater():
(SwitchJoin() >>
Lift(lambda switch:{switch:rules}) >>
Register())

The network policy in this program contains two rules. The first
matches all packets arriving at port 1 and forwards them out
port 2. Conversely, the second matches packets arriving on port
2 and forwards them out port 1. The repeater function passes the
SwitchJoin event stream to a lifted function that builds an event
carrying dictionaries with switches as keys and the list of rules as
the corresponding value. It then pipes this policy to the Register
listener, which installs it in the run-time system.

One of the first things to notice about this example is that
it composes effortlessly with the network monitoring programs
developed in the previous subsection:

def repeater_web_monitor():
repeater()
all_stats()

Unlike the NOX code we saw before, in Frenetic there is no need to
rewrite and interleave overlapping monitoring code and forwarding
policy code. Because Frenetic presents the abstraction that queries
read, but do not modify the network, these reads do not interfere
with the forwarding policy. Conversely, because queries “see every
packet”, forwarding does not interfere with the semantics of a query
(though, of course, sending packets along a monitored link does
affect the results of a query). Under the hood, the Frenetic run-
time system manages the interactions between the OpenFlow rules
generated by queries implementation and the rules generated by the
network policy.

A Simple Load Balancer. A load balancer is a switch that re-
ceives traffic on its incoming ports and multiplexes that traffic out
its outgoing ports. Our load balancer will multiplex traffic based
on source IPs: traffic from the same source IP will be forwarded
through the same output port; traffic from different source IPs may
be forwarded through different output ports.

Filter away rules involving
elements of ip_list from policy
def filter_ips(ip_list,policy):

secure_policy = policy
for ip in ip_list:
secure_policy = delete_ip(ip,secure_policy)

return secure_policy

Filter away rules involving
elements of bad_ips() from policyE
def secure(policyE):

return (BlendLeft({},bad_ips(),policyE) >>
Lift(filter_ips))

Apply the load balancer followed
by the security filter
def secure_balance():

(secure(balance(weighted_balancer())) >>
Register())

Figure 6. Securing the weighted balancer. The bad ips event and
delete ip function are elided.

Figure 5 presents the code for the core load balancing algo-
rithm. The code uses a query (defined by src ips) to gener-
ate an event with one value for each new source IP in a packet
arriving on port 1. The main routine, balance, takes an argu-
ment balancer, which is an event function that transforms IP ad-
dresses into ports (we assume traffic will be multiplexed through
ports 2 through OUTPORTS). The balance function itself runs the
src ips query to generate an event for each new IP address seen,
runs the balancer to determine the appropriate port through which
to forward those packets, and uses library functions to construct the
network policy as the result.

The balancer can be instantiated in many different ways. For
example, the programmer might assume a uniform distribution of
traffic across IP addresses and hash each source IP to a port,

def hash_balancer():
return Lift(lambda ip,port:hash_ip_to_port(ip))

or they might implement round-robin load balancing:

def rr_balancer():
next = lambda ip,port:(port%(OUTPORTS-1))+2
return (Accum(1,next))

Yet another possibility is to monitor the load on the switch and
implement the load balancer using dynamic traffic levels. The
ip monitor program below queries the packet counts by IP ad-
dress every INTERVAL seconds. Then weighted balancer pipes
the result of the query into an event function weighted choice
(whose definition is elided), that selects the next port to forward
through based on current traffic levels.

def ip_monitor():
return (Select(counts) *

Where(inport_fp(1)) *
GroupBy([srcip]) *
Every(INTERVAL))

def weighted_balancer():
return (ip_monitor() >>

weighted_choice())

Any of the above balancing functions can be used in conjunction
with the generic balancer as follows.

NOX

Run-Time System

 Frenetic Program

install
uninstall

packet_in
stats_in

subscribe
register

E Packet
E int

Figure 7. Frenetic architecture.

def balance_switch():
balance(weighted_balancer()) >>
Register()

Interestingly, while creating this parameterized load balancer with
Frenetic is a relatively straight-forward exercise in functional pro-
gramming, simulating it in NOX is substantially more difficult. The
crux of the problem is that the parameterized balancing algorithm
(the function balance) cannot be defined in NOX without risk-
ing interference from the monitoring rules needed by components
such as weighted balance. The simplest NOX solution is likely
to make multiple copies of the code—one for each separate bal-
ancing function—and handle interfering rules manually. Frenetic’s
run-time system handles all such interference automatically.

Composing Forwarding Decisions. The previous examples illus-
trate composition of queries with each other and with a single pol-
icy module. It is also possible to compose a routine that computes
a forwarding policy with separate routines that transform or alter
the policy. A typical example is a security module that prevents
known bad source IPs from sending traffic, as shown in Figure 6.
Frenetic’s functional style makes such examples easy to code. It is
typically much more difficult to compose the forwarding policies
computed by different NOX modules, unless those modules act on
completely disjoint sets of packets.

Summary. Most network programs involve a combination of
monitoring and forwarding. Because queries can always “see ev-
ery network packet” independently of the forwarding policies ex-
pressed by other modules, monitoring and policy components com-
pose seamlessly in Frenetic. Moreover, because of Frenetic’s func-
tional style, post-facto application of policy modifiers, such as our
security module, is trivial. Overall, it is far easier to write simple,
modular, reuseable programs in Frenetic than it is in NOX.

5. Frenetic Implementation
Frenetic provides high-level abstractions that free programmers
from having to reason about a host of low-level details involving the
underlying switch hardware. However, the need to deal with these
low-level details does not just disappear because programs operate
at a higher level. The rubber meets the road in the implementation,
which is described in this section.

We have implemented a complete working prototype of Fre-
netic as an embedded combinator library in Python. Figure 2 de-
picts its architecture, which is organized around three main pieces:
the language itself, the run-time system, and NOX. The use of NOX
is convenient but not essential—we could also use any other con-
troller as a back-end.

function packet in(packet, inport)
isSubscribed := false
actions := []
for (query, event, counters, requests) ∈ subscribers do

if query.matches(packet.header) then
event.push(packet)
isSubscribed := true

for rule ∈ rules do
if (rule.pattern).matches(packet.header) then

actions.append(rule.actions)
if isSubscribed then

send packet(packet, actions)
else

install(packet.header,DEFAULT,None, actions)
flows.add(packet.header)

function stats in(xid, packets, bytes)
for (query, event, counters, requests) ∈ subscribers do

if requests.contains(xid) then
counters.add(packets, bytes)
requests.remove(xid)
if requests.is empty() then

event.push(counters)

function stats loop()
while true do

query := next stats()
counters.reset()
for pattern ∈ flows do

if query.matches(pattern) then
xid := stats request(pattern)
requests.add(xid)

sleep(next stats window())

Figure 8. Frenetic run-time system handlers

The central piece of the implementation is the run-time system,
which sits between the high-level program and NOX. It manages
all of the bookkeeping related to installing and uninstalling rules on
switches and also generates the necessary communication patterns
between switches and the controller. To do all of this, the run-time
maintains several global data structures:

• policy, a dictionary from switches to sets of high-level rules that
describes the current packet-forwarding policy,

• flows, a set of low-level rules currently installed on the switches
in the network, and

• subscribers, a set of tuples containing a defining query, an
event for that subscriber, byte and packet counts, and a list of
outstanding statistics requests.

To translate the high-level forwarding policy registered in the run-
time into switch-level rules, the run-time uses a simple strategy
that reacts to flows of network traffic as they occur. At the start
of the execution of a program, the flow table of each switch in
the network is empty, so every packet is sent to the controller and
passed to the packet in handler. When it receives a packet, this
function first iterates through the set of subscribers and propagates
the packet to each subscriber whose defining query includes the
packet in its result. Next, it traverses the policy and collects up the
list of actions specified in all rules. Finally, it processes the packet
in one of two ways: If there are no subscribers for the packet, then
it installs a switch-level rule that processes future packets with the
same header fields without involving the controller. Or, if there are
subscribers for the packet, then the run-time sends the packet back

Connectivity Heavy Hitters Web Stats
HUB LSW LFLSW HUB LSW LFLSW HUB LSW LFLSW

NOX Lines of Code 20 55 75 110 198 104 135
Controller Traffic (kB) 12.8 13.5 31.3 9.3 10.3 ? 4.5 4811 ?
Aggregate Traffic (kB) 69.2 42.3 64.1 57.2 36.1 14.1 9.0

Frenetic Lines of Code 6 30 58 29 53 81 13 37 65
Controller Traffic (kB) 9.1 12.0 12.4 11.1 10.6 10.9 4.5 5.1 5.8
Aggregate Traffic (kB) 65.6 41.0 41.5 55.0 36.4 36.9 13.6 9.20 9.9

Table 1. Experimental results.

to the switch and applies the actions there, but does not install a
rule, as doing so would prevent future packets from being sent to
the controller (and, by extension, the subscribers that need to be
supplied with those packets). In effect, this strategy dynamically
unfolds the forwarding policy expressed in the high-level rules into
switch-level rules, moving processing off the controller and onto
switches in a way that does not interfere with any subscriber.

The run-time uses a slightly different strategy to implement ag-
gregate statistics subscribers, making use of the byte and packet
counters maintained by the switches. The run-time system executes
a loop that waits until the window for a statistics subscriber expires.
At that point, it traverses the flows set and issues a request for the
byte and packet counters from each switch-level rule whose pat-
tern matches the query, adding the request identifier to the set of
outstanding requests maintained for this subscriber in subscribers.
The stats_in handler receives the asynchronous replies to these
requests, adds the byte and packet counters to the counters main-
tained for the subscriber in subscribers, and removes the request id
from the set of outstanding requests. When the set of outstanding
requests becomes empty, it pushes the counters, which now contain
the correct statistics, onto the subscriber’s event stream.

Figure 8 gives pseudo-code for the NOX handlers used in the
Frenetic run-time system. These algorithms describe the basic be-
havior of the run-time, but elide some additional complications and
details3 that the actual implementation has to deal with such as spu-
rious packets that get sent to the controller due to race conditions
between the receipt of a message to install a rule and the arrival of
the packet at the switch.

The other piece of the Frenetic implementation is the library
of FRP operators themselves. This library defines representations
for events, event functions, and listeners, as well as each of the
primitives in Frenetic. Unlike classic FRP implementations, which
support continuous streams called behaviors as well as discrete
streams called events, Frenetic focuses almost exclusively on dis-
crete streams. This means that the pull-based strategy used in most
previous FRP implementations, which is optimized for behaviors,
is not a good fit for Frenetic. Accordingly, our FRP library uses a
push-based strategy to propagate values from inputs to outputs.

The run-time system’s use of exact-match rules follows the
approach used in Ethane [9] and many OpenFlow-based applica-
tions [18, 21], and is well-suited for dynamic settings. Moreover,
exact-match rules use the plentiful conventional memory (e.g.,
SRAM) many switches provide, as opposed to the small, expensive,
power-hungry Ternary Content Addressable Memories (TCAMs)
needed to support wildcards. Still, wildcard rules are more concise

3 For example, when the forwarding policy changes, some of the rules
installed on switches may be stale and must be uninstalled. But when
the run-time uninstalls a rule on a switch, the byte and packet counters
associated with the switch-level rule must not be lost. Thus, the Frenetic
run-time defines a flow_removed handler that receives the counters for
uninstalled rules and adds them to the counters maintained on the controller.

and well-suited for static settings. We plan to develop a proactive,
priority-based wildcard approach as part of Frenetic’s run-time in
the near future. Longer term, we plan to extend the run-time to
adaptively select between exact-match and wildcard rules, depend-
ing on the capabilities of the switches in the network.

6. Evaluation
To evaluate our design for Frenetic, we implemented several sim-
ple applications in Frenetic and compared them against equivalent
NOX programs on three metrics: lines of code, traffic to controller,
and total traffic. The lines of code metric gives a measure of the
complexity of each program, as well as the savings from code reuse
when modules are composed. The controller traffic measures the
total amount of communication between the switch and controller,
which quantifies the overhead of managing switch-level rules using
a run-time system. Finally, the aggregate traffic metric measures
the total amount of traffic on every link in the network.

Setup and Methodology. We ran our experiments using the
Mininet virtualization environment [26] on a Linux host with a
2.4GHz Intel Core2 Duo processor and 4GB of RAM. Mininet
does not provide performance fidelity but does give accurate traffic
measurements. For the lines of code metric, we counted up to 80
characters of properly-indented Python excluding whitespace. We
used Wireshark to tally controller and total traffic.

Microbenchmarks. We compared the performance of Frenetic
against NOX using the following microbenchmarks:

• All-Pairs Connectivity: each host sends and receives ICMP
(ping) packets to/from all other hosts. This benchmark tests
whether the forwarding policy establishes basic connectivity.

• Web Statistics: each host generates a single request to a web
server and the controller monitors the aggregate HTTP traf-
fic every five seconds. This tests the performance of simple
monitoring—a common network administration task.

• Heavy Hitters: each host sends and receives ICMP packets
to/from a variety of other hosts in the network. The controller
collects per-host statistics and reports the top-k traffic sources.
This illustrates a more sophisticated monitoring application.

Note that none of these microbenchmarks specify the underly-
ing policy used to forward packets in the network. We ran each
microbenchmark using several different policies:

• Hub: The hub (HUB) policy floods packets received on one
port out on all other ports, except the port the packet arrived on.

• Learning Switch: The learning switch (LSW) policy dynam-
ically learns the association between hosts and ports as it sees
traffic. It floods packets to unknown destinations but outputs
packets to known hosts on the port the host is connected to.

C
on

tr
ol

le
rT

ra
ffi

c
(k

B
)

Hosts

(a) All-Pairs Connectivity

0

510

1020

1530

2040

25 50

NOX
Frenetic

C
on

tr
ol

le
rT

ra
ffi

c
(k

B
)

Hosts

(c) Heavy Hitters

0

45

90

135

180

25 50

NOX
Frenetic

C
on

tr
ol

le
rT

ra
ffi

c
(k

B
)

Hosts

(b) Web Statistics

0

15

30

45

60

25 50

NOX
Frenetic

Figure 9. Scalability experimental results.

Connectivity Multi-get

NOX Controller Traffic (kB) 5.9 3.2
Aggregate Traffic (kB) 34.8 30.1

Frenetic Controller Traffic (kB) 12.0 11.8
Aggregate Traffic (kB) 41.0 38.9

Table 2. Wildcard experimental results.

• Loop-Free Learning Switch: The loop-free learning switch
(LFLSW) learns the host-port mapping and the network topol-
ogy using custom protocols of our own design. From these two
pieces of information, it calculates a spanning tree and uses this
to avoid forwarding loops when flooding packets.

Results. The results of our experiments are given in Table 1. They
demonstrate a few key points. First, on these benchmarks, Fre-
netic performs comparably with hand-written NOX programs de-
spite being implemented using a run-time system. Second, Frenetic
provides substantial code savings to the network programmer. In
particular, Frenetic’s compositional semantics allowed us to eas-
ily compose the monitoring modules with each of the forward-
ing policies—the size of each composition is exactly the sum of
the sizes of the inputs (the monitoring queries for Web Stats and
Heavy Hitters are 23 and 7 lines, respectively)—unlike the NOX
programs, which had to be manually refactored to correctly imple-
ment each version of the microbenchmark.4 Finally, the aggregate
traffic statistics for LFLSW on the connectivity experiment demon-
strate that by using Frenetic, programmers can write sophisticated
network programs that actually consume less network capacity than
hand-written NOX programs. The reason for this difference is that
the Frenetic LFLSW dynamically reacts to network events while
the NOX version uses periodic polling to discover the network
topology, which produces more total traffic on the network.

These microbenchmarks demonstrate that Frenetic’s run-time
system achieves adequate performance in some common scenarios.
But they are far from comprehensive. There are certainly many sit-
uations where Frenetic’s run-time system does not perform as well
as hand-written NOX programs—e.g., when the optimal implemen-
tation of the forwarding policy uses wildcard rules. To demonstrate
such a situation, we implemented a “wildcard learning switch”
which is similar to the standard MAC learning switch distributed
with NOX but installs wildcard rules instead of microflow rules.
More specifically, the controller installs flow table entries that con-
strain only the learned source and destination MAC addresses, but
leave all other header fields as wildcards. In situations where two

4 In fact, refactoring the benchmarks to use the loop-free learning switch
was sufficiently difficult that we did not complete it, despite the fact that
NOX provides a topology module and we had already implemented hub
and learning switch versions of the benchmarks.

hosts communicate across multiple distinct microflows sharing a
common source and destination MAC address, the wildcard learn-
ing switch will perform better, according to these metrics. Table 2,
compares the wildcard learning switch to the Frenetic run-time sys-
tem on the connectivity benchmark and another benchmark called
multi-get, which generates multiple concurrent HTTP requests to
different TCP ports—i.e., two hosts with the same source and desti-
nation MACs communicate using multiple distinct microflows. As
the results show, the NOX application which uses wildcards signif-
icantly outperforms the reactive, microflow based approach used in
Frenetic. We are currently working to extend the run-time system
to support wildcard rules.

Scalability Experiments. For each microbenchmark, we also
conducted a scalability experiment to evaluate whether Frenetic
programs would continue performing comparably to NOX pro-
grams as the number of hosts in the network grows. In each ex-
periment, we used a single switch running the learning switch
forwarding policy, but scaled the number of hosts up from 1 to
50. The results in Figure 9 confirm that Frenetic performance
scales comparably—and in many cases better than—NOX. We
hypothesize a simple reason for this difference: a common NOX
idiom, which we used in our implementations of the NOX bench-
marks, is to install rules with timeouts. This ensures that rules
“self-destruct” without the programmer having to perform extra
bookkeeping to remember all of the installed rules. However, such
timeouts result in additional packets being sent to the controller,
both in flow removed messages and for subsequent flow setups.
In contrast, Frenetic’s run-time system reacts to changes in the for-
warding policy and manages the set of installed rules automatically,
obviating the need for timeouts.

Further Experience. In addition to the quantitative benchmarks
discussed so far, we have implemented a collection of network util-
ities in Frenetic to validate our language design. This list of pro-
grams ranges from essential network functions to novel applica-
tions that implement new functionality. Frenetic’s modular design
makes it easy to build new tools out of simpler, reuseable parts.
Code for these examples is hosted on the Frenetic web site [2].

• Discovery. Discovers the network topology.
• Spanning Tree. Computes a spanning tree from the topology.
• All-Pairs Shortest-Path Routing. Uses the topology to com-

pute a forwarding policy based on shortest paths.
• Load Balancer. Connects incoming traffic to one of several

replica servers. Can be instantiated with many heuristics to
balance incoming traffic across back-end servers.

• Fault-tolerant Routing. Connects incoming traffic to one of
several replica switches, organized into several layers. When a
switch goes down, traffic is routed through the other switches
in the same layer.

• Address Resolution Protocol (ARP) Server. Implements ARP
in the network, by maintaining a global view of the IP-MAC
address mapping.

• Dynamic Host Configuration (DHCP) Server. Implements
DHCP to bootstrap network hosts with logical (IP) addressing
information.

• Memcached Query Router. Connects clients to virtual servers
implementing a key-value store. The switch translates between
the virtual addresses assigned to servers and the servers’ phys-
ical addresses. When servers fail, it reassigns its virtual ad-
dresses to another server; when new servers becomes available,
virtual addresses from other servers are remapped to it.

• Scan-Free Learning Switch. Generalized learning switch. De-
tects and blocks malicious hosts that scan the network.

• DDoS Defense. Detects anomalies in the amount of traffic sent
over the network and drops packets from the offending hosts.

7. Related Work
This paper extends preliminary work by some of the authors,
which was presented at a workshop on programmable network
devices [19]. The earlier paper did not describe a run-time system,
query language, or any significant applications, and did not provide
an evaluation of the language’s design or its implementation.

The OpenFlow platform provides a uniform interface for pro-
gramming physical network switches [3, 30, 31]. Many other plat-
forms for programming network devices have also been proposed.
The Click modular router [24] shares the general goal of mak-
ing network devices programmable and, like Frenetic, emphasizes
modularity as an organizing design principle. But Click exclusively
targets software switches (implemented as a Linux kernel module)
while Frenetic can be used with physical switches (implemented
using special-purpose hardware). RouteBricks [15] attempts to ob-
tain better performance from software switches implemented us-
ing stock machines. Bro [35] and Snortran [16] allow programmers
to express rich packet-filtering and monitoring policies for secur-
ing networks and detecting intrusions while Shangri-La [10] and
FPL-3E [14] compile high-level packet-processing programs down
to special packet-processing hardware and FPGAs. The key dif-
ference between Frenetic and all of these systems is that they are
limited to a single device. Thus, they do not address the issue of
how to program a collection of interconnected switches.

The Frenetic implementation uses the NOX controller [20],
which provides convenient C++ and Python APIs for handling raw
events and communicating with switches. Several other OpenFlow
controllers have also been proposed. Beacon [1] is similar to NOX
but provides a Java API. Maestro [8] provides a modular mecha-
nism for managing network state using programmer-defined views.
It is also multi-threaded, which increases throughout dramatically.
Onix [25] provides abstractions for partitioning and distributing
network state onto multiple distributed controllers, which addresses
the scalability and fault-tolerance issues that arise when using a
centralized controller. SNAC [4] provides high-level patterns (sim-
ilar to Frenetic’s filter patterns) for specifying access control poli-
cies as well as a graphical monitoring tool but is not a general
programming environment. The Flow Management Language [23]
also provides a high-level pattern language for specifying security
policies in OpenFlow networks [23].

Frenetic’s event functions are modeled after functional reactive
languages such as Yampa and others [17, 32, 34, 36], and many
of our primitives are borrowed directly from these languages. Fre-
netic’s push-based implementation of the functional reactive com-
binators is based on FrTime [11] and is also similar to adaptive
functional programming [5]. The Flask [29] language applies func-

tional reactive programming to sensor networks in a staged lan-
guage. The key differences between Frenetic and all of these lan-
guages are in the application domain (networking as opposed to
animation, robotics, and others) and in the design of our query lan-
guage and run-time system, which uses the capabilities of switches
to avoid sending packets to the controller.

At a high level, Frenetic is also similar to streaming languages
such as StreamIt [38], CQL [6], Esterel [7], Brooklet [37], etc.
The FRP operators used in Frenetic are more to our taste, but one
could easily build a system that retained the main elements of our
design (e.g., the query language and the run-time system) but used
different constructs for processing streams of network events.

The Nettle [39] language also uses FRP combinators to pro-
gram OpenFlow switches. A Nettle program takes a stream of raw
OpenFlow events as input (e.g., switch join, port change, packet in,
etc.) and produces a stream of raw OpenFlow messages as out-
put (e.g., install, uninstall, query stats, etc.). Although Nettle and
Frenetic appear superficially similar—both use FRP for OpenFlow
networks—a closer inspection reveals substantial differences. The
most important difference is that Nettle operates at a lower level of
abstraction than Frenetic: it is an effective substitute for NOX while
Frenetic sits on top of NOX (and, in the future, could potentially
sit on top of Nettle). Nettle does not offer any analog of Frenetic’s
query language or its run-time system and so Nettle programs work
in terms of low-level OpenFlow concepts such as switch-level rules,
priorities, and timeouts. As such it suffers from all of the limita-
tions of NOX discussed in Section 3—e.g., Nettle programs cannot
be easily composed and are susceptible to network race conditions.

NDLog, an extension of Datalog developed by Loo, Heller-
stein, et al. has been used to specify and implement routing pro-
tocols, overlay networks, and services such as distributed hash ta-
bles [27, 28]. Both Frenetic and NDLog use high-level languages to
program networks, but there are some important differences. One is
NDLog’s focus on routing protocols and overlay networks, whereas
Frenetic programs can be used to implement finer-grained packet-
processing including rewriting header fields. Another difference is
that NDLog programs are written in an explicitly distributed style
while Frenetic offers the programmer the abstraction of a central-
ized view of the network. This dramatically changes the way that
programs must be written: an NDLog programmer crafts a sin-
gle query that is evaluated on every router in the network while
a Frenetic programmer writes a program from the omniscient per-
spective of the controller and run-time system distributes low-level
rules to the switches in the network. Finally, deploying NDLog in
a production network would require deep changes to the way that
switches are built, as it requires each switch to run a custom Data-
log engine. Frenetic targets OpenFlow, which is already supported
by several vendors, and so can be deployed immediately.

One of the main challenges in the implementation of Frenetic
is splitting work between the (powerful but slow) controller and
the (fast but limited) switches. Gigascope [13], a stream database
for monitoring networks, addresses the same problem but, unlike
Frenetic, only supports querying traffic and cannot be used to
control the processing of packets in the network.

8. Conclusions and Future Work
This paper describes the design and implementation of Frenetic, a
new language for programming OpenFlow networks. Frenetic ad-
dresses some serious problems with the OpenFlow/NOX program-
ming model by introducing a collection of high-level and composi-
tional operators for querying and transforming streams of network
traffic. A run-time system handles all of the details related to in-
stalling and uninstalling low-level rules. An experimental evalua-
tion demonstrates that the performance of Frenetic’s run-time sys-
tem is competitive with hand-written OpenFlow/NOX programs.

We are currently working to extend Frenetic in several direc-
tions. One thread of work is developing security applications for
performing authentication and access control, and for ensuring iso-
lation between logical networks that share a common physical in-
frastructure. We are also designing a new run-time system that gen-
erates rules from the registered subscribers and forwarding rules
eagerly. We plan to compare the tradeoffs between different rule-
generation strategies empirically.

Acknowledgments. We wish to thank Matthew Meola, Mark Re-
itblatt, and Minlan Yu for many helpful discussions, and the anony-
mous ICFP reviews for their insightful comments. Our work is
supported in part by ONR grants N00014-09-1-0770 Networks Op-
posing Botnets and N00014-09-1-0652 Fabric: A Higher-Level Ab-
straction for Building Secure Distributed Applications. Any opin-
ions, findings, and recommendations are those of the authors and
do not necessarily reflect the views of the ONR.

References
[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, Nov 2010.
[2] The Frenetic language. See http://www.frenetic-lang.org/,

Nov 2010.
[3] OpenFlow. See http://www.openflowswitch.org, Nov 2010.
[4] SNAC. See http://snacsource.org/, 2010.
[5] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive func-

tional programming. TOPLAS, 28:990–1034, November 2006.
[6] Arvind Arasu, Shivanth Babu, and Jennifer Widom. The CQL contin-

uous query language: Semantic foundations and query execution. The
VLDB Journal, 15:121–142, Jun 2006.

[7] Gérard Berry and Georges Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation. Science of
Computer Programming, (2):87–152, 1992.

[8] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. Maestro: A system
for scalable OpenFlow control. Technical Report TR10-08, Rice
University, Dec 2010.

[9] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking en-
terprise network control. Trans. on Networking., 17(4), Aug 2009.

[10] Michael K. Chen, Xiao Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu,
Tao Liu, and Roy Ju. Shangri-la: Achieving high performance from
compiled network applications while enabling ease of programming.
In PLDI, pages 224–236, Jun 2005.

[11] Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In ESOP, pages 294–308, 2006.

[12] Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa
arcade. In Haskell Workshop, pages 7–18, Aug 2003.

[13] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: A stream database for network applications.
In SIGMOD, pages 647–651, 2003.

[14] Mihai Lucian Cristea, Claudiu Zissulescu, Ed Deprettere, and Herbert
Bos. FPL-3E: Towards language support for reconfigurable packet
processing. In SAMOS, pages 201–212. Jul 2005.

[15] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. RouteBricks: Exploiting parallelism to scale soft-
ware routers. In SOSP, Oct 2009.

[16] Sergei Egorov and Gene Savchuk. SNORTRAN: An Optimizing Com-
piler for Snort Rules. Fidelis Security Systems, 2002.

[17] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP,
pages 163–173, Jun 1997.

[18] David Erickson et al. A demonstration of virtual machine mobility in
an OpenFlow network, Aug 2008. Demo at ACM SIGCOMM.

[19] Nate Foster, Rob Harrison, Matthew L. Meola, Michael J. Freedman,
Jennifer Rexford, and David Walker. Frenetic: A high-level langauge
for OpenFlow networks. In PRESTO, Nov 2010.

[20] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[21] Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McK-
eown, and Ramesh Johari. Plug-n-Serve: Load-balancing web traffic
using OpenFlow, Aug 2009. Demo at ACM SIGCOMM.

[22] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiak-
oumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastic-
Tree: Saving energy in data center networks. In NSDI, Apr 2010.

[23] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In WREN, pages 1–10, 2009.

[24] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, Aug 2000.

[25] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling,
Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hi-
roaki Inoue, Takayuki Hama, and Scott Shenker. Onix: A distributed
control platform for large-scale production networks. In OSDI, Oct
2010.

[26] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a
laptop: Rapid prototyping for software-defined networks. In HotNets,
pages 1–6, 2010.

[27] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. SIGOPS, 39(5):75–90, 2005.

[28] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In SIGCOMM, pages 289–300, 2005.

[29] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged
functional programming for sensor networks. In ICFP, pages 335–
346, 2008.

[30] John Markoff. Open networking foundation pursues new standards.
The New York Times, Mar 2011. See http://nyti.ms/eK3CCK.

[31] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[32] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi.
Flapjax: A programming language for Ajax applications. In OOPSLA,
pages 1–20, 2009.

[33] Ankur Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Reso-
nance: Dynamic access control in enterprise networks. In WREN, Aug
2009.

[34] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
reactive programming, continued. In Haskell Workshop, pages 51–64,
Oct 2002.

[35] Vern Paxson. Bro: A system for detecting network intruders in real-
time. Computer Networks, 31(23–24):2435–2463, Dec 1999.

[36] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion:
Controlling robots with Haskell. In PADL, Jan 1999.

[37] Robert Soulé, Martin Hirzel, Robert Grimm, Buǧra Gedik, Henrique
Andrade, Vibhore Kumar, and Kun-Lung Wu. A universal calculus for
stream processing languages. In ESOP, pages 507–528, 2010.

[38] William Thies, Michal Karczmarek, and Saman Amarasinghe.
Streamit: A language for streaming applications. In International Con-
ference on Compiler Construction, pages 179–196, Apr 2002.

[39] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive pro-
gramming of OpenFlow networks. In PADL, Jan 2011.

[40] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-
based server load balancing gone wild. In Hot-ICE, Mar 2011.

	Introduction
	Background on OpenFlow and NOX
	Analysis of OpenFlow/NOX Difficulties
	Interactions Between Concurrent Modules
	Low-Level Programming Interface
	Two-Tiered System Architecture
	Network Race Conditions

	Frenetic Language Design
	The Network Query Language
	The Network Policy Management Library

	Frenetic Implementation
	Evaluation
	Related Work
	Conclusions and Future Work

