
DevoFlow: Scaling Flow Management for
High-Performance Networks∗

Andrew R. Curtis Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula
University of Waterloo Puneet Sharma, Sujata Banerjee

HP Labs — Palo Alto

ABSTRACT
OpenFlow is a great concept, but its original design im-
poses excessive overheads. It can simplify network and traf-
fic management in enterprise and data center environments,
because it enables flow-level control over Ethernet switch-
ing and provides global visibility of the flows in the net-
work. However, such fine-grained control and visibility comes
with costs: the switch-implementation costs of involving the
switch’s control-plane too often and the distributed-system
costs of involving the OpenFlow controller too frequently,
both on flow setups and especially for statistics-gathering.

In this paper, we analyze these overheads, and show that
OpenFlow’s current design cannot meet the needs of high-
performance networks. We design and evaluate DevoFlow,
a modification of the OpenFlow model which gently breaks
the coupling between control and global visibility, in a way
that maintains a useful amount of visibility without impos-
ing unnecessary costs. We evaluate DevoFlow through simu-
lations, and find that it can load-balance data center traffic
as well as fine-grained solutions, without as much overhead:
DevoFlow uses 10–53 times fewer flow table entries at an av-
erage switch, and uses 10–42 times fewer control messages.

Categories and Subject Descriptors.
C.2 [Internetworking]: Network Architecture and Design
General Terms. Design, Measurement, Performance
Keywords. Data center, Flow-based networking

1. INTRODUCTION
Flow-based switches, such as those enabled by the Open-

Flow [35] framework, support fine-grained, flow-level control
of Ethernet switching. Such control is desirable because it
enables (1) correct enforcement of flexible policies without
carefully crafting switch-by-switch configurations, (2) visi-
bility over all flows, allowing for near optimal management
of network traffic, and (3) simple and future-proof switch
design. OpenFlow has been deployed at various academic
institutions and research laboratories, and has been the ba-
sis for many recent research papers (e.g., [5, 29, 33, 39, 43]),

∗The version of this paper that originally appeared in the
SIGCOMM proceedings contains an error in the description of
Algorithm 1. This version has corrected that error.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

as well as for hardware implementations and research pro-
totypes from vendors such as HP, NEC, Arista, and Toroki.

While OpenFlow was originally proposed for campus and
wide-area networks, others have made quantified arguments
that OpenFlow is a viable approach to high-performance
networks, such as data center networks [45], and it has been
used in proposals for traffic management in the data center
[5,29]. The examples in this paper are taken from data center
environments, but should be applicable to other cases where
OpenFlow might be used.

OpenFlow is not perfect for all settings, however. In par-
ticular, we believe that it excessively couples central control
and complete visibility. If one wants the controller to have
visibility over all flows, it must also be on the critical path of
setting up all flows, and experience suggests that such cen-
tralized bottlenecks are difficult to scale. Scaling the central
controller has been the topic of recent proposals [11,33,47].
More than the controller, however, we find that the switches
themselves can be a bottleneck in flow setup. Experiments
with our prototype OpenFlow implementation indicate that
its ratio of data-plane to control-plane bandwidth is four or-
ders of magnitude less than its aggregate forwarding rate.
We find this slow control-data path adds unacceptable la-
tency to flow setup, and cannot provide flow statistics timely
enough for traffic management tasks such as load balancing.
Maintaining complete visibility in a large OpenFlow network
can also require hundreds of thousands of flow table entries
at each switch. Commodity switches are not built with such
large flow tables, making them inadequate for many high-
performance OpenFlow networks.

Perhaps, then, full control and visibility over all flows is
not the right goal. Instead, we argue and demonstrate that
effective flow management can be achieved by devolving con-
trol of most flows back to the switches, while the controller
maintains control over only targeted significant flows and
has visibility over only these flows and packet samples. (For
example, load balancing needs to manage long-lived, high-
throughput flows, known as “elephant” flows.) Our frame-
work to achieve this, DevoFlow, is designed for simple and
cost-effective hardware implementation.

In essence, DevoFlow is designed to allow aggressive use
of wild-carded OpenFlow rules—thus reducing the number
of switch-controller interactions and the number of TCAM
entries—through new mechanisms to detect significant flows
efficiently, by waiting until they actually become significant.
DevoFlow also introduces new mechanisms to allow switches
to make local routing decisions, which forward flows that do
not require vetting by the controller.

The reader should note that we are not proposing any rad-
ical new designs. Rather, we are pointing out that a system
like OpenFlow, when applied to high-performance networks,
must account for quantitative real-world issues. Our argu-
ments for DevoFlow are essentially an analysis of tradeoffs

between centralization and its costs, especially with respect
to real-world hardware limitations. (We focus on OpenFlow
in this work, but any centralized flow controller will likely
face similar tradeoffs.)

Our goal in designing DevoFlow is to enable cost-effective,
scalable flow management. Our design principles are:

• Keep flows in the data-plane as much as possible. Involv-
ing the control-plane in all flow setups creates too many
overheads in the controller, network, and switches.
• Maintain enough visibility over network flows for effec-

tive centralized flow management, but otherwise provide
only aggregated flow statistics.
• Simplify the design and implementation of fast switches

while retaining network programmability.

DevoFlow attempts to resolve two dilemmas — a control
dilemma:

• Invoking the OpenFlow controller on every flow setup
provides good start-of-flow visibility, but puts too much
load on the control plane and adds too much setup delay
to latency-sensitive traffic, and
• Aggressive use of OpenFlow flow-match wildcards or

hash-based routing (such as ECMP) reduces control-
plane load, but prevents the controller from effectively
managing traffic.

and a statistics-gathering dilemma:

• Collecting OpenFlow counters on lots of flows, via the
pull-based Read-State mechanism, can create too much
control-plane load, and
• Aggregating counters over multiple flows via the wild-

card mechanism may undermine the controller’s ability
to manage specific elephant flows.

We resolve these two dilemmas by pushing responsibility
over most flows to switches and adding efficient statistics
collection mechanisms to identify significant flows, which are
the only flows managed by the central controller. We discuss
of the benefits of centralized control and visibility in §2, so
as to understand how much devolution we can afford.

Our work here derives from a long line of related work
that aims to allow operators to specify high-level policies
at a logically centralized controller, which are then enforced
across the network without the headache of manually craft-
ing switch-by-switch configurations [10,12,25,26]. This sep-
aration between forwarding rules and policy allows for in-
novative and promising network management solutions such
as NOX [26, 45] and other proposals [29, 39, 49], but these
solutions may not be realizable on many networks because
the flow-based networking platform they are built on—
OpenFlow—is not scalable. We are not the first to make
this observation; however, others have focused on scaling the
controller, e.g., Onix [33], Maestro [11], and a devolved con-
troller design [44]. We find that the controller can present a
scalability problem, but that switches may be a greater scal-
ability bottleneck. Removing this bottleneck requires min-
imal changes: slightly more functionality in switch ASICs
and more efficient statistics-collection mechanisms.

This paper builds on our earlier work [36], and makes
the following major contributions: we measure the costs of
OpenFlow on prototype hardware and provide a detailed
analysis of its drawbacks in §3, we present the design and use
of DevoFlow in §4, and we evaluate one use case of DevoFlow
through simulations in §5.

2. BENEFITS OF CENTRAL CONTROL
In this section, we discuss which benefits of OpenFlow’s

central-control model are worth preserving, and which could
be tossed overboard to lighten the load.

Avoids the need to construct global policies from
switch-by-switch configurations: OpenFlow provides an
advantage over traditional firewall-based security mecha-
nisms, in that it avoids the complex and error prone pro-
cess of creating a globally-consistent policy out of local ac-
cept/deny decisions [12, 39]. Similarly, OpenFlow can pro-
vide globally optimal admission control and flow-routing in
support of QoS policies, in cases where a hop-by-hop QoS
mechanism cannot always provide global optimality [31].

However, this does not mean that all flow setups should be
mediated by a central controller. In particular, microflows (a
microflow is equivalent to a specific end-to-end connection)
can be divided into three broad categories: security-sensitive
flows, which must be handled centrally to maintain secu-
rity properties; significant flows, which should be handled
centrally to maintain global QoS and congestion properties;
and normal flows, whose setup can be devolved to individual
switches.

Of course, all flows are potentially“security-sensitive,”but
some flows can be categorically, rather than individually, au-
thorized by the controller. Using standard OpenFlow, one
can create wild-card rules that pre-authorize certain sets of
flows (e.g.: “all MapReduce nodes within this subnet can
freely intercommunicate”) and install these rules into all
switches. Similarly, the controller can define flow categories
that demand per-flow vetting (e.g., “all flows to or from the
finance department subnet”). Thus, for the purposes of secu-
rity, the controller need not be involved in every flow setup.

Central control of flow setup is also required for some
kinds of QoS guarantees. However, in many settings, only
those flows that require guarantees actually need to be ap-
proved individually at setup time. Other flows can be cat-
egorically treated as best-effort traffic. Kim et al. [31] de-
scribe an OpenFlow QoS framework that detects flows re-
quiring QoS guarantees, by matching against certain header
fields (such as TCP port numbers) while wild-carding others.
Flows that do not match one of these “flow spec” categories
are treated as best-effort.

In summary, we believe that the central-control benefits
of OpenFlow can be maintained by individually approving
certain flows, but categorically approving others.

Near-optimal traffic management: To effectively man-
age the performance of a network, the controller needs to
know about the current loads on most network elements.
Maximizing some performance objectives may also require
timely statistics on some flows in the network. (This assumes
that we want to exploit statistical multiplexing gain, rather
than strictly controlling flow admission to prevent oversub-
scription.)

We give two examples where the controller is needed to
manage traffic: load balancing and energy-aware routing.

Example 1: Load balancing via a controller involves col-
lecting flow statistics, possibly down to the specific flow-on-
link level. This allows the controller to re-route or throttle
problematic flows, and to forecast future network loads. For
example, NOX [45] “can utilize real-time information about
network load ... to install flows on uncongested links.”

However, load-balancing does not require the controller
to be aware of the initial setup of every flow. First, some
flows (“mice”) may be brief enough that, individually, they
are of no concern, and are only interesting in the aggregate.
Second, some QoS-significant best-effort flows might not be
distinguishable as such at flow-setup time – that is, the con-
troller cannot tell from the flow setup request whether a flow
will become sufficiently intense (an “elephant”) to be worth
handling individually.

Instead, the controller should be able to efficiently de-
tect elephant flows as they become significant, rather than
paying the overhead of treating every new flow as a poten-
tial elephant. The controller can then re-route problematic
elephants in mid-connection, if necessary. For example, Al
Fares et al. proposed Hedera, a centralized flow scheduler
for data-center networks [5]. Hedera requires detection of
“large” flows at the edge switches; they define “large” as 10%
of the host-NIC bandwidth. The controller schedules these
elephant flows, while the switches route mice flows using
equal-cost multipath (ECMP) to randomize their routes.

Example 2: Energy-aware routing, where routing mini-
mizes the amount of energy used by the network, can sig-
nificantly reduce the cost of powering a network by making
the network power-proportional [8]; that is, its power use
is directly proportional to utilization. Proposed approaches
including shutting off switch and router components when
they are idle, or adapting link rates to be as minimal as pos-
sible [3,7,27,28,40]. For some networks, these techniques can
give significant energy savings: up to 22% for one enterprise
workload [7] and close to 50% on another [40].

However, these techniques do not save much energy on
high-performance networks. Mahadevan et al. [34] found
that, for their Web 2.0 workload on a small cluster, link-rate
adaption reduced energy use by 16%, while energy-aware
routing reduced it by 58%. We are not aware of a similar
comparison for port sleeping vs. energy-aware routing; how-
ever, it is unlikely that putting network components to sleep
could save significant amounts of energy in such networks.
This is because these networks typically have many aggrega-
tion and core switches that aggregate traffic from hundreds
or thousands of servers. It is unlikely that ports can be tran-
sitioned from sleep state to wake state quickly enough to save
significant amounts of energy on these switches.

We conclude that some use of a central controller is
necessary to build a power-proportional high-performance
network. The controller requires utilization statistics for
links and at least some visibility of flows in the network.
Heller et al. [29] route all flows with the controller to achieve
energy-aware routing; however, it may be possible to per-
form energy-aware routing without full flow visibility. Here,
the mice flows should be aggregated along a set of least-
energy paths using wildcard rules, while the elephant flows
should be detected and re-routed as necessary, to keep the
congestion on powered-on links below some safety threshold.

OpenFlow switches are relatively simple and future-
proof because policy is imposed by controller software,
rather than by switch hardware or firmware. Clearly, we
would like to maintain this property. We believe that De-
voFlow, while adding some complexity to the design, main-
tains a reasonable balance of switch simplicity vs. system
performance, and may actually simplify the task of a switch
designer who seeks a high-performance implementation.

3. OPENFLOW OVERHEADS
Flow-based networking involves the control-plane more

frequently than traditional networking, and therefore has
higher overheads. Its reliance on the control-plane has intrin-
sic overheads: the bandwidth and latency of communication
between a switch and the central controller (§3.1). It also has
implementation overheads, which can be broken down into
implementation-imposed and implementation-specific over-
heads (§3.2). We also show that hardware changes alone can-
not be a cost-effective way to reduce flow-based switching
overheads in the near future (§3.3).

3.1 Intrinsic overheads
Flow-based networking intrinsically relies on a communi-

cation medium between switches and the central controller.
This imposes both network load and latency.

To set up a bi-directional flow on an N -switch path, Open-
Flow generates 2N flow-entry installation packets, and at
least one initial packet in each direction is diverted first to
and then from the controller. This adds up to 2N + 4 ex-
tra packets.1 These exchanges also add latency—up to twice
the controller-switch RTT. The average length of a flow in
the Internet is very short, around 20 packets per flow [46],
and datacenter traffic has similarly short flows, with the me-
dian flow carrying only 1 KB [9,24,30]. Therefore, full flow-
by-flow control using OpenFlow generates a lot of control
traffic—on the order of one control packet for every two or
three packets delivered if N = 3, which is a relatively short
path, even within a highly connected network.

In terms of network load, OpenFlow’s one-way flow-setup
overhead (assuming a minimum-length initial packet, and
ignoring overheads for sending these messages via TCP)
is about 94 + 144N bytes to or from the controller—e.g.,
about 526 bytes for a 3-switch path. Use of the optional
flow-removed message adds 88N bytes. The two-way cost
is almost double these amounts, regardless of whether the
controller sets up both directions at once.

3.2 Implementation overheads
In this section, we examine the overheads OpenFlow im-

poses on switch implementations. We ground our discus-
sion in our experience implementing OpenFlow on the HP
ProCurve 5406zl [1] switch, which uses an ASIC on each
multi-port line card, and also has a CPU for management
functions. This experimental implementation has been de-
ployed in numerous research institutions.

While we use the 5406zl switch as an example throughout
this section, the overheads we discuss are a consequence of
both basic physics and of realistic constraints on the hard-
ware that a switch vendor can throw at its implementa-
tion. The practical issues we describe are representative of
those facing any OpenFlow implementation, and we believe
that the 5406zl is representative of the current generation of
Ethernet switches. OpenFlow also creates implementation-
imposed overheads at the controller, which we describe after
our discussion of the overheads incurred at switches.

3.2.1 Flow setup overheads
Switches have finite bandwidths between their data- and

control-planes, and finite compute capacity. These issues can

1The controller could set up both directions at once, cutting
the cost to N +2 packets; NOX apparently has this optimization.

limit the rate of flow setups—the best implementations we
know of can set up only a few hundred flows per second.
To estimate the flow setup rate of the ProCurve 5406zl, we
attached two servers to the switch and opened the next con-
nection from one server to the other as soon as the previous
connection was established. We found that the switch com-
pletes roughly 275 flow setups per second. This number is
in line with what others have reported [43].

However, this rate is insufficient for flow setup in a high-
performance network. The median inter-arrival time for
flows at data center server is less than 30 ms [30], so we
expect a rack of 40 servers to initiate approximately 1300
flows per second—far too many to send each flow to the
controller.

The switch and controller are connected by a fast physical
medium, so why is the switch capable of so few flow setups
per second? First, on a flow-table miss, the data-plane must
invoke the switch’s control-plane, in order to encapsulate the
packet for transmission to the controller.2 Unfortunately, the
management CPU on most switches is relatively wimpy, and
was not intended to handle per-flow operations.

Second, even within a switch, control bandwidth may be
limited, due to cost considerations. The data-plane within a
linecard ASIC is very fast, so the switch can make forwarding
decisions at line rate. On the other hand, the control data-
path between the ASIC and the CPU is not frequently used
in traditional switch operation, so this is typically a slow
path. The line-card ASIC in the 5406zl switch has a raw
bandwidth of 300 Gbit/sec, but we measured the loopback
bandwidth between the ASIC and the management CPU at
just 80 Mbit/sec. This four-order-of-magnitude difference is
similar to observations made by others [13].

A switch’s limited internal bandwidth and wimpy CPU
limits the data rate between the switch and the central
controller. Using the 5406zl, we measured the bandwidth
available for flow-setup payloads between the switch and the
OpenFlow controller at just 17 Mbit/sec.

We also measured the latency imposed. The ASIC can
forward a packet within 5 µs, but we measured a round-trip
time of 0.5 ms between the ASIC and the management CPU,
and an RTT of 2 ms between that CPU and the OpenFlow
controller. A new flow is delayed for at least 2 RTTs (for-
warding the initial packet via the controller is delayed until
the flow-setup RTT is over).

This flow-setup latency is far too high for high-
performance networks, where most flows carry few bytes and
latency is critical. Work from machines that miss their dead-
line in an interactive job is not included in the final results,
lowering their quality and potentially reducing revenue. As
a result, adding even 1ms delay to a latency-sensitive flow
is “intolerable” [6]. Also, others have observed that the de-
lay between arrival of a TCP flow’s first packet and the
controller’s installation of new flow-table entries can create
many out-of-order packets, leading to a collapse of the flow’s
initial throughput [50], especially if the switch-to-controller
RTT is larger than that seen by the flow’s packets.

Alternative approaches minimize these overheads but lose
some of the benefits of OpenFlow. DIFANE [51] avoids these

2While it might be possible to do a simple encapsulation en-
tirely within the data-plane, the OpenFlow specification requires
the use of a secure channel, and it might not be feasible to im-
plement the Transport Layer Security (TLS) processing, or even
unencrypted TCP, without using the switch’s CPU.

overheads by splitting pre-installed OpenFlow wildcard rules
among multiple switches, in a clever way that ensures all
decisions can be made in the data-plane. However, DIFANE
does not address the issue of global visibility of flow states
and statistics. The types of management solutions we would
like to enable (e.g., [5,29]) rely on global visibility and there-
fore it is unlikely they can be built on top of DIFANE. An-
other alternative, Mahout [17], performs elephant flow clas-
sifications at the end-hosts, by looking at the TCP buffer of
outgoing flows, avoiding the need to invoke the controller for
mice. Since this approach requires end-host modifications, it
does not meet our goal of a drop-in replacement for Open-
Flow.

3.2.2 Gathering flow statistics
Global flow schedulers need timely access to statistics. If a

few, long-lived flows constitute the majority of bytes trans-
ferred, then a scheduler can get by collecting flow statistics
every several seconds; however, this is not the case in high-
performance networks, where most of the longest-lived flows
last only a few seconds [30].

OpenFlow supports three per-flow counters (packets;
bytes; flow duration) and provides two approaches for mov-
ing these statistics from switch to controller:

• Push-based: The controller learns of the start of a flow
whenever it is involved in setting up a flow. Option-
ally, OpenFlow allows the controller to request an asyn-
chronous notification when a switch removes a flow ta-
ble entry, as the result of a controller-specified per-flow
timeout. (OpenFlow supports both idle-entry timeouts
and hard timeouts.) If flow-removed messages are used,
this increases the per-flow message overhead from 2N+2
to 3N + 2. The existing push-based mechanism does not
inform the controller about the behavior of a flow before
the entry times out, as a result, push-based statistics are
not currently useful for flow scheduling.
• Pull-based: The controller can send a Read-State mes-

sage to retrieve the counters for a set of flows matching
a wild-card flow specification. This returns 88F bytes for
F flows. Under ideal settings, reading the statistics for
16K exact-match rules and the 1500 wild-card rules sup-
ported on the 5406zl would return 1.3 MB; doing this
twice per second would require slightly more than the 17
Mbit/sec bandwidth available between the switch CPU
and the controller!

Optionally, Read-State can request a report aggre-
gated over all flows matching a wild-card specification;
this can save switch-to-controller bandwidth but loses
the ability to learn much about the behavior of specific
flows.

Pull-based statistics can be used for flow scheduling if they
can be collected frequently enough. The evaluation of one
flow scheduler, Hedera [5], indicates that a 5 sec. control
loop (the time to pull statistics from all access switches,
compute a re-routing of elephant flows, and then update
flow table entries where necessary) is fast enough for near-
optimal load balancing on a fat-tree topology; however, their
workload is based on flow lengths following a Pareto distri-
bution. Recent measurement studies have shown data center
flow sizes do not follow a Pareto distribution [9, 24]. Using
a workload with flow lengths following the distribution of
flow sizes measured in [24], we find that a 5 sec. statistics-
gathering interval can improve utilization only 1–5% over

0 5000 10000 15000 20000 25000 30000 35000
Flow table size (�ows)

0

2

4

6

8

Ti
m

e
to

 p
ul

l s
ta

ti
st

ic
s

(s
)

Average reply time
Maximum reply time

Figure 1: The latency of statistics gathering as the number of flow
table entries is varied on the 5406zl Each point is the average of
10 runs, except for the maximum reply time points which are the
maximum value seen out of those 10 runs. The switch was idle
when the statistics were pulled.

randomized routing with ECMP (details are in §5). This is
confirmed by Raiciu et al., who found that the Hedera con-
trol loop needs to be less than 500ms to perform better than
ECMP on their workload [41].

We measured how long it took to read statistics from the
5406zl as we varied the number of flow table entries. The re-
sults are shown in Figure 1. For this experiment (and all oth-
ers in this section), we attached three servers to the switch:
two servers were clients (A and B) and one was the Open-
Flow controller. To get measurements with no other load on
the switch, we configured the switch so that its flow table
entries never expired. Then, both clients opened ten connec-
tions to each other. The controller waited 5 sec. to ensure
that the switch was idle, and then pulled the statistics from
the switch. This process was repeated until the flow table
contained just over 32K entries.

From this experiment, we conclude that pull-based statis-
tics cannot be collected frequently enough. We find that the
statistic-gathering latency of the 5406zl is less than one sec-
ond only when its flow table has fewer than 5600 entries and
less than 500 ms when it has fewer than 3200 entries, and
this is when there is no other load on the switch. Recall that
a rack of 40 servers will initiate approximately 1300 flows
per second. The default flow table entry timeout is 60 sec.,
so a rack’s access switch can be expected to contain ∼78K
entries, which, extrapolating from our measurements, could
take well over 15 sec. to collect! (The 5406zl does not sup-
port such a large table.) This can be improved to 13K table
entries by reducing the table entry timeout to 10 sec.; how-
ever, it takes about 2.5 sec. to pull statistics for 13K entries
with no other load at the switch, which is still too long for
flow schedulers like Hedera.

In short, the existing statistics mechanisms impose high
overheads, and in particular they do not allow the controller
to request statistics visibility only for the small fraction of
significant flows that actually matter for performance.

3.2.3 Impact on flow setup of statistics-gathering
Statistics-gathering and flow setup compete for the limited

switch-controller bandwidth—the more frequently statistics
are gathered, the fewer flows the switch can set up.

We performed an experiment to measure this interference.

0 1 2 3 4 5 6 7 8 9 10
Stats request rate (req / s)

0

50

100

150

200

250

300

TC
P

 c
o

n
n

ec
ti

o
n

s
ra

te
 (s

o
ck

et
s

/ s
)

TCP connection rate

0

2000

4000

6000

8000

St
at

s
co

lle
ct

ed
 (e

n
tr

ie
s

/ s
)

Stats collected

Figure 2: The flow setup rate between the clients and the num-
ber of statistics collected vs. the number of times statistics are
requested per second. Each point is the average of 10 runs.

Here, each client has infinitely many flows to send to the
other, and connections are established serially, that is, once
one connection is established, another is opened. The client
sends a single packet before closing each connection. We then
vary the number of statistics-pulling requests between 0–10
requests per second.

The results are shown in Figure 2. We measured the num-
ber of connections achieved per second and the number of
flow-entry statistics collected each second, as we varied the
rate of requesting statistics for the entire flow table. It is
clear that statistics-pulling interferes with flow setup. When
statistics are never pulled, the clients can make 275 connec-
tions/sec.; when they are pulled once a second, collecting
counters for just under 4500 entries, the clients can make
fewer than 150 connections/sec.

3.2.4 Switch state size
A limited number of flow entries can be supported in hard-

ware. The 5406zl switch hardware can support about 1500
OpenFlow rules, whereas the switch can support up to 64000
forwarding entries for standard Ethernet switching. One rea-
son for this huge disparity is that OpenFlow rules are stored
in a TCAM, necessary to support OpenFlow’s wildcarding
mechanism, and TCAM entries are an expensive resource,
whereas Ethernet forwarding uses a simple hash lookup in
a standard memory. It is possible to increase the number of
TCAM entries, but TCAMs consume lots of ASIC space and
power. Also, an OpenFlow rule is described by 10 header
fields, which total 288 bits [35], whereas an Ethernet for-
warding descriptor is 60 bits (48-bit MAC + 12-bit VLAN
ID); so, even when fully optimized, OpenFlow entries will
always use more state than Ethernet forwarding entries.

Finally, because OpenFlow rules are per-flow, rather than
per-destination, each directly-connected host will typically
require an order of magnitude more rules. (As we mentioned,
an average ToR switch might have roughly 78,000 flow rules
if the rule timeout is 60 sec.) Use of wildcards could reduce
this ratio, but this is often undesirable as it reduces the abil-
ity to implement flow-level policies (such as multipathing)
and flow-level visibility. Table 1 summarizes these limits.

Forwarding Descriptor Possible entries Entries per
scheme size on 5406zl active host

Ethernet learning 60 bits ∼64000 1
OpenFlow 288 bits ∼1500 10 (typical)

Table 1: State sizes: OpenFlow vs. Ethernet learning

3.2.5 Implementation-imposed controller overheads
Involving the controller in all flows creates a potential scal-

ability problem: any given controller instance can support
only a limited number of flow setups per second. For ex-
ample, Tavakoli et al. [45] report that one NOX controller
can handle “at least 30K new flow installs per second while
maintaining a sub-10 ms flow install time ... The controller’s
CPU is the bottleneck.” Kandula et al. [30] found that 100K
flows arrive every second on a 1500-server cluster, implying
a need for multiple OpenFlow controllers.

Recently researchers have proposed more scalable Open-
Flow controllers. Maestro [11] is a multi-threaded controller
that can install about twice as many flows per second
as NOX, without additional latency. Others have worked
on distributed implementations of the OpenFlow controller
(also valuable for fault tolerance) These include Hyper-
Flow (Tootoonchian and Ganjali [47]) and Onix (Koponen
et al. [33]). These distributed controllers can only support
global visibility of rare events such as link-state changes, and
not of frequent events such as flow arrivals. As such, they are
not yet suitable for applications, such as Hedera [5], which
need a global view of flow statistics.

3.3 Hardware technology issues
A fair question to ask is whether our measurements are

representative, especially since the 5406zl hardware was not
designed to support OpenFlow. Hardware optimized for
OpenFlow would clearly improve these numbers, but throw-
ing hardware at the problem adds more cost and power
consumption. Also, Moore’s law for hardware won’t provide
much relief, as Ethernet speeds have been increasing at least
as fast as Moore’s law over the long term. Adding a faster
CPU to the switch may improve control-plane bandwidth,
but is unlikely to provide significant improvements without
a bigger datapath and reorganized memory hierarchy. We
believe such changes are likely to be complicated and ex-
pensive, especially because, for high-performance workloads,
OpenFlow needs significantly more bandwidth between the
data-plane and the control-plane than switches normally
support (see §5.3). We expect this bandwidth gap will shrink
as ASIC designers pay more attention to OpenFlow, but we
do not think they will let OpenFlow performance drive their
chip-area budgets for several generations, at least. And while
Moore’s Law might ameliorate the pressure somewhat, the
need to reduce both ASIC cost and energy consumption sug-
gests that hardware resources will always be precious.

An alternative implementation path is to use software-
based OpenFlow switch implementations on commodity
server hardware [18]. Such switches may have more control-
plane bandwidth, but we do not believe these systems will be
cost-effective for most enterprise applications in the foresee-
able future. Casado et al. [13] have also argued that“network
processors” are not ideal, either.

4. DEVOFLOW
We now present the design of DevoFlow, which avoids

the overheads described above by introducing mechanisms
for efficient devolved control (§4.1) and statistics collection
(§4.2). Then, we discuss how to implement these mechanisms
(§4.4), and end with an example of using DevoFlow to reduce
use of the control-plane (§4.4).

4.1 Mechanisms for devolving control
We introduce two new mechanisms for devolving control

to a switch, rule cloning and local actions.

Rule cloning: Under the standard OpenFlow mechanism
for wildcard rules, all packets matching a given rule are
treated as one flow. This means that if we use a wildcard
to avoid invoking the controller on each microflow arrival,
we also are stuck with routing all matching microflows over
the same path, and aggregating all statistics for these mi-
croflows into a single set of counters.

In DevoFlow, we augment the “action” part of a wildcard
rule with a boolean CLONE flag. If the flag is clear, the
switch follows the standard wildcard behavior. Otherwise,
the switch locally “clones” the wildcard rule to create a
new rule in which all of the wildcarded fields are replaced
by values matching this microflow, and all other aspects
of the original rule are inherited. Subsequent packets for
the microflow match the microflow-specific rule, and thus
contribute to microflow-specific counters. Also, this rule
goes into the exact-match lookup table, reducing the use
of the TCAM, and so avoiding most of the TCAM power
cost [37]. This resembles the proposal by Casado et al. [13],
but their approach does per-flow lookups in control-plane
software, which might not scale to high line rates.

Local actions: Certain flow-setup decisions might require
decisions intermediate between the heavyweight “invoke the
controller” and the lightweight “forward via this specific
port” choices offered by standard OpenFlow. In DevoFlow,
we envision rules augmented with a small set of possible “lo-
cal routing actions” that a switch can take without paying
the costs of invoking the controller. If a switch does not sup-
port an action, it defaults to invoking the controller, so as
to preserve the desired semantics.

Examples of local actions include multipath support and
rapid re-routing:

• Multipath support gives the switch a choice of sev-
eral output ports for a clonable wildcard, not just one.
The switch can then select, randomly from a probability
distribution or round-robin, between these ports on each
microflow arrival; the microflow-specific rule then inher-
its the chosen port rather than the set of ports. (This
prevents intra-flow re-ordering due to path changes.)

This functionality is similar to equal-cost multipath
(ECMP) routing; however, multipath wildcard rules pro-
vide more flexibility. ECMP (1) uniformly selects an out-
put port uniformly at random and (2) requires that the
cost of the multiple forwarding paths to be equal, so it
load balances traffic poorly on irregular topologies. As an
example, consider a topology with two equal-cost links
between s and t, but the first link forwards at 1 Gbps
whereas the second has 10 Gbps capacity. ECMP splits
flows evenly across these paths, which is clearly not ideal
since one path has 10 times more bandwidth than the
other.

DevoFlow solves this problem by allowing a clonable
wildcard rule to select an output port for a microflow
according to some probability distribution. This allows
implementation of oblivious routing (see, e.g., [20, 32]),
where a microflow follows any of the available end-to-
end paths according to a probability distribution. Obliv-

ious routing would be optimal for our previous example,
where it would route 10/11th of the microflows for t on
the 10Gbps link and 1/11th of them on the 1Gbps link.
• Rapid re-routing gives a switch one or more fallback

paths to use if the designated output port goes down.
If the switch can execute this decision locally, it can re-
cover from link failures almost immediately, rather than
waiting several RTTs for the central controller to first
discover the failure, and then to update the forwarding
rules. OpenFlow almost supports this already, by allow-
ing overlapping rules with different priorities, but it does
not tell the switch why it would have multiple rules that
could match a flow, and hence we need a small change
to make indicate explicitly that one rule should replace
another in the case of a specific port failure.

4.2 Efficient statistics collection
DevoFlow provides three different ways to improve the

efficiency of OpenFlow statistics collection.

Sampling is an alternative to either push-based or pull-
based collection (see §3.2.2). In particular, the sFlow
protocol [42] allows a switch to report the headers of
randomly chosen packets to a monitoring node—which
could be the OpenFlow controller. Samples are uniformly
chosen, typically at a rate of 1/1000 packets, although
this is adjustable. Because sFlow reports do not include
the entire packet, the incremental load on the network
is less than 0.1%, and since it is possible to implement
sFlow entirely in the data-plane, it does not add load to
a switch’s CPU. In fact, sFlow is already implemented in
many switches, including the ProCurve 5406zl.

Triggers and reports: extends OpenFlow with a new
push-based mechanism: threshold-based triggers on coun-
ters. When a trigger condition is met, for any kind of rule
(wildcarded or not), the switch sends a report, similar to
the Flow-Removal message, to the controller. (It can buffer
these briefly, to pack several reports into one packet.)

The simplest trigger conditions are thresholds on the
three per-flow counters (packets, bytes, and flow duration).
These should be easy to implement within the data-plane.
One could also set thresholds on packet or byte rates, but to
do so would require more state (to define the right averaging
interval) and more math, and might be harder to implement.

Approximate counters: can be maintained for all mi-
croflows that match a forwarding-table rule. Such counters
maintain a view on the statistics for the top-k largest (as
in, has transferred the most bytes) microflows in a space-
efficient manner. Approximate counters can be implemented
using streaming algorithms [21, 22, 23], which are generally
simple, use very little memory, and identify the flows trans-
ferring the most bytes with high accuracy. For example, Go-
lab et al.’s algorithm [23] correctly classifies 80–99% of the
flows that transfer more than a threshold k of bytes. Imple-
menting approximate counters in the ASIC is more difficult
than DevoFlow’s other mechanisms; however, they provide
a more timely and accurate view of the network and can
keep statistics on microflows without creating a table entry
per microflow.

4.3 Implementation feasibility of DevoFlow
We have not implemented DevoFlow in hardware; how-

ever, our discussions with network hardware designers

indicate that all of DevoFlow’s mechanisms can be imple-
mented cost-effectively in forthcoming production switches.
(Sampling using sFlow, as we noted earlier, is already
widely implemented in switch data-planes.)

Rule cloning: The data-plane needs to to directly insert
entries into the exact-match table. This is similar to the
existing MAC learning mechanism, the switch ASIC would
need to be modified to take into account the formatting of
entries in the flow table when learning new flows. If ASIC
modification is not possible, rule cloning would require
involving a CPU once per flow. Even so, this operation
is considerably cheaper than invoking the centralized
controller and should be orders of magnitude faster.

Multipath support: Can be implemented using special-
ized rule cloning or using a virtual port. Both methods
require a small table to hold path-choice biasing weights for
each multipath rule and a random number generator. The
virtual port method is actually similar to link aggregation
groups (LAG) and ECMP support, and could reuse the
existing functional block with trivial modification.

Triggers: The mechanism needed to support triggers
requires a counter and a comparator. It is similar to the one
needed for rate limiters, and in some cases existing flexible
rate limiters could be used to generate triggers. Most
modern switches support a large number of flow counters,
used for OpenFlow, NetFlow/IPFIX or ACLs. The ASIC
would need to add a comparator to those counters to
generate triggers; alternatively, the local CPU could poll
periodically those counters and generate triggers itself.

Approximate counters: is the mechanism that would re-
quire the most extensive changes to current ASICs. It re-
quires hashing on packet headers, which indirect to a set
of counters, and then incrementing some of those counters.
Switch ASICs have existing building blocks for most of these
functions. It would also be non-trivial to support triggers
on approximate counters; this might require using the local
CPU.

4.4 Using DevoFlow
All OpenFlow solutions can be built on top of DevoFlow;

however, DevoFlow enables scalable implementation of these
solutions by reducing the number of flows that interact with
the control-plane. Scalability relies on a finding a good def-
inition of “significant flows” in a particular domain. These
flows should represent a small fraction of the total flows,
but should be sufficient to achieve the desired results.

As an example, we show how to load balance traffic with
DevoFlow. First, we describe scalable flow scheduling with
DevoFlow’s mechanisms. Then, we describe how to use its
multipath routing to statically load balance traffic without
any use of the control-plane.

Flow scheduling: does not scale well if the scheduler relies
on visibility over all flows, as is done in Hedera [5] because
maintaining this visibility via the network is too costly, as
our experiments in §3 showed.

Instead, we maintain visibility only over elephant flows,
which is all that a system such as Hedera actually needs.
While Hedera defines an elephant as a flow using at least

10% of a NIC’s bandwidth, we define one as a flow that
has transferred at least a threshold number of bytes X. A
reasonable value for X is 1–10MB.

Our solution starts by initially routing incoming flows us-
ing DevoFlow’s multipath wildcard rules; this avoids involv-
ing the control-plane in flow setup. We then detect elephant
flows as they reach X bytes transferred. We can do this
using using any combination of DevoFlow’s statistics col-
lection mechanisms. For example, we can place triggers on
flow table entries, which generate a report for a flow after
it has transferred X bytes; We could also use sampling or
approximate counters; we evaluate each approach in §5.

Once a flow is classified as an elephant, the detecting
switch or the sampling framework reports it to the DevoFlow
controller. The controller finds the least congested path be-
tween the flow’s endpoints, and re-routes the flow by insert-
ing table entries for the flow at switches on this path.

The new route can be chosen, for example, by the de-
creasing best-fit bin packing algorithm of Correa and Goe-
mans [16]. The algorithm’s inputs are the network topology,
link utilizations, and the rates and endpoints of the elephant
flows. Its output is a routing of all elephant flows. Correa
and Goemans proved that their algorithms finds routings
with link utilizations at most 10% higher than the optimal
routing, under a traffic model where all flows can be rear-
ranged. We cannot guarantee this bound, because we only
rearrange elephant flows; however, their theoretical results
indicates their algorithm will perform as well as any other
heuristic for flow scheduling.

Finally, we note that this architecture uses only edge
switches to encapsulate new flows to send to the central
controller. The controller programs core and aggrega-
tion switches reactively to flow setups from the edge
switches. Therefore, the only overhead imposed is cost of
installing flow table entries at the the core and aggregation
switches—no overheads are imposed for statistics-gathering.

Static multipath routing: provides effective data-plane
multipath load balancing with far greater flexibility than
ECMP. By allowing clonable wildcard rules to select an out-
put port for a microflow according to some probability dis-
tribution, we can implement oblivious routing, where an s-t
microflow’s path is randomly selected according to a precom-
puted probability distribution. This static routing scheme
sets up these probability distributions so as to optimize rout-
ing any traffic matrix in a specified set; for example, in a
data center one would generally like to optimize the routing
of all “hose” traffic matrices [19], which is the set of all traffic
matrices allowable as long as no end-host’s ingress or egress
rate exceeds a predefined rate.

Oblivious routing gives comparable throughput to the op-
timal dynamic routing scheme on many topologies. Kodi-
alam et al. [32] found that packet-level oblivious routing
achieves at least 94% of the throughput that dynamic rout-
ing does on the worst-case traffic matrix, for several wide-
area network topologies.

However, these results assume that microflows can be split
across multiple paths. While the flow-level multipath we im-
plement with clonable wildcard rules does not conform to
this assumption, we expect the theoretical results to be in-
dicative of what to expect from flow-level oblivious routing
on arbitrary topologies, just as it indicates the possible per-
formance of oblivious routing on a Clos topology. Overall,

Algorithm 1 — Flow rate computation.

Input: set of flows F and a set of ports P
Output: a rate r(f) of each flow f ∈ F

begin
Initialize: Fa = ∅; ∀f, r(f) = 0
Define: P .used() =

P
f∈Fa∩P r(f)

Define: P .unassigned flows() = P − (P ∩ Fa)
while P 6= ∅ do

Sort P in ascending order, where the sort key
for P is (P .rate−P .used())/|P .unassigned flows()|

P = P.pop front()
for each f ∈ P .unassigned flows() do

r(f) = (P.rate− P.used())/|P .unassigned flows()|
Fa = Fa ∪ {f}

end

the performance depends on the workload, as our results
in §5 show. If oblivious routing does not achieve adequate
performance on a particular topology and workload, it can
be combined with DevoFlow’s flow scheduler (described just
above) to maximize utilization.

Finally, finding an oblivious routing is easy—one can be
computed for any topology using linear programming [20].
Should the topology change, the forwarding probability dis-
tributions will need to be modified to retain optimality.
Distributions for failure scenarios can be precomputed, and
pushed to the switches once the central controller learns of
a failure.

5. EVALUATION
In this section, we present our simulated evaluation of De-

voFlow. We use load balancing as an example of how it can
achieve the same performance as fine-grained, OpenFlow-
based flow scheduling without the overhead.

5.1 Simulation methodology
To evaluate how DevoFlow would work on a large-scale

network, we implemented a flow-level data center network
simulator. This fluid model captures the overheads gener-
ated by each flow and the coarse-grained behavior of flows
in the network. The simulator is event-based, and whenever
a flow is started, ended, or re-routed, the rate of all flows is
recomputed using the algorithm shown in Algorithm 1. This
algorithm works by assigning a rate to flows traversing the
most-congested port, and then iterating to the next most-
congested port until all flows have been assigned a rate.

We represent the network topology with a capacitated, di-
rected graph. For these simulations, we used two topologies:
a three-level Clos topology [15] and a two-dimensional Hy-
perX topology [4]. In both topologies, all links were 1Gbps,
and 20 servers were attached to each access switch. The Clos
topology has 80 access switches (each with 8 uplinks), 80 ag-
gregation switches, and 8 core switches. The HyperX topol-
ogy is two-dimensional and forms a 9×9 grid, and so has 81
access switches, each attached to 16 other switches. Since
the Clos network has 8 core switches, it is 1:2.5 oversub-
scribed; that is, its bisection bandwidth is 640 Gbps. band-
width. The HyperX topology is 1:4 oversubscribed and thus
has 405 Gbps of bisection bandwidth.

The Clos network has 1600 servers and the HyperX net-
work has 1620. We sized our networks this way for two rea-
sons: first, so that the Clos and HyperX networks would have

nearly the same number of servers. Second, our workload is
based on the measurements of Kandula et al. [30], which are
from a cluster of 1500 servers. We are not sure how to scale
their measurements up to much larger data centers, so we
kept the number of servers close to the number measured in
their study.

We simulate the behavior of OpenFlow at switches by
modeling (1) switch flow tables, and (2) the limited data-
plane to control-plane bandwidth. Switch flow tables can
contain both exact-match and wildcard table entries. For all
simulations, table entries expire after 10 seconds. When a
flow arrives that does not much a table entry, the header
of its first packet is placed in the switch’s data-plane to
control-plane queue. The service rate for this queue follows
our measurements described in Section 3.2.1, so it services
packets at 17Mbps. This queue has finite length, and when
it is full, any arriving flow that does not match a table entry
is dropped. We experimented with different lengths for this
queue, and we found that when it holds 1000 packets, no
flow setups were dropped. When we set its limit to 100, we
found that fewer than 0.01% of flow setups were dropped in
the worst case. For all results shown in this paper, we set the
length of this queue to 100; we restart rejected flows after a
simulated TCP timeout of 300 ms.

Finally, because we are interested in modeling switch over-
heads, we do not simulate a bottleneck at the OpenFlow
controller; the simulated OpenFlow controller processes all
flows instantly. Also, whenever the OpenFlow controller re-
routes a flow, it installs the flow-table entries without any
latency.

5.1.1 Workloads
We consider two workloads in our simulations: (1) a

MapReduce job that has just gone into its shuffle stage, and
(2) a workload based on measurements, by Kandula et al.
at Microsoft Research (MSR) [30], of a 1500-server cluster.

The MapReduce-style traffic is modeled by randomly se-
lecting n servers to be part of the reduce-phase shuffle. Each
of these servers transfers 128 MB to each other server, by
maintaining connections to k other servers at once. Each
server randomizes the order it connects to the other servers,
keeping k connections open until it has sent its payload. All
measurements we present for this shuffle workload are for a
one-minute period that starts 10 sec. after the shuffle begins.

In our MSR workload, we generated flows based on the dis-
tributions of flow inter-arrival times and flow sizes in [30]. We
attempted to reverse-engineer their actual workload from
only two distributions in their paper. In particular, we did
not model dependence between sets of servers. We pick the
destination of a flow by first determining whether the flow is
to be an inter- or intra-rack flow, and then selecting a des-
tination uniformly at random between the possible servers.
For these simulations, we generated flows for four minutes,
and present measurements from the last minute.

Additionally, we simulated a workload that combines the
MSR and shuffle workloads, by generating flows according
to both workloads simultaneously. We generated three min-
utes of MSR flows before starting the shuffle. We present
measurements for the first minute after the shuffle began.

5.1.2 Schedulers
We compare static routing with ECMP to flow scheduling

with several schedulers.

0

100

200

300

400

500

600

EC
M

P

0.
1s

1s

10
s

VL
B

D
is

tr
ib

ut
ed

0.
1s

1s

5s

10
s

1/
10

0

1/
10

00

1/
10

00
0

12
8K

B

1M
B

10
M

B

Wildcard Pull-based Sampling Threshold

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (G
bp

s)

HyperX Clos

Figure 3: Throughput achieved by the schedulers for the shuffle
workload with n = 800 and k = 5. OpenFlow-imposed overheads
are not modeled in these simulations. All error bars in this paper
show 95% confidence intervals for 10 runs.

The DevoFlow scheduler: behaves as described in Sec. 4,
and collects statistics using either sampling or threshold
triggers on multipath wildcard rules. The scheduler might
re-reroute a flow after it has classified the flow as an ele-
phant. New flows, before they become elephant flows, are
routed using ECMP regardless of the mechanism to detect
elephant flows. When the controller discovers an elephant
flow, it installs flow-table entries at the switches on the least-
congested path between the flow’s endpoints. We model
queueing of a flow between the data-plane and control-plane
before it reaches the controller; however, we assume instan-
taneous computation at the controller and flow-table instal-
lations.

For elephant detection, we evaluate both sampling and
triggers.

Our flow-level simulation does not simulate actual packets,
which makes modeling of packet sampling non-trivial. In our
approach:

1. We estimate the distribution of packets sent by a flow
before it can be classified, with less than a 10% false-
positive rate, as an elephant flow, using the approach
described by Mori et al. [38].

2. Once a flow begins, we use that distribution to select how
many packets it will transfer before being classified as an
elephant; we assume that all packets are 1500 bytes. We
then create an event to report the flow to the controller
once it has transferred this number of packets.

Finally, we assume that the switch bundles 25 packet headers
into a single report packet before sending the samples to
the controller; this reduces the packet traffic without adding
significant delay. Bundling packets this way adds latency to
the arrival of samples at the controller. For our simulations,
we did not impose a time-out this delay. We bundled samples
from all ports on a switch, so when a 1 Gbps port is the only
active port (and assuming it’s fully loaded), this bundling
could add up to 16 sec. of delay until a sample reaches the
controller, when the sample rate is 1/1000 packets.

Fine-grained control using statistics pulling: simulates us-
ing OpenFlow in active mode. Every flow is set up at the
central controller and the controller regularly pulls statistics,
which it uses to schedule flows so as to maximize throughput.
As with the DevoFlow scheduler, we route elephant flows us-
ing Correa and Goeman’s bin-packing algorithm [16]. Here,
we use Hedera’s definition of an elephant flow: one with a
demand is at least 10% of the NIC rate [5]. The rate of each
flow is found using Algorithm 1 on an ideal network; that is,
each access switch has an infinite-capacity uplink to a sin-

0

100

200

300

400

500

600

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 MSR, 25%
inter-rack

MSR, 75%
inter-rack

k = 5 k = 5 k = 5

 shuffle, n=200 shuffle, n=400 shuffle, n=800 MSR + shuffle,
n = 200

MSR + shuffle,
n = 400

MSR + shuffle,
n = 800

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (G
bp

s)

ECMP
Wildcard 1s
Pull-based 5s
Sampling 1/1000
Threshold 1MB

Figure 4: Aggregate throughput of the schedulers on the Clos network for different workloads. For the MSR plus shuffle workloads, 75%
of the MSR workload-generated flows are inter-rack.

0

100

200

300

400

500

600

k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 MSR, 25%
inter-rack

MSR, 75%
inter-rack

k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

 shuffle, n=200 shuffle, n=400 shuffle, n=800 MSR 75% inter-rack + shuffle,
n = 200

MSR 75% inter-rack + shuffle,
n= 400

MSR 75% inter-rack + shuffle,
n= 800

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (G
bp

s)

ECMP
VLB
Distributed
Pull-based 5s
Sampling 1/1000
Threshold 1MB

Figure 5: Aggregate throughput of the schedulers on the HyperX network for different workloads.

gle, non-blocking core switch. This allows us to estimate the
demand of each flow when flow rates are constrained only
by server NICs and not by the switching fabric.

Following the OpenFlow standard, each flow table entry
provides 88 bytes of statistics [2]. We collect statistics only
from the access switches. The ASIC transfers statistics to the
controller at 17 Mbps, via 1500-byte packets. The controller
applies the bin-packing algorithm immediately upon receiv-
ing a statistics report, and instantaneous installs a globally
optimized routing for all flows.

Wildcard routing: performs multipath load balancing pos-
sible using only wildcard table entries. This controller re-
actively installs wildcard rules to create a unique spanning
tree per destination: all flows destined to a server are routed
along a spanning tree. When a flow is set up, the controller
computes the least-congested path from the switch that reg-
istered the flow to the flow’s destination’s spanning tree,
and installs the rules along this path. We simulated wildcard
routing only on the Clos topology, because we are still de-
veloping the spanning tree algorithm for HyperX networks.

Valiant load balancing (VLB): balances traffic by routing
each flow through an intermediate switch chosen uniformly
at random; that switch then routes the flow on the short-
est path to its destination [48]. On a Clos topology, ECMP
implements VLB.

Distributed greedy routing: routes each flow by first greed-
ily selecting the least-congested next-hop from the access
switch, and then using shortest-path routing. We simulate
this distributed routing scheme only on HyperX networks.

5.2 Performance
We begin by assessing the performance of the schedulers,

using the aggregate throughput of all flows in the network as
our metric. Figure 3 shows the performance of the schedulers
under various settings, on a shuffle workload with n = 800
servers and k = 5 simultaneous connections/server. This
simulation did not model the OpenFlow-imposed overheads;

for example, the 100ms pull-based scheduler obtains all flow
statistics every 100ms, regardless of the switch load.

We see that DevoFlow can improve throughput compared
to ECMP by up to 32% on the Clos network and up to
55% on the HyperX network. The scheduler with the best
performance on both networks is the pull-based scheduler
when it re-routes flows every 100 ms. This is not entirely
surprising, since this scheduler also has the highest overhead.
Interestingly, VLB did not perform any better than ECMP
on the HyperX network.

To study the effect of the workload on these results, we
tried several values for n and k in the shuffle workload and
we varied the fraction of traffic that remained within a rack
on the MSR workload. These results are shown in Figure 4
for the Clos topology and Figure 5 for the HyperX network.
Overall, we found that flow scheduling improves throughput
for the shuffle workloads, even when the network has far
more bisection bandwidth than the job demands.

For instance, with n = 200 servers, the maximum demand
is 200 Gbps. Even though the Clos network has 640 Gbps
of bisection bandwidth, we find that DevoFlow can increase
performance of this shuffle by 29% over ECMP. We also
observe that there was little difference in performance when
we varied k.

Flow scheduling did not improve the throughput of the
MSR workload. For this workload, regardless of the mix of
inter- and intra-rack traffic, we found that ECMP achieves
90% of the optimal throughput3 for this workload, so there
is little room for improvement by scheduling flows. We sus-
pect that a better model than our reverse-engineered distri-
butions of the MSR workload would yield different results.

Because of this limitation, we simulated a combination of
the MSR workload with a shuffle job. Here, we see improve-
ments in throughput due to flow scheduling; however, the
gains are less than when the shuffle job is ran in isolation.

3We found the optimal throughput by attaching all servers to
a single non-blocking switch.

504 483 446

29,451

7,758
4,871

7,123

709 71 432 181 74
0

5000

10000

15000

20000

25000

30000

0.
1s

1s

10
s

0.
1s

1s

10
s

1/
10

0

1/
10

00

1/
10

00
0

12
8K

B

1M
B

10
M

B

Wildcard Pull-based Sampling Threshold

N
o.

 p
ac

ke
ts

 /
se

c.
 to

 c
on

tr
ol

le
r

MSR, 25% inter-rack
MSR, 75% inter-rack

DevoFlow schedulersOpenFlow schedulers

Figure 6: The number of packet arrivals per second at the con-
troller using the different schedulers on the MSR workload.

0
200
400
600
800

1000
1200
1400
1600
1800

0.
1s

1s

10
s

0.
1s

1s

10
s

1/
10

0

1/
10

00

1/
10

00
0

12
8K

B

1M
B

10
M

B

Wildcard Pull-based Sampling Threshold

N
o.

 o
w

 ta
bl

e
en

tr
ie

s

Avg - MSR, 25% inter-rack

Max - MSR, 25% inter-rack

Avg - MSR, 75% inter-rack

Max - MSR, 75% inter-rack

DevoFlow schedulersOpenFlow schedulers

Figure 7: The average and maximum number of flow table entries
at an access switch for the schedulers using the MSR workload.

5.3 Overheads
We used the MSR workload to evaluate the overhead of

each approach because, even though we do not model the
dependence between servers, we believe it gives a good indi-
cation of the rate of flow initiation. Figure 6 shows, for each
scheduler, the rate of packets sent to the controller while
simulating the MSR workload.

Load at the controller should scale proportionally to the
number of servers in the data center. Therefore, when using
an OpenFlow-style pull-based scheduler that collects stats
every 100ms, in a large data center with 160K servers, we
would expect a load of about 2.9M packets/sec., based on
extrapolation from Figure 6. This would drop to 775K pack-
ets/sec. if stats are pulled once per second. We are not aware
of any OpenFlow controller that can handle this message
rate; for example, NOX can process 30K flow setups per
second [45]. A distributed controller might be able to han-
dle this load (which would require up to 98 NOX controllers,
assuming they can be perfectly distributed and that statis-
tics are pulled every 100 ms), but it might be difficult to
coordinate so many controllers.

Figure 7 shows the number of flow table entries at any
given access switch, for the MSR workload and various
schedulers. For these simulations, we timed out the table
entries after 10 sec. As expected, DevoFlow does not require
many table entries, since it uses a single wildcard rule for all
mice flows, and stores only exact-match entries for elephant
flows. This does, however, assume support for the multipath
routing wildcard rules of DevoFlow. If rule cloning were used
instead, DevoFlow would use the same number of table en-
tries as the pull-based OpenFlow scheduler because it would
clone a rule for each flow. The pull-based scheduler uses an
order of magnitude more table entries, on average, than De-
voFlow.

We estimated the amount bandwidth required between
a switch’s data-plane and control-plane when statistics are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

50

100

150

200

250

0.1 0.5 1 10 30 Never

Pe
rc

en
t o

f f
or

w
ar

di
ng

 b
an

dw
id

th

ne
ed

ed
 fo

r c
on

tr
ol

 p
la

ne
 b

an
dw

id
th

Co
nt

ro
l p

la
ne

 th
ro

ug
hp

ut
 n

ee
de

d
(M

bp
s)

Stat-pulling rate

95th percentile
99th percentile

Figure 8: The control-plane bandwidth needed to pull statistics at
various rates so that flow setup latency is less than 2ms in the
95th and 99th percentiles. Error bars are too small to be seen.

collected with a pull-based mechanism. Figure 8 shows the
bandwidth needed so that the 95th and 99th percentile flow
setup latencies on the MSR workload are less than 2ms.
Here, we assume that the only latency incurred is in the
queue between the switch’s data-plane and control-plane;
we ignore any latency added by communication with the
controller. That is, the figure shows the service rate needed
for this queue, in order to maintain a waiting time of less
than 2 ms in the 95th and 99th percentiles. The data to
control-plane bandwidth sufficient for flow setup is directly
proportional to this deadline, so a tighter deadline of 1 ms
needs twice as much bandwidth to meet.

The scale on the right of the chart normalizes the re-
quired data-to-control-plane bandwidth to a switch’s total
forwarding rate (which in our case is 28 Gbps, because each
ToR switch has 28 gigabit ports). For fine-grained (100 ms)
flow management using OpenFlow, this bandwidth require-
ment would be up to 0.7% of its total forwarding rate. As-
suming that the amount of control-plane bandwidth needed
scales with the forwarding rate, a 144-port 10 Gbps switch
needs just over 10 Gbps of control-plane bandwidth to sup-
port fine-grained flow management. We do not believe it is
cost-effective to provide so much bandwidth, so DevoFlow’s
statistics-collection mechanisms are the better option be-
cause they are handled entirely within the data-plane.

6. CONCLUSIONS
Flow-based networking frameworks such as OpenFlow

hold great promise—they separate policy specification from
its realization, and therefore enable innovative network man-
agement solutions. However, we have shown that Open-
Flow’s current design does not meet the demands of high-
performance networks. In particular, OpenFlow involves the
controller in the handling of too many microflows, which cre-
ates excessive load on the controller and switches.

Our DevoFlow proposal allows operators to target only
the flows that matter for their management problem. De-
voFlow reduces the switch-internal communication between
control- and data-planes by (a) reducing the need to trans-
fer statistics for boring flows, and (b) potentially reducing
the need to invoke the control-plane for most flow setups.
It therefore reduces both the intrinsic and implementation
overheads of flow-based networking, by reducing load on
the network, the switch control-plane, and the central con-
troller. DevoFlow handles most microflows in the data-plane,
and therefore allows us to make the most out of switch re-
sources. Our evaluation shows that DevoFlow performs as

well as fine-grained flow management when load balancing
traffic in the data center. Beyond this use case, we believe
that DevoFlow can simplify the design of high-performance
OpenFlow switches and enable scalable management archi-
tectures to be built on OpenFlow for data center QoS, mul-
ticast, routing-as-a-service [14], network virtualization [43],
and energy-aware routing [29].

Acknowledgments
We would like to thank Joe Curcio, Charles Clark, Paul Con-
gdon, Mark Gooch, and many others from HP Networking
for helping us to understand how real switches are designed.
Our shepherd, Paul Barford, and the anonymous reviewers
gave us helpful advice on comments for the final version
of this paper. S. Keshav, Alex López-Ortiz, and Earl Oliver
gave us beneficial feedback on earlier drafts. We thank Brent
Stephens for pointing out an error in our description of Al-
gorithm 1 in a previous version of this paper.

7. REFERENCES
[1] HP ProCurve 5400 zl switch series.

http://h17007.www1.hp.com/us/en/products/switches/HP_E5400_
zl_Switch_Series/index.aspx.

[2] OpenFlow Switch Specification, Version 1.0.0. http://www.
openflowswitch.org/documents/openflow-spec-v1.0.0.pdf.

[3] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu.
Energy proportional datacenter networks. In ISCA, 2010.

[4] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. HyperX: topology, routing, and packaging of efficient
large-scale networks. In Proc. Supercomputing, 2009.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In Proc. NSDI, Apr. 2010.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. DCTCP:
Efficient packet transport for the commoditized data center. In
SIGCOMM, 2010.

[7] G. Ananthanarayanan and R. H. Katz. Greening the switch. In
USENIX Workshop on Power Aware Computing and
Systems, (HotPower 2008), 2008.

[8] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[9] T. Benson, A. Akella, and D. Maltz. Network traffic
characteristics of data centers in the wild. In Proc. IMC, 2010.

[10] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and J. van der Merwe. Design and implementation of a routing
control platform. In NSDI, 2005.

[11] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: A System for
Scalable OpenFlow Control. Tech. Rep. TR10-08, Rice
University, 2010.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: taking control of the enterprise. In
SIGCOMM, pages 1–12, Aug. 2007.

[13] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking
Packet Forwarding Hardware. In Proc. HotNets, Oct. 2008.

[14] C.-C. Chen, L. Yuan, A. Greenberg, C.-N. Chuah, and
P. Mohapatra. Routing-as-a-service (RaaS): A framework for
tenant-directed route control in data center. In INFOCOM,
2011.

[15] C. Clos. A study of non-blocking switching networks. Bell
System Technical Journal, 32(5):406–424, 1953.

[16] J. R. Correa and M. X. Goemans. Improved bounds on
nonblocking 3-stage clos networks. SIAM J. Comput.,
37(3):870–894, 2007.

[17] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout:
Low-overhead datacenter traffic management using
end-host-based elephant detection. In INFOCOM, 2011.

[18] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: exploiting parallelism to scale software routers. In
Proc. SOSP, pages 15–28, 2009.

[19] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive. A flexible model for
resource management in virtual private networks. In
SIGCOMM, 1999.

[20] T. Erlebach and M. Rüegg. Optimal bandwidth reservation in
hose-model VPNs with multi-path routing. In IEEE
INFOCOM, 2004.

[21] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In SIGCOMM, 2002.

[22] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers. In
SIGMOD, 1998.

[23] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I.
Munro. Identifying frequent items in sliding windows over
on-line packet streams. In IMC, 2003.

[24] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. K. P.
Lahiri, D. Maltz, P. Patel, and S. Sengupta. VL2: a scalable
and flexible data center network. In SIGCOMM, 2009.

[25] A. Greenberg et al.. A clean slate 4D approach to network
control and management. SIGCOMM CCR, 35:41–54, 2005.

[26] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. In SIGCOMM CCR, July 2008.

[27] M. Gupta, S. Grover, and S. Singh. A feasibility study for
power management in LAN switches. In ICNP, 2004.

[28] M. Gupta and S. Singh. Using low-power modes for energy
conservation in ethernet LANs. In INFOCOM
Mini-Conference, 2007.

[29] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. ElasticTree: saving
energy in data center networks. In NSDI, 2010.

[30] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The
Nature of Datacenter Traffic: Measurements & Analysis. In
Proc. IMC, 2009.

[31] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J.
Lee, and P. Yalagandula. Automated and Scalable QoS Control
for Network Convergence. In Proc. INM/WREN, 2010.

[32] M. Kodialam, T. V. Lakshman, and S. Sengupta. Maximum
throughput routing of traffic in the hose model. In Infocom,
2006.

[33] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: a distributed control platform for large-scale
production networks. In OSDI, 2010.

[34] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan.
Energy aware network operations. In Proc. 12th IEEE Global
Internet Symp., 2009.

[35] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
enabling innovation in campus networks. SIGCOMM CCR,
38(2):69–74, 2008.

[36] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R.
Curtis, and S. Banerjee. Devoflow: Cost-effective flow
management for high performance enterprise networks. In
HotNets, 2010.

[37] N. Mohan and M. Sachdev. Low-Leakage Storage Cells for
Ternary Content Addressable Memories. IEEE Trans. VLSI
Sys., 17(5):604 –612, may 2009.

[38] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto.
Identifying elephant flows through periodically sampled
packets. In Proc. IMC, pages 115–120, Taormina, Oct. 2004.

[39] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark.
Resonance: Dynamic Access Control for Enterprise Networks.
In Proc. WREN, pages 11–18, Aug. 2009.

[40] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall. Reducing network energy consumption via
sleeping and rate-adaptation. In NSDI, 2008.

[41] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik,
and M. Handley. Data center networking with multipath TCP.
In HotNets, 2010.

[42] sFlow. http://sflow.org/about/index.php.
[43] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,

N. McKeown, and G. Parulkar. Can the production network be
the testbed? In OSDI, 2010.

[44] A. S.-W. Tam, K. Xi, and H. J. Chao. Use of Devolved
Controllers in Data Center Networks. In INFOCOM Workshop
on Cloud Computing, 2011.

[45] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying
NOX to the Datacenter. In HotNets, 2009.

[46] K. Thompson, G. Miller, and R. Wilder. Wide-Area Internet
Traffic Patterns and Characteristics. IEEE Network,
11(6):10–23, Nov. 1997.

[47] A. Tootoonchian and Y. Ganjali. HyperFlow: A Distributed
Control Plane for OpenFlow. In Proc. INM/WREN, San Jose,
CA, Apr. 2010.

[48] L. G. Valiant and G. J. Brebner. Universal schemes for parallel
communication. In STOC, 1981.

[49] R. Wang, D. Butnariu, and J. Rexford. Openflow-based server
load balancing gone wild. In Hot-ICE, 2011.

[50] C. Westphal. Personal communication, 2011.
[51] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable

Flow-Based Networking with DIFANE. In Proc. SIGCOMM,
2010.

http://h17007.www1.hp.com/us/en/products/switches/HP_E5400_zl_Switch_Series/index.aspx
http://h17007.www1.hp.com/us/en/products/switches/HP_E5400_zl_Switch_Series/index.aspx
http://www.openflowswitch.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflowswitch.org/documents/openflow-spec-v1.0.0.pdf
http://sflow.org/about/index.php

	Introduction
	Benefits of Central Control
	OpenFlow Overheads
	Intrinsic overheads
	Implementation overheads
	Flow setup overheads
	Gathering flow statistics
	Impact on flow setup of statistics-gathering
	Switch state size
	Implementation-imposed controller overheads

	Hardware technology issues

	DevoFlow
	Mechanisms for devolving control
	Efficient statistics collection
	Implementation feasibility of DevoFlow
	Using DevoFlow

	Evaluation
	Simulation methodology
	Workloads
	Schedulers

	Performance
	Overheads

	Conclusions
	References

