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Abstract
In many areas of computing, techniques ranging from testing to
formal modeling to full-blown verification have been successfully
used to help programmers build reliable systems. But although net-
works are critical infrastructure, they have largely resisted analysis
using formal techniques. Software-defined networking (SDN) is a
new network architecture that has the potential to provide a foun-
dation for network reasoning, by standardizing the interfaces used
to express network programs and giving them a precise semantics.

This paper describes the design and implementation of the first
machine-verified SDN controller. Starting from the foundations, we
develop a detailed operational model for OpenFlow (the most pop-
ular SDN platform) and formalize it in the Coq proof assistant. We
then use this model to develop a verified compiler and run-time sys-
tem for a high-level network programming language. We identify
bugs in existing languages and tools built without formal founda-
tions, and prove that these bugs are absent from our system. Finally,
we describe our prototype implementation and our experiences us-
ing it to build practical applications.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

Keywords Software-defined networking, OpenFlow, formal veri-
fication, Coq, domain-specific languages, NetCore, Frenetic.

1. Introduction
Networks are some of the most critical infrastructure in modern so-
ciety and also some of the most fragile! Networks fail with alarm-
ing frequency, often due to simple misconfigurations or software
bugs [8, 19, 30]. The recent news headlines contain numerous ex-
amples of network failures leading to disruptions: a configuration
error during routine maintenance at Amazon triggered a sequence
of cascading failures that brought down a datacenter and the cus-
tomer machines hosted there; a corrupted routing table at GoDaddy
disconnected their domain name servers for a day and caused a
widespread outage; and a network connectivity issue at United Air-
lines took down their reservation system, leading to thousands of
flight cancellations and a “ground stop” at their San Francisco hub.

One way to make networks more reliable would be to de-
velop tools for checking important network invariants automati-
cally. These tools would allow administrators to answer questions
such as: “does this configuration provide connectivity to every host
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in the network?” or “does this configuration correctly enforce the
access control policy?” or “does this configuration have a forward-
ing loop?” or “does this configuration properly isolate trusted and
untrusted traffic?” Unfortunately, until recently, building such tools
has been effectively impossible due to the complexity of today’s
networks. A typical enterprise or datacenter network contains thou-
sands of heterogeneous devices, from routers and switches, to web
caches and load balancers, to monitoring middleboxes and fire-
walls. Moreover, each device executes a stack of complex protocols
and is configured through a proprietary and idiosyncratic interface.
To reason formally about such a network, an administrator (or tool)
must reason about the proprietary programs running on each dis-
tributed device, as well as the asynchronous interactions between
them. Although formal models of traditional networks exist, they
have either been too complex to allow effective reasoning, or too
abstract to be useful. Overall, the incidental complexity of networks
has made reasoning about their behavior practically infeasible.

Fortunately, recent years have seen growing interest in a new
kind of network architecture that could provide a foundation for
network reasoning. In a software-defined network (SDN), a program
on a logically-centralized controller machine defines the overall
policy for the network, and a collection of programmable switches
implement the policy using efficient packet-processing hardware.
The controller and switches communicate via an open and standard
interface. By carefully installing packet-processing rules in the
hardware tables provided on switches, the controller can effectively
manage the behavior of the entire network.

Compared to traditional networks, SDNs have two important
simplifications that make them amenable to formal reasoning. First,
they relocate control from distributed algorithms running on indi-
vidual devices to a single program running on the controller. Sec-
ond, they eliminate the heterogeneous devices used in traditional
networks—switches, routers, load balancers, firewalls, etc.—and
replace them with stock programmable switches that provide a
standard set of features. Together, this means that the behavior of
the network is determined solely by the sequence of configuration
instructions issued by the controller. To verify that the network has
some property, an administrator (or tool) simply has to reason about
the states of the switches as they process instructions.

In the networking community, there is burgeoning interest in
tools for checking network-wide properties automatically. Sys-
tems such as FlowChecker [1], Header Space Analysis [12],
Anteater [17], VeriFlow [13], and others, work by generating a
logical representation of switch configurations and using an auto-
matic solver to check properties of those configurations. The con-
figurations are obtained by “scraping” state off of the switches or
inspecting the instructions issued by an SDN controller at run-time.

These tools represent a good first step toward making networks
more reliable, but they have two important limitations. First, they
are based on ad hoc foundations. Although SDN platforms such as
OpenFlow [21] have precise (if informal) specifications, the tools
make simplifying assumptions that are routinely violated by real
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Figure 1: System architecture.

hardware switches. For example, some tools assume that switches
will process instructions emitted by the controller in sequence,
even though actual switches often reorder messages. This means
that properties they consider verified do not always actually hold.
Second, the tools are expensive to run and do not scale well. For
example, most tools take several minutes to run, even in small
to medium-sized networks (VeriFlow [13] is a notable exception).
This is too slow to be used in large dynamic networks where con-
figurations change on the order of seconds. Overall, although these
tools are useful for finding bugs, they cannot provide the rigorous
guarantees that networks, as critical infrastructure, require.

Our approach. This paper presents a different approach. Rather
than building tools to find bugs in SDN controllers at run-time, we
develop a verified SDN controller in the Coq proof assistant and
prove it correct against a formal specification and a detailed op-
erational model of SDN. With our controller, programmers specify
the behavior of the network using the NetCore programming lan-
guage [22], which abstracts away from the details of the underlying
switch hardware and distributed system, and allows programmers
to reason in terms of simple hop-by-hop packet-processing steps.
The NetCore compiler and run-time system translates programs
written in this language down to low-level packet-processing rules.
Because its behavior is verified in Coq, we establish the correctness
of our controller once and for all, obviating the need for run-time
or post hoc verification as in most current tools.

Architecturally, our system is organized as a verified software
stack that translates through the following levels of abstraction:

• NetCore. The highest level of abstraction is the NetCore lan-
guage, proposed in prior work by Monsanto et al. [22]. Net-
Core is a declarative language that allows programmers to de-
scribe what network behavior they want, without specifying

how it should be implemented. It offers a collection of intu-
itive constructs for matching, filtering, and transforming pack-
ets, as well as natural logical operators for combining smaller
programs into bigger ones such as union and domain restriction.
Although NetCore programs are ultimately executed in a dis-
tributed system—the network—they have a simple semantics
that models their behavior as functions from packets to packets.
• Flow tables. The intermediate level of abstraction is flow ta-

bles, a representation that sits between NetCore programs and
switch-level configurations. There are two main differences be-
tween NetCore programs and flow tables. First, NetCore pro-
grams describe the forwarding behavior of a whole network,
while flow tables describe the behavior of a single switch. Sec-
ond, flow tables process packets using a linear scan through a
list of prioritized rules. Hence, to translate operators such as
union and negation, the NetCore compiler must generate a se-
quence of rules that encodes the same semantics. However, be-
cause flow table matching uses a lower-level packet representa-
tion (as nested frames of Ethernet, IP, TCP, etc. packets), flow
tables must satisfy a well-formedness condition to rule out in-
valid patterns that are inconsistent with this representation.
• Featherweight OpenFlow. The lowest level of abstraction is

Featherweight OpenFlow, a new foundational model we have
designed that captures the essential features of SDNs. Feather-
weight OpenFlow models switches, the controller, the network
topology, as well as their internal transitions and interactions
in a small-step operational semantics. This semantics is non-
deterministic, modeling the asynchrony inherent in networks.
To implement a flow table in a Featherweight OpenFlow net-
work, the controller instructs switches to install or uninstall
rules as appropriate while dealing with two important issues:
First, switches process instructions concurrently with packets
flowing through the network, so it must ensure that at all times
the rules installed on switches are consistent with the flow table.
Second, switches are allowed to buffer instructions and apply
them in any order, so it must ensure that the behavior is correct
no matter how instructions are reordered through careful use of
synchronization primitives.

Figure 1 depicts the architecture of our system, and provides an out-
line for this paper. Overall, our main contributions are as follows:

• We present the first machine-verified SDN controller, which
gives network programmers robust static guarantees backed by
machine-checked proofs against a foundational model.
• We develop Featherweight OpenFlow, the first formal model

of OpenFlow. It includes all sources of asynchrony and non-
determinism mentioned in the informal OpenFlow specifica-
tion, as well as a precise model of switch flow table semantics.
• We formalize NetCore, flow tables, and Featherweight Open-

Flow in Coq, and develop machine-checked proofs of correct-
ness for the translations between them.
• We present our prototype implementation, obtained by extract-

ing our Coq development to OCaml, and present experimental
results comparing the performance of our system against unver-
ified controllers on simple benchmarks.

Besides their use in our system, we hope that the abstractions
and theorems presented in this paper will be useful to others.
Flow tables are a canonical representation of switch state that
appear in many other systems. Likewise, Featherweight OpenFlow
is a comprehensive model that captures the essential forwarding
behavior of SDNs in a minimal core calculus. Our design and Coq
formalization of flow tables and Featherweight OpenFlow provide
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Figure 2: Example network topology.

a starting point for developing extensions that model additional
SDN features and a foundation for other verified systems.

2. Overview
To motivate the need for verified SDN controllers, consider the
simple network depicted in Fig. 2. It consists of a single switch
connected to four hosts: three clients and a middlebox that monitors
HTTP requests. The ports on the switch are numbered 1 to 4; the
clients are connected to ports 1 to 3 and the middlebox to port 4. In
addition, the switch has a dedicated link to the controller that is not
considered part of the data network.

Now imagine we want to build an SDN controller that imple-
ments the following high-level network policy: block SSH traffic,
log HTTP requests, and allow clients to send non-SSH traffic to
each other. It is straightforward to formalize this policy as a packet-
processing function that maps input packets to (possibly several)
output packets: the function drops SSH packets, forwards HTTP
packets both to their destination and to the middlebox, and forwards
all other packets to their destination alone.

To implement this function in an SDN, however, we would need
to specify several additional low-level details, since switches can-
not implement general packet-processing functions directly. First,
the controller would need to encode the function as a flow table—a
set of prioritized forwarding rules. Second, it would need to send
the switch a series of control messages to add individual entries
from the flow table, incrementally building up the complete table.

More concretely, the controller could first send a message in-
structing the switch to add a flow table entry that blocks SSH traffic:

Add 10 {tpDst = 22} {||}
Here 10 is a priority number, {tpDst =22} is a pattern that matches
SSH traffic (TCP port 22), and {||} is an empty multiset of ports,
which drops packets, as intended. Next, the controller could add an
entry to process HTTP requests:

Add 9 {dlDst = H1, tpDst = 80} {|1, 4|}
Note that this rule duplicates HTTP (TCP port 80) packets, sending
them to the monitor and to their destination.1 Finally, the controller
could add an entry to forward other packets to their destination:

Add 1 {dlDst = H1} {|1|}
Note that this rule does not apply to SSH and HTTP traffic, since
those packets are handled by the higher-priority rules.

After these control messages have been sent, it would be nat-
ural to expect that the network correctly implements the packet-
processing function described above. But the situation is actually

1 The controller would actually need to create rules for each client. To save
space, we have only given the rules for H1 here.

Packet pk ::=Eth dlSrc dlDst dlTyp nwPk
Network layer nwPk ::= IP nwSrc nwDst nwProto tpPk

| Unknown payload
Transport layer tpPk ::=TCP tpSrc tpDst payload

| Unknown payload

Figure 3: Logical packet structure.

more complicated: switches have substantial latitude in how they
process messages from the controller, and packets may arrive at
any time during processing. Establishing that the network correctly
implements this function—in particular, that it blocks SSH traffic
and logs HTTP traffic—requires additional reasoning.

Controller-switch consistency. Switches process packets and
control messages concurrently. In our example, the switch may
receive an HTTP request before the flow table entry that handles
HTTP packets arrives. In this case, the switch will send the packet
to the controller for further processing. Since the controller is a
general-purpose machine, it can implement the packet-processing
function directly, apply it to the incoming packet, and send the re-
sults back to the switch. However, this means that SDN controllers
typically have two different implementations of the function: one
residing at the controller and another on the switches. A key prop-
erty we verify is that these two implementations are consistent.

Message reordering. SDN switches may process control mes-
sages in any order, and many switches do, to maximize perfor-
mance. But unrestricted reordering can cause implementations to
violate their intended specifications. For example, if the rule to drop
SSH traffic is installed after the final, low-priority rule that forwards
all traffic, then SSH traffic will temporarily be forwarded by the
low-priority rule, breaking the intended security policy. To ensure
that such reorderings do not occur, a controller must carefully insert
barrier messages, which force the switch to process all outstanding
messages. A key property we verify is that controllers use barriers
correctly (several unverified controllers ignore this issue).

Natural patterns. Another complication is that the patterns pre-
sented earlier in this section, such as {tpDst = 22}, are actually
invalid. To match SSH traffic, it is not enough to simply state that the
destination port must be 22. The pattern must also specify that the
Ethernet frame type must be IP, and the transport protocol must be
TCP. Without these additional constraints, switches will interpret
the pattern as a wildcard that matches all packets. Several earlier
controller platforms did not properly account for this behavior, and
had bugs as a result. We develop a semantics for patterns and iden-
tify a class of natural patterns that are closed under the algebraic
operations used by our compiler and flow table optimizer.

Roadmap. The rest of this paper develops techniques for estab-
lishing that a given packet-processing function is implemented cor-
rectly by an OpenFlow network. More specifically, we tackle the
problem of verifying high-level programming abstractions, using
NetCore [22] as a concrete instance of a high-level network lan-
guage. The next section presents NetCore in detail. The following
sections describe general and reusable techniques for establishing
the correctness of SDN controllers, including NetCore.

3. NetCore
This section presents the highest layer of our verified stack: the
NetCore language. A NetCore program specifies how the switches
process packets at each hop through the network. More formally, a
program denotes a total function from port-packet pairs to multisets
of port-packet pairs. The syntax and semantics of a core NetCore



Switch ID sw ∈ N
Port ID pt ∈ N
Headers h ::= dlSrc | dlDst MAC address

| dlTyp Ethernet frame type
| nwSrc | nwDst IP address
| nwProto IP protocol code
| tpSrc | tpDst transport port

Predicate pr ::= ? wildcard
| h = n match header
| at sw match switch
| not pr predicate negation
| pr1 and pr2 predicate conjunction

Program pg ::= pr ⇒ {|pt1 · · · ptn|} basic program
| pg1 ] pg2 program union
| restrict pg by pr program restriction

JprK sw pt pk

J?K sw pt pk = true
JdlSrc=nK sw pt (Eth dlSrc ) = dlSrc=n
JnwSrc=nK sw pt (Eth (IP nwSrc )) = nwSrc=n
JnwSrc=nK sw pt (Eth (Unknown )) = false

· · ·
Jat sw ′K sw pt pk = sw=sw ′

Jnot prK sw pt pk = ¬(JprK sw pt pk)
Jpr1 and pr2K sw pt pk = Jpr1K sw pt pk ∧ Jpr2K sw pt pk

JpgK sw pt pk = {|(pt1, pk1) · · · (ptn, pkn)|}

Jpr ⇒ {|pt1 · · · ptn|}K sw pt pk =
if JprK sw pt pk then {|(pt1, pk) · · · (ptn, pk)|} else {||}

Jpg1 ] pg2K sw pt pk =
Jpg1K sw pt pk ] Jpg2K sw pt pk

Jrestrict pg by prK sw pt pk =
{|(pt′, pk′) | (pt′, pk′) ∈ JpgK sw pt pk ∧ JprK sw pt pk|}

Figure 4: NetCore syntax and semantics (extracts).

fragment are shown in Fig. 4. To save space, we have elided several
header fields and operators not used in this paper.

We can build a NetCore program that implements the example
from the previous section by composing several smaller NetCore
program fragments. The first fragment forwards traffic to H1:

pg1 , dlDst=H1⇒ {|1|}

This basic program consists of a predicate pr and a multiset of
actions {|pt1 · · · ptn|}. The predicate denotes a set of port-packet
pairs, and the actions denote the ports (if any) where those packets
should be forwarded on the next hop. In this instance, the predicate
denotes the set of all packets whose Ethernet destination (dlDst)
address has the specified value, and the actions denote a transfor-
mation that forwards matching packets to port 1. Note that we rep-
resent packets as nested sequences of frames (Ethernet, IP, TCP,
etc.) as shown in Fig. 3. NetCore provides predicates for matching
on well-known header fields as well as logical operators such as
and and or, unlike hardware switches, which only provide priori-
tized sets of rules.

The next two fragments are similar to pg1, but forward traffic to
H2 and H3 instead of H1:

pg2, dlDst=H2⇒ {|2|}
pg3, dlDst=H3⇒ {|3|}

Using the union operator, we can combine these programs into a
single program that implements forwarding between all clients:

pg fwd , pg1 ] pg2 ] pg3

Semantically, the ] operator produces the (multiset) union of the
results produced by each sub-program. Using the union operator
again, we can extend this program to one that also forwards HTTP
requests to the middlebox:

pg fwd ] tpDst=80⇒ {|4|}
Note that this program duplicates packets sent to port 80, forward-
ing to their destination and also to the logging machine. Finally, we
can add the security policy using the restrict by operator, which
restricts a program by a predicate:

restrict (pg fwd ] tpDst=80⇒ {|4|}) by (not tpDst=22)

This program is similar the previous one, but drops SSH traffic.
The advantages of using a declarative language such as NetCore

should be clear: it provides abstractions that make it easy to estab-
lish network-wide properties through compositional reasoning. For
example, simply by inspecting the final program and using the de-
notational semantics (Fig. 4), we can easily verify that the network
blocks SSH traffic, forwards HTTP traffic to the middlebox, and pro-
vides pair-wise connectivity between the clients. In particular, even
though a controller, switches, flow tables, forwarding rules, are all
involved in implementing this program, we do not have to reason
about them! This is in contrast to lower-level controller platforms,
which require programmers to explicitly construct switch-level for-
warding rules, issue messages to install those rules on switches, and
reason about the asynchronous interactions between switches and
controller. Of course, the complexity of the underlying system is
not eliminated, but relocated from the programmer to the language
implementers. This is an efficient tradeoff: functionality common
to many programs can be implemented just once, proved correct,
and reused broadly.

4. Flow Tables
The first step toward executing a NetCore program in an SDN in-
volves compiling it to a prioritized set of forwarding rules—a flow
table. Flow tables are an intermediate representation that play a
similar role in NetCore to register transfer language (RTL) in tradi-
tional compilers. Flow tables are more primitive than NetCore pro-
grams because they lack the logical structure induced by NetCore
operators such as union, intersection, negation, and restriction.
Also, the patterns used to match packets in flow tables are more
restrictive than NetCore predicates. And unlike NetCore programs,
which denote total functions, flow tables are partial: switches redi-
rect unmatched packets to the controller.

As defined in Fig. 5, a flow table consists of a multiset of rules
(n, pat , pts) where n is an integer priority, pat is a pattern, and
pts is a multiset of ports. A pattern is a record that associates each
header field to either an integer constant n or the special wildcard
value ?. When writing flow tables, we often elide headers set to ?
in patterns as well as priorities when they are clear from context.

Pattern semantics. The semantics of patterns is given by the
function pk#pat , as defined in Fig. 5. This turns out to be subtly
complicated, due to the representation of packets as sequences of
nested frames—a pattern contains a (possibly wildcarded) field for
every header field, but not all packets contain every header field.
Some fields only exist in specific frame types (dlTyp) or protocols
(nwProto). For example, only IP packets (dlTyp = 0x800) have
IP source and destination addresses. Likewise, TCP (nwProto = 6)
and UDP (nwProto = 17) packets have source and destination
ports, but ICMP (nwProto = 1) packets do not.



Wildcard w ::=n | ?
Pattern pat ::= {dlSrc = w, dlDst = w, dlTyp = w,

nwSrc = w, nwDst = w, nwProto = w,
tpSrc = w, tpDst = w}

Flow table FT ∈ {|n × pat × {|pt|}|}

JFT K pt pk  {|pt1 · · · ptn|} × {|pk1 · · · pkm|}

∃(n, pat , {|pt1 · · · ptn|}) ∈ FT .
pk#pat = true

∀(n ′, pat ′, pts ′) ∈ FT . n ′ > n ⇒
pk#pat ′ = false

JFT K pt pk  ({|(pt1) · · · (ptn)|}, {||})
(MATCHED)

∀(n, pat , pts) ∈ FT pk#pat = false
JFT K pt pk  ({||}, {|(pt, pk)|}) (UNMATCHED)

pk#pat

(Eth dlSrc dlDst dlTyp nwPk)#pat =
dlSrc v pat .dlSrc ∧ dlDst v pat .dlDst ∧
dlTyp v pat .dlTyp ∧
(pat .dlTyp = 0x800⇒ nwPk#nwpat)

nwPk#nwpat

(IP nwSrc nwDst nwProto tpPk)#nwpat =
nwSrc v pat .nwSrc ∧ nwDst v pat .nwDst ∧
nwProto v pat .nwProto ∧
(pat .nwProto = 6⇒ tpPk#tppat)

(Unknown payload)#nwpat = true

tpPk#tppat

(TCP tpSrc tpDst payload)#tppat =
tpSrc v pat .tpSrc ∧ tpDst v pat .tpDst

Unknown payload#tppat = true

n v w
m v n = m=n n v ? = true

Figure 5: Flow table syntax and semantics.

To match on a given field, a pattern must specify values for all
other fields it depends on. For example, to match on IP addresses,
the pattern must also specify that the Ethernet frame type is IP:

{dlTyp = 0x800, nwSrc = 10.0.0.1}
If the frame type is elided, the value of the dependent header is
silently ignored and the pattern is equivalent to a wildcard:

{nwSrc = 10.0.0.1} ≡ {}
In effect, patterns not only match packets, but also determine how
they are parsed. This behavior, which was ambiguous in early
versions of the OpenFlow specification (and later fixed) has lead to
real bugs in existing controllers (Section 5). Although unintuitive
for programmers, this behavior is completely consistent with how
packet processing is implemented in modern switch hardware.

Flow table semantics. The semantics of flow tables is given by
the relation J·K. The relation has two cases: one for matched packets
and another for unmatched packets. Each flow table entry is a
tuple containing a priority n , pattern pat , and a multiset of ports

P : sw × pr → [(pat , bool)]

P(sw, dlSrc = n) = [({dlSrc = n}, true)]
P(sw, nwSrc = n) = [({dlTyp = 0x800, nwSrc = n}, true)]

· · ·
P(sw , at sw) = [(?, true)]
P(sw, at sw ′) = [(?, false)] where sw 6= sw ′

P(sw, not pr) = [(pat1,¬b1) · · · (patn,¬bn), (?, false)]
where [(pat1, b1) · · · (patn, bn)] = P(sw, pr)

P(sw, pr and pr ′) =
[(pat1 ∩ pat ′1, b1 ∧ b′1) · · · (patm ∩ pat ′n, bm ∧ b′n)]

where [(pat1, b1) · · · (patm, bm)] = P(sw, pr)
where [(pat ′1, b

′
1) · · · (pat ′n, b′n)] = P(sw, pr ′)

C : sw × pg → [(pat , pt)]

C(sw , pr ⇒ pt)= [(pat1, pt1) · · · (patn, ptn), (?, {||})]
where [(pat1, b1), · · · , (patn, bn)] = P(sw, pr)
where pti = pt if bi = true
where pti = {||} if bi = false
C(sw , pg ] pg ′) =

[(pat1 ∩ pat ′1, pt1 ] pt′1), · · · , (patm ∩ pat ′n, ptm ] pt′n)] ++
[(pat1, pt1) · · · (patm, ptm)] ++
[(pat ′1, pt

′
1) · · · (pat ′n, pt′n)]

where [(pat1, pt1) · · · (patm, ptm)] = P(sw, pg)
where [(pat ′1, pt

′
1) · · · (pat ′n, pt′n)] = P(sw, pg ′)

Figure 6: NetCore compilation.

{|pt1 · · · ptn|}. Given a packet and its input port, the semantics
forwards the packet to all ports in the multiset associated with
the highest-priority matching rule in the table. Otherwise, if no
matching rule exists, it diverts the packet to the controller. In the
formal semantics, the first component of the result pair represents
forwarded packets while the second component represents diverted
packets. Note that flow table matching is non-deterministic if there
are multiple matching entries with the same priority. This has
serious implications for a compiler—e.g., naively combining flow
tables with overlapping priorities could produce incorrect results.
In the NetCore compiler, we avoid this issue by always working
with unambiguous and total flow tables.

5. Verified NetCore Compiler
With the syntax and semantics of NetCore and flow tables in place,
we now present a verified compiler for NetCore. The compiler takes
programs as input and generates a set of flow tables as output, one
for every switch. The compilation algorithm is based on previous
work [22], but we have verified its implementation in Coq. While
building the compiler, we found two serious bugs in the original
algorithm related to the handling of (unnatural) patterns in the
compiler and flow table optimizer.

The compilation function C, defined in Fig. 6, generates a flow
table for a given switch sw . It uses the auxiliary function P to
compile predicates. The compiler produces a list of pattern-action
pairs, but priority numbers are implicit: the pair at the head has
highest priority and each successive pair has lower priority.

Because NetCore programs denote total functions, packets not
explicitly matched by any predicate are dropped. In contrast, flow
tables divert unmatched packets to the controller. The compiler
resolves this discrepancy by adding a catch-all rule that drops
unmatched packets. For instance:

C(sw , dlSrc =H1⇒ {|5|})={|(2, {dlSrc =H1}, {|5|}), (1, ?, {||})|}



The key operator used by the compiler constructs the cross-product
of the flow tables provided as input. This operator can be used
to compute intersections and unions of flow tables. Note that im-
plementing union in the “obvious” way—by concatenating flow
tables—would be wrong. The cross-product operator performs an
element-wise intersection of the input flow tables and then merges
their actions. To compile a union, we first use cross-product to build
a flow table that represents the intersection, and then concatenate
the flow tables for the sub-policies at lower priority. For example,
the following NetCore program,

dlSrc = H1⇒ {|5|} ] dlDst = H2⇒ {|10|}
compiles to a flow table:

Priority Pattern Action
4 {dlSrc = H1, dlDst = H2} {|5, 10|}
3 {dlSrc = H1} {|5|}
2 {dlDst = H2} {|10|}
1 ? {||}

The first rule matches all packets that match both sub-programs,
while the second and third rules match packets only matched by
the left and the right programs respectively. The final rule drops
all other packets. The compilation of other predicates uses similar
manipulations on flow tables.

We have built a large library of flow table manipulation opera-
tors in Coq, along with several lemmas that state useful algebraic
properties about these operators. With this library, proving the cor-
rectness theorem for the NetCore compiler is simple—only about
200 lines of code in Coq.

Theorem 1 (NetCore Compiler Soundness). For all NetCore
programs pg , switches sw , ports pt, and packets pk we have
JC(sw , pg)K pt pk = JpgK sw pt pk.

Intuitively, this theorem states that a flow table compiled from a
NetCore program for a switch sw , has the same behavior as the
NetCore program evaluated on packets at sw .

Compiler bugs. In the course of our work, we discovered that
several unverified compilers from high-level network programming
languages to flow tables suffer from bugs due to subtle pattern
semantics. Section 4 described inter-field dependencies in patterns.
For example, to match packets from IP address 10.0.0.1, we write

{nwSrc = 10.0.0.1, dlTyp = 0x800}
and if we omit the dlTyp field, the IP address is silently ignored.
This unintuitive behavior has led to bugs in PANE [6] and Net-
tle [27] as well as an unverified version of NetCore [22]. To il-
lustrate, consider the following program:

nwSrc = 10.0.0.1⇒ {|5|}
In NetCore, this program matches all IP packets from 10.0.0.1
and forwards them out port 5. But the original NetCore compiler
produced the following flow table for this program:

Priority Pattern Action
2 {nwSrc = 10.0.0.1} {|5|}
1 ? {||}

Because the first pattern is equivalent to the all-wildcard pattern,
this flow table sends all traffic out port 5. Both PANE and Nettle
have similar bugs. Nettle has a special case to handle patterns
with IP addresses that do not specify dlTyp = 0x800, but it does
not correctly handle patterns that specify a transport port number
but not the nwProto field. PANE suffers from the same bug. Even
worse, these invalid patterns lead to further bugs when flow tables
are combined and optimized by the compiler.

Natural patterns. The verified NetCore compiler does not suffer
from the bug above. In our formal development, we require that

all patterns manipulated by the compiler be what we call natural
patterns. A natural pattern has the property that if the pattern
specifies the value of a field, then all of that field’s dependencies are
also met. This rules out patterns such as {nwSrc = 10.0.0.1},
which omits the Ethernet frame type necessary to parse the IP
address. Natural patterns are easy to define using dependent types
in Coq. Moreover, we can calculate the cross-product of two natural
patterns by intersecting fields point-wise. Hence, it is easy to prove
that natural patterns are closed under intersection.

Lemma 1. If pat1 and pat2 are natural patterns, then pat1∩pat2
is also a natural pattern.

Another important property is that all patterns can be expressed as
some equivalent natural pattern (where patterns are equivalent if
they denote the same set of packets). This property tells us that we
do not lose expressiveness by restricting to natural patterns.

Lemma 2. If pat is an arbitrary pattern, then there exists a natural
pattern pat ′, such that pat ≡ pat ′.

These lemmas are used extensively in the proofs of correctness for
our compiler and flow table optimizer.

Flow table optimizer. The basic NetCore compilation algorithm
described so far generates flow tables that correctly implement the
semantics of the input program. But many flow tables have redun-
dant entries that could be safely removed. For example, a naive
compiler might translate the program (?⇒ {|5|}) to the flow table
{|(2, ?, {|5|}), (1, ?, {||})|}, which is equivalent to {|(2, ?, {|5|})|}.
Worse, because the compilation rule for union uses a cross-product
operator to combine the flow tables computed for sub-programs,
the output can be exponentially larger than the input. Without an
optimizer, such a naive compiler is essentially useless—e.g., we
built an unoptimized implementation of the algorithm in Fig. 6 and
found that it ran out of memory when compiling a program consist-
ing of just 9 operators!

Our compiler is parameterized on a function O : FT → FT ,
that it invokes at each recursive call. Because even simple policies
can see a combinatorial explosion during compilation, this inline
reduction is necessary. We stipulate thatOmust produce equivalent
flow tables: JO(FT )K = JFT K.

We have built an optimizer that eliminates low-priority entries
whose patterns are fully subsumed by higher-priority rules and
proved that it satisfies the above condition in Coq. Although this
optimization is quite simple, it is effective in practice. In addition,
earlier attempts to implement this optimization in NetCore had a
bug that incorrectly identified certain rules as overlapping which we
did not discover until developing this proof. The PANE optimizer
also had a bug—it assumed that combining identical actions is
always idempotent. Both of these bugs led to incorrect behavior.

6. Featherweight OpenFlow
The next step towards executing NetCore programs is a controller
that configures the switches in the network. To prove that such a
controller is correct, we need a model of the network. Unfortu-
nately, the OpenFlow 1.0 specification, consisting of 42 pages of
informal prose and C definitions, is not amenable to rigorous proof.

This section presents Featherweight OpenFlow, a detailed oper-
ational model that captures the essential features of OpenFlow net-
works, and yet still fits on a single page. The model elides a number
of details such as error codes, counters, packet modification, and
advanced configuration options such as the ability to enable and
disable ports. But it does include all of the features related to how
packets are forwarded and how flow tables are modified. Many ex-
isting SDN bug-finding and property-checking tools are based on



Switch S ::= S(sw , pts,FT , inp , outp , inm , outm)
Controller C ::=C(σ, fin , fout)
Link L ::=L((sw src , ptsrc), pks, (swdst , ptdst))
Link to Controller M ::=M(sw ,SMS ,CMS)

Devices

Ports on switch pts ∈{pt}
Input/output buffers inp , outp ∈{|(pt, pk)|}
Messages from controller inm ∈{|SM |}
Messages to controller outm ∈{|CM |}

Switch Components

Controller state σ
Controller input relation fin ∈ sw × CM × σ  σ
Controller output relation fout ∈ σ  sw × SM × σ

Controller Components

Message queue from controller SMS ∈ [SM 1 · · ·SM n]
Message queue to controller CMS ∈ [CM 1 · · ·CM n]

Controller Link

From controller SM ::=FlowMod δ | PktOut pt pk | BarrierRequest n
To controller CM ::=PktIn pt pk | BarrierReply n
Table update δ ::=Add n pat act | Del pat

Abstract OpenFlow Protocol

JFT K(pt, pk) ({|pt′1 · · · pt′n|}, {|pk′1 · · · pk′m|})
S(sw , pts,FT , {|(pt, pk)|} ] inp , outp , inm , outm)

(sw,pt,pk)−−−−−−→ S(sw , pts,FT , inp , {|(pt′1, pk) · · · (pt′n, pk)|} ] outp , inm , {|PktIn pt pk′1 · · ·PktIn pt pk′m|} ] outm)

(FWD)

S(sw , pts,FT , inp , {|(pt, pk)|} ] outp , inm , outm) | L((sw , pt), pks, (sw ′, pt′))
−→ S(sw , pts,FT , inp , outp , inm , outm) | L((sw , pt), [pk] ++pks, (sw ′, pt′))

(WIRE-SEND)

L((sw ′, pt′), pks ++ [pk] , (sw , pt)) | S(sw , pts,FT , inp , outp , inm , outm)
−→ L((sw ′, pt′), pks, (sw , pt)) | S(sw , pts,FT , {|(pt, pk)|} ] inp , outp , inm , outm)

(WIRE-RECV)

S(sw , pts,FT , inp , outp , {|FlowMod Add m pat act|} ] inm , outm) −→ S(sw , pts,FT ] {|(m, pat , act)|}, inp , outp , inm , outm)
(ADD)

FT rem = {|(n ′, pat ′, act ′) | (n ′, pat ′, act ′) ∈ FT and pat 6= pat ′|}
S(sw , pts,FT , inp , outp , {|FlowMod Del pat |} ] inm , outm) −→ S(sw , pts,FT rem, inp , outp , inm , outm)

(DEL)

pt ∈ pts

S(sw , pts,FT , inp , outp , {|PktOut pt pk|} ] inm , outm) −→ S(sw , pts,FT , inp , {|(pt, pk)|} ] outp , inm , outm)
(PKTOUT)

fout(σ) (sw ,SM , σ′)

C(σ, fin , fout) | M(sw ,SMS ,CMS) −→ C(σ′, fin , fout) | M(sw , [SM ] ++SMS ,CMS)
(CTRL-SEND)

fin(sw , σ,CM ) σ′

C(σ, fin , fout) | M(sw ,SMS ,CMS ++ [CM ]) −→ C(σ′, fin , fout) | M(sw ,SMS ,CMS)
(CTRL-RECV)

SM 6= BarrierRequest n
M(sw ,SMS ++ [SM ] ,CMS) | S(sw , pts,FT , inp , outp , inm , outm)

−→ M(sw ,SMS ,CMS) | S(sw , pts,FT , inp , outp , {|SM |} ] inm , outm)

(SWITCH-RECV-CTRL)

M(sw ,SMS ++ [BarrierRequest n] ,CMS) | S(sw , pts,FT , inp , outp , {||}, outm)
−→ M(sw ,SMS ,CMS) | S(sw , pts,FT , inp , outp , {||}, {|BarrierReply n|} ] outm)

(SWITCH-RECV-BARRIER)

S(sw , pts,FT , inp , outp , inm , {|CM |} ] outm) | M(sw ,SMS ,CMS)
−→ S(sw , pts,FT , inp , outp , inm , outm) | M(sw ,SMS , [CM ] ++CMS)

(SWITCH-SEND-CTRL)

Sys1 −→ Sys′1
Sys1 | Sys2 −→ Sys′1 | Sys2

(CONGRUENCE)

Figure 7: Featherweight OpenFlow syntax and semantics.



similar (informal) models [3, 12, 13]. We believe Featherweight
OpenFlow could also serve as a foundation for these tools.

6.1 OpenFlow Semantics
Initially, every switch has an empty flow table that diverts all
packets to the controller. Using FlowMod messages, the controller
can insert new table entries to have the switch process packets
itself. A non-trivial program may compile to several thousand flow
table entries, but FlowMod messages only add a single entry at
a time. In general, many FlowMod messages will be needed to
fully configure a switch. However, OpenFlow is designed to give
switches a lot of latitude to enable efficient processing, often at the
expense of programmability and understandability:

• Pattern semantics. As discussed in preceding sections, the
semantics of flow tables is non-trivial: patterns have implicit
dependencies and flow tables can have multiple, overlapping
entries. (The OpenFlow specification itself notes that scanning
the table to find overlaps is expensive.) Therefore, it is up to the
controller to avoid overlaps that introduce non-determinism.
• Packet reordering. Switches may reorder packets arbitrarily.

For example, switches often have both a “fast path” that uses
custom packet-processing hardware and a “slow path” that pro-
cesses packets using a slower general-purpose CPU.
• No acknowledgments. Switches do not acknowledge when

FlowMod messages are processed, except when errors oc-
cur. The controller can explicitly request acknowledgements by
sending a barrier request after a FlowMod. When the switch
has processed the FlowMod (and all other messages received
before the barrier request), it responds with a barrier reply.
• Control message reordering. Switches may process control

messages, including FlowMod messages, in any order. This is
based on the architecture of switches, where the logical flow
table is implemented by multiple physical tables working in
parallel—each physical table typically only matches headers
for one protocol. To process a rule with a pattern such as
{nwSrc = 10.0.0.1, dlTyp = 0x800}, which matches head-
ers across several protocols, several physical tables may need
to be reconfigured, which takes longer to process than a simple
pattern such as {dlDst = H2}.

Figure 7 defines the syntax and semantics of Featherweight Open-
Flow, which faithfully models all of these behaviors. The rest of
this section discusses the key elements of the model in detail.

6.2 Network Elements
Featherweight OpenFlow has four kinds of elements: switches,
controllers, links between switches (carrying data packets), and
links between switches and the controller (carrying OpenFlow mes-
sages). The semantics is specified using a small-step relation, with
elements interacting by passing messages and updating their state
non-deterministically.

Switches. A switch S comprises a unique identifier sw , a set
of ports pts , and input and output packet buffers inp and outp .
The buffers are multisets of packets tagged with ports, (pt, pk). In
the input buffer, packets are tagged with the port on which they
were received. In the output buffer, packets are tagged with the
port on which they will be sent out. Since buffers are unordered,
switches can process packets in any order. Switches also have
a flow table, FT , which determines how the switch processes
packets. As detailed in Section 4, the table is a collection of flow
table entries, where each entry has a priority, pattern and, a multiset
of output ports. Each switch also has a multiset of messages to

and from the controller, outm and inm . There are three kinds of
messages from the controller:

• PktOut pt pk instructs the switch to emit packet pk on port pt.
• FlowMod δ instructs the switch to add or delete entries from

its flow table. When δ is Add n pat act , a new entry is created,
whereas Del pat deletes all entries that match pat exactly. In
our model, we assume that flow tables on switches can be
arbitrarily large. This is not the case for hardware switches,
where the size of flow tables is often constrained by the amount
of silicon used, and varies from switch-to-switch. It would be
straightforward to modify our model to bound the size of the
table on each switch.
• BarrierRequest n forces the switch to process all outstanding

messages before replying with a BarrierReply n message.

Controllers. A controller C is defined by its local state σ, an input
relation fin , and an output relation fout . The local state and these
relations are application-specific, so Featherweight OpenFlow can
be instantiated with any controller whose behavior can be modeled
in this way. The fout relation sends a message to a switch while fin
receives a message from a switch. Both relations update the state σ.
There are two kinds of messages a switch can send to the controller:

• PktIn pt pk indicates that packet pk was received on pt and did
not match any entry in the flow table.
• BarrierReply n indicates that sw has processed all messages

up to and including a BarrierRequest n sent earlier.

Data links. A data link L is a unidirectional queue of packets
between two switch ports. To model bidirectional links we use
symmetric unidirectional links. Featherweight OpenFlow does not
model packet-loss in links and packet-buffers. It would be easy
to extend our model so that packets are lost, for example, with
some probability. Without packet loss, a packet traces paths from
its source to its destinations (or loops forever). With packet loss,
a packet traces a prefix of the complete path given by our model
under ideal conditions.

Control links. A control link M is a bidirectional link between
the switch and the controller that contains a queue of controller
messages for the switch and a queue of switch messages headed to
the controller. Messages between the controller and the switch are
sent and delivered in order, but may be processed in any order.

7. Verified Run-Time System
So far, we have developed a semantics for NetCore (Section 3), a
compiler from NetCore to flow tables (Section 4), and a low-level
semantics for OpenFlow (Section 6). To actually execute NetCore
programs, we also need to develop a run-time system that installs
rules on switches and prove it correct.

7.1 NetCore Run-Time System
There are many ways to build a controller that implements a Net-
Core run-time system. A trivial solution is to simply process all
packets on the controller. The controller receives input packets as
PktIn messages, evaluates them using the NetCore semantics, and
emits the outputs using PktOut messages.

Of course, we can do much better by using the NetCore com-
piler to actually generate flow tables and install those rules on
switches using FlowMod messages. For example, given the fol-
lowing program,

dlDst = H1 and not(dlTyp = 0x800)⇒ {|1|}



Location loc ::= sw × pt
Located packet lp ::= loc × pk
Topology T ∈ loc ⇀ loc

pg , T ` {|lp|} lp
=⇒ {|lp|}

lps ′ = {|(T (sw , ptout), pk) | (ptout , pk) ∈ JpgK sw pt pk|}
pg , T ` {|((sw , pt), pk)|} ] {|lp1 · · · lpn|}

(sw,pt,pk)
======⇒

lps ′ ] {|lp1 · · · lpn|}

Figure 8: Network semantics.

the compiler might generate the following flow table,

Priority Pattern Action
5 {dlDst = H1, dlTyp = 0x800} {||}
4 {dlDst = H1} {|1|}
3 ? {||}

and the controller would emit three FlowMod messages:

Add 5 {dlDst = H1, dlTyp = 0x800} {||}
Add 4 {dlDst = H1} {|1|}
Add 3 ? {||}

However, it would be unsafe to emit just these messages. As dis-
cussed in Section 6, switches can reorder messages to maximize
throughput. This can lead to transient bugs by creating intermedi-
ate flow tables that are inconsistent with the intended policy. For
example, if the Add 3 ? {||} message is processed first, all pack-
ets will be dropped. Alternatively, if Add 4 {dlDst = H1} {|1|}
is processed first, traffic that should be dropped will be incorrectly
forwarded. Of the six possible permutations, only one has the prop-
erty that all intermediate states either (i) process packets according
to the program, or (ii) send packets to the controller (which can
evaluate them using the program). Therefore, to ensure the switch
processes the messages in order, the run-time system must inter-
sperse BarrierRequest messages between FlowMod messages.

Network semantics. The semantics of NetCore presented in Sec-
tion 3 defines how a program processes a single packet at a single
switch at a time. But Featherweight OpenFlow models the behav-
ior of an entire network of inter-connected switches with multiple
packets in-flight. To reconcile the difference between these two, we
need a network semantics that models the processing of all packets
in the network. In this semantics (Fig. 8), the system state is a bag
of in-flight located packets {|lp|}. At each step, the system:

1. Removes a located packet ((sw , pt), pk), from its state,

2. Processes the packet according to the program to produce a new
multiset of located packets,

{|lp1 · · · lpn|} = JpgK sw pt pk,

3. Transfers these packets to input ports, using the topology,
T (lp1) · · ·T (lpn), and

4. Adds the transferred packets to the system state.

Note that this approach to constructing a network semantics is not
specific to NetCore: any hop-by-hop packet processing function
could be used. Below, we refer to any semantics constructed in this
way as a network semantics.

7.2 Run-Time System Correctness
Now we are ready to prove the correctness of the NetCore run-time
system. However, rather than proving this directly, we instead de-

velop a general framework for establishing controller correctness,
and obtain the result for NetCore as a special case.

Bisimulation equivalence. The inputs to our framework are: (i)
the high-level, hop-by-hop function the network is intended to im-
plement, and (ii) the controller implementation, which is required
to satisfy natural safety and liveness conditions. Given these pa-
rameters, we construct a weak bisimulation between the network
semantics of the high-level function and an OpenFlow network
instantiated with the controller implementation. This construction
handles a number of low-level details once and for all, freeing de-
velopers to focus on essential controller correctness properties.

We prove a weak (rather than strong) bisimulation because
Featherweight OpenFlow models the mechanics of packet process-
ing in much greater detail than in the network semantics. For ex-
ample, consider a NetCore program that forwards a packet pk from
one switch to another, say S1 to S2, in a single step. An equiv-
alent Featherweight OpenFlow implementation would require at
least three steps: (i) process pk at S1, move pk from the input buffer
to the output buffer, (ii) move pk from S1’s output buffer to the link
to S2, and (iii) move pk from the link to S2’s input buffer. If there
were other packets on the link (which is likely!), additional steps
would be needed. Moreover, pk could take an even more circuitous
route if it is redirected to the controller.

The weak bisimulation states that the NetCore and Feather-
Weight OpenFlow are indistinguishable modulo “internal” steps.
Hence, any reasoning about the trajectory of a packet at the Net-
Core level will be preserved in FeatherWeight OpenFlow.

Observations. To define a weak bisimulation, we need a notion
of observation (called an action in the π-calculus). We say that the
NetCore network semantics observes a packet (sw , pt, pk) when
it removes the packet from its state—i.e., just before evaluating it.
Likewise, a Featherweight OpenFlow program observes a packet
(sw , pt, pk) when it removes (pt, pk) from the input buffer on sw
to process it using the FWD rule.

Bisimulation relation. Establishing a weak bisimulation requires
exhibiting a relation ≈OF between the concrete and abstract states
with certain properties. We relate packets located in links and
buffers in Featherweight OpenFlow to packets in the abstract net-
work semantics. We elide the full definition of the relation, but de-
scribe some of its key characteristics:

• Packets (pt, pk) in input buffers inp on sw are related to pack-
ets ((sw , pt), pk) in the abstract state.
• Packets (pt, pk) in output buffers outp on sw are related to

packets located at the other side of the link connected to pt.
• Likewise, packets on a data link (or contained in PktOut mes-

sages) are related to packets located at the other side of the data
link (or the link connected to the port in the message).

Intuitively, packets in output buffers have already been processed
and observed. The network semantics moves packets to new loca-
tions in one step whereas OpenFlow requires several more steps,
but we must not be able to observe these intermediate steps. There-
fore, after Featherweight OpenFlow observes a concrete packet pk
(in the FWD rule), subsequent copies of pk must be related to pack-
ets at the ultimate destination.

The structure of the relation is largely straightforward and dic-
tated by the nature of Featherweight OpenFlow. However, a few
parts are application specific. In particular, packets at the controller
and packets sent to the controller in PktIn messages may relate to
the state in the network semantics in application-specific ways.

Abstract semantics. So far, we have focused on NetCore to build
intuitions. But our bisimulation can be obtained for any controller



that implements a high-level packet-processing function. We now
make this precise with a few additional definitions.

Definition 1 (Abstract Semantics). An abstract semantics is de-
fined by the following components:

1. An abstract packet-processing function on located packets:

f(lp) = {|lp1 · · · lpn|}
2. An abstraction function, c : σ → {|lp|}, that identifies the

packets the controller has received but not yet processed.

Note that the type of the NetCore semantics (Fig. 8) matches the
type of the function above. In addition, because the NetCore con-
troller simply holds the multiset of PktIn messages, the abstraction
function is trivial. Given such an abstract semantics, we can lift it
to a network semantics

lp
=⇒ as we did for NetCore.

We say that an abstract semantics is compatible with a concrete
controller implementation, consisting of a type of controller state
σ, and input and output relations fin and fout , if the two satisfy the
following conditions relating their behavior:

Definition 2 (Compatibility). An abstract semantics and controller
implementation are compatible if:

1. The controller ensures that all times packets are either (i) pro-
cessed by switches in accordance with the packet-processing
function or (ii) sent to the controller for processing;

2. Whenever the controller receives a packet,

(sw ,PktIn pt pk, σ) σ′

it applies the packet-processing function f to pk to get a multi-
set of located packets and adds them to its state

c(σ′) = c(σ) ] f(pk)
3. Whenever the controller emits a packet,

σ  (sw ,PktOut pt pk, σ′)

it removes the packet from its state:

c(σ′) = c(σ) \ {|(sw , pt, pk)|}
4. The controller eventually processes all packets (sw , pt, pk) in

its state c(σ) according to the packet-processing function, and
5. The controller eventually processes all OpenFlow messages.

The first property is essential. If it did not hold, switches could
process packets contrary to the intended packet-processing rela-
tion. Proving it requires reasoning about the messages sent to the
switches by the controller. In particular, because switches may re-
order messages, barriers must be interspersed appropriately. The
second and third properties relate the abstraction function c and the
controller implementation. The fourth property requires the con-
troller to correctly process every packet it receives. The fifth prop-
erty is a liveness condition requiring the controller to eventually
process every OpenFlow message. This holds in the absence of fail-
ures on the control link and the controller itself.

Given such a semantics, we show that our relation between ab-
stract and Featherweight OpenFlow states and its inverse are weak
simulations. This implies that the relation is a weak bisimulation,
and thus that the two systems are weakly bisimilar.

Theorem 2 (Weak Bisimulation). For all compatible abstract se-
mantics and controller implementations, all Featherweight Open-
Flow states s and s′, and all abstract states t and t′:

• If s ≈OF t and s
(sw,pt,pk)−−−−−−→ s′, then there exists an abstract

network state t′′ such that t
(sw,pt,pk)
======⇒ t′′ and s′ ≈OF t

′′, and

• If s ≈OF t and t
(sw,pt,pk)
======⇒ t′, then there exists a Featherweight

OpenFlow state s′′, and abstract network states si, s′i such that

s −→∗ si (sw,pt,pk)−−−−−−→ s′i −→∗ s′′

and s′′ ≈OF t
′.

In this theorem, portions of the ≈OF relation are defined in terms
of the controller abstraction function, c supplied as a parameter. In
addition, the proofs themselves rely on compatibility (Definition 2).

Finally, we instantiate this theorem for the NetCore controller:

Corollary 1 (NetCore Run-Time Correctness). The network se-
mantics of NetCore is weakly bisimilar to the concrete semantics of
the NetCore controller in Featherweight OpenFlow.

8. Implementation and Evaluation
We have built a complete working implementation of the system
described in this paper, including machine-checked proofs of each
of the lemmas and theorems. Our implementation is available under
an open-source license at the following URL:

http://frenetic-lang.org

Our system consists of 12 KLOC of Coq, which we extract to
OCaml and link against two unverified components:

• A library to serialize OpenFlow data types to the OpenFlow
wire format. This code is a lightly modified version of the
Mirage OpenFlow library [16] (1.4K LOC).
• A module to translate between the full OpenFlow protocol and

the fragment used in Featherweight OpenFlow (200 LOC).

We have deployed our NetCore controllers on real hardware and
used them to build a number of useful network applications includ-
ing host discovery, shortest-path routing, spanning tree, access con-
trol, and traffic monitoring. Using the union operator, it is easy to
compose these modules with others to form larger applications.

NetCore at home. For the past month, we have used a NetCore
controller to manage the home network of one of the authors. Home
networks are small, but they are dynamic as devices regularly con-
nect and disconnect. Our controller monitors the state of the net-
work and dynamically reconfigures an OpenFlow-enabled wireless
router to support the current devices. Because Featherweight Open-
Flow does not model dynamic configurations, this controller’s run-
time system is necessarily unverified. However, it uses the NetCore
compiler as a verified sub-system. In the future, we plan to enrich
our OpenFlow model with additional features, including support
for dynamic configurations.

Controller throughput. Controller throughput is important for
the performance of SDNs. The CBench [26] tool quantifies con-
troller throughput by flooding the controller with PktIn messages
and measuring the time taken to receive PktOut messages in re-
sponse. This is a somewhat crude metric, but it is still effective,
since any controller must respond to PktIn messages. We used
CBench to compare the throughput of our verified controller with
our previous unverified NetCore controller, written in Haskell, and
with the popular POX and NOX controllers, written in Python and
C++ respectively. To ensure that the experiment tested throughput
and not the application running on it, we had each controller exe-
cute a trivial program that floods all packets. We ran the experiment
on a dual-core 3.3 GHz Intel i3 with 8GB RAM with Ubuntu 12.04
and obtained the results shown in Fig. 9 (a).

Our unverified NetCore controller is significantly faster than our
verified controller. We attribute this to (i) a more mature back-
end that uses an optimized library from Nettle [27] to serialize



Controller Messages/sec
Unverified NetCore (Haskell) 26,022
NOX (Python and C++) 16,997
Verified NetCore (OCaml) 9,437
POX (Python) 6,150
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Figure 9: Experiments: (a) controller throughput results; (b) control traffic topology; (c) control traffic results.

messages, and (ii) Haskell’s superior multicore support, which the
controller exploits heavily. However, despite being slower than
the original NetCore, the new controller is still fast enough to be
useful—indeed, it is faster than the popular POX controller (al-
though POX is not tuned for performance). We plan to optimize
our controller to improve its performance in the future.

Control traffic. Another key factor that affects SDN performance
is the amount of traffic that the controller must handle. This metric
measures the effectiveness of the controller at compiling, optimiz-
ing, and installing forwarding rules rather than processing packets
itself. To properly assess a controller on these points, we need a
more substantial application than “flood all packets.” Using Net-
Core, we built an application that computes shortest path forward-
ing rules as well as a spanning tree for broadcast. We ran this pro-
gram on the six-switch Waxman topology shown in Fig. 9 (b), with
two hosts connected to each switch.

In the experiment, every host sent 10 ICMP (ping) broadcast
packets along the spanning tree, and received the replies from other
hosts along shortest path routes. We used Mininet [9] to simulate
the network and collected traffic traces using tcpdump. The total
amount of network traffic during the experiment was 372 Kb.

We compared our Verified NetCore controller to several others:
a (verified) “PacketOut” controller that never installs forwarding
rules and processes all packets itself; our previous “Unverified Net-
Core” controller, written in Haskell; and a reactive “MicroFlow”
controller [7] written in Haskell. The results of the experiment are
shown in Fig. 9 (c). The graphs plot time-series data for every con-
troller, showing the amount of control traffic in each one-second
interval. Note that the y axis is on a logarithmic scale.

In the plot for our Verified NetCore controller, there is a large
spike in control traffic at the start of the experiment, where the
controller sends messages to install the forwarding rules generated
from the program. Additional control traffic appears every 15 sec-
onds; these messages implement a simple keep-alive protocol be-
tween the controller and switches. The Unverified NetCore con-
troller uses the same compilation and run-time system algorithms
as our verified controller, so its plot is nearly identical. The Mi-
croFlow controller installs individual fine-grained rules in response
to individual traffic flows rather than proactively compiling com-
plete flow tables. Accordingly, its plot shows that there is much
more control traffic than for the two NetCore controllers. The graph
shows how traffic spikes when multiple hosts respond simultane-
ously to an ICMP broadcast. The fourth plot shows the behavior of

the PacketOut controller. Because this controller does not install
any forwarding rules on the switches, all data traffic flows to the
controller and then back into the network.

Although these results are preliminary, we believe they demon-
strate that the performance of our verified NetCore controller can be
competitive with other controllers. In particular, our verified con-
troller generates the same flow tables and handles a similar amount
of traffic as the earlier unverified NetCore controller, which was
written in Haskell. Moreover, our system is not tuned for perfor-
mance. As we optimize and extend our system, we expect that its
performance will only improve.

9. Related Work
Verification technology has progressed dramatically in the past
decades, making it feasible to prove useful theorems about real sys-
tems including databases [18], compilers [15], and even whole op-
erating systems [14]. Compilers have been particularly fruitful tar-
gets for verification efforts [11]. Most prominently, the CompCert
compiler translates programs in a large subset of C to PowerPC,
ARM, and x86 executables [15]. The Verified Software Toolchain
project provides machine-checked infrastructure for connecting
properties obtained by program analysis to guarantees at the ma-
chine level [2]. Rocksalt verifies a tool for analyzing machine code
against a detailed model of x86 [23]. Another system, Bedrock
provides rich Coq libraries for verifying low-level programs [5].
Much earlier, a compiler for a Pascal-like language was formal-
ized and verified as a part of the CLInc stack [31]. Significant
portions of many other compilers have been formalized and veri-
fied, including the LLVM intermediate representation [33], the F*
typechecker [25], and an extension of CompCert with garbage col-
lection [20]. Our work is inspired by all of these efforts, but is the
first to tackle the challenge of building a verified SDN controller.

Over the past few years, a number of researchers have proposed
high-level programming languages for controlling networks, in-
cluding COOLAID [4], FML [10], Frenetic [7], NetCore [22], and
PANE [6]. This work uses NetCore [22] as a high-level network
programming language. NetCore’s original semantics was defined
in terms of handwritten proofs and a complex abstract machine
while we use machine-checked proofs and Featherweight Open-
Flow. In proving our compiler and run-time system correct, we dis-
covered several bugs in the unverified NetCore compiler and run-
time. A portion of the PANE compiler was formalized in Coq, but
since the proof did not model several subtleties of flow tables, the



compiler still had bugs. Unlike our system, PANE does not model
or verify any portion of its run-time system. We used some of the
PANE proofs during early development of our system. Lastly, Mi-
rage [16], a language for writing cloud applications, includes an
SDN interface. Our OpenFlow serializers are based on Mirage’s.

Formally Verifiable Networking (FVN) [28] is a platform for
synthesizing protocol implementations from formal specifications
(though the synthesizer is unverified). Our work attacks the prob-
lem of generating and deploying correct network-wide configura-
tions, rather than building distributed routing protocols. We use for-
mal methods to build compilers, shifting the need for expertise with
formal methods away from programmers.

Xie et al. introduced techniques for statically analyzing the
reachability properties of networks [29]. A number of tools for
verifying network configurations have been built using these tech-
niques, including Header Space Analysis [12], Anteater [17], and
VeriFlow[13]. These tools check whether the installed network
rules have properties specified by the programmer. Our system
guarantees that the generated network rules preserve the properties
of the input program, enabling higher-level verification.

NICE [3] uses model-checking and symbolic execution to find
bugs in OpenFlow controllers written in Python. Portions of our
Featherweight OpenFlow model are inspired by the bugs discov-
ered in NICE. Automatic Test Packet Generation [32] analyzes net-
work configurations and constructs packets to achieve complete
configuration testing coverage. Retrospective Causal Inference [24]
detects minimal input sequences to induce bugs in SDN systems.

10. Conclusions
This paper presents a new foundation for network reasoning: a de-
tailed model of OpenFlow, formalized in the Coq proof assistant,
and a machine-verified compiler and run-time system for the Net-
Core programming language. Our main result is a general frame-
work for establishing controller correctness that reduces the proof
obligation to a small number of safety and liveness properties. In
the future, we plan to develop program logics for network pro-
grams, extend Featherweight OpenFlow with additional features
not included in our current core calculus, and improve the engi-
neering aspects of our system.
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