
CAP for Networks

Aurojit Panda† Colin Scott† Ali Ghodsi†∗ Teemu Koponen\ Scott Shenker†�
†UC Berkeley ∗KTH/Royal Institute of Technology \VMware �ICSI

Alice laughed. “There’s no use trying,” she said:
“one can’t believe impossible things.”

“I daresay you haven’t had much practice,” said
the Queen. “When I was your age, I always did
it for half-an-hour a day. Why, sometimes I’ve
believed as many as six impossible things before
breakfast.”

(Lewis Caroll)

ABSTRACT
The CAP theorem showed that it is impossible for datastore
systems to achieve all three of strong consistency, availability
and partition tolerance. In this paper we investigate how
these trade-offs apply to software-defined networks. Specifi-
cally, we investigate network policies such as tenant isolation
and middlebox traversal, and prove that it is impossible
for implementations to enforce them without sacrificing
availability. We conclude by distilling practical design
lessons from our observations.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems

Keywords
Software Defined Network, Distributed Controllers, Correct-
ness, Availability

1. INTRODUCTION
In his famous PODC keynote [5], Eric Brewer artic-

ulated the CAP conjecture, a fundamental trade-off be-
tween linearizability,1 availability and partition tolerance

1Brewer’s original talk referred to consistency, without
specifying a particular form of consistency. However in
subsequent work, the wider distributed systems community
defines the consistency level specified by CAP to be
linearizability, or atomic consistency [10]. Recent work [18]
has shown that weaker forms of consistency (e.g. causal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2178-5/13/08 ...$15.00.

in distributed database systems. The CAP conjecture and
its subsequent proof [10] strongly influenced the design
of distributed storage systems, especially recent ‘NoSQL’
designs. In this paper we argue that a similar set of trade-offs
and choices apply to the control algorithms used in networks.

While availability and the ability to withstand network
partitions has long been an important goal in networking [7],
prior literature has not analyzed the impact of this choice on
enforceable policies. Networks support increasingly complex
policies, making it vital that network architects be aware
of the trade-offs between policy enforcement and partition
tolerance. To the best of our knowledge, this is the first
study on the enforceability of network policies in the face of
network failure.

Our investigation is motivated by the recent move towards
software-defined networking. Software-defined networks
move control plane functionality out of switches and into
separate controllers. Controllers in these networks typically
communicate through an out-of-band management network
to coordinate among themselves [1].

The crucial consequence of out-of-band control is that
the network may enter a situation where the controllers are
partitioned from each other while the data network remains
connected. In such a scenario, network policies that would
otherwise be implementable may be violated.2 Further,
such partitions, which can be a result of both physical
failures and software bugs, are prevalent in practice [14].
Lastly, network services that are available in the presence of
partitions cannot rely on global coordination, and therefore
availability in practice implies better performance [2]. In
this paper we seek to identify the set of policies controllers
can and cannot be achieved under partition.

While availability and partition tolerance are identical
in networks and data stores, the notion of consistency
differs significantly. In storage systems the read and
write semantics of data across replicas is the primary
concern. In SDN networks, by contrast, we are interested
in consistent application of policies across the network.
The definition of consistency in networks therefore depends
on the precise policy under consideration. In this paper
we consider isolation policies, middle box processing, and
traffic engineering, and present impossibility results for these
policies.

consistency) do not require trading off on availability or
partition tolerance.
2We discuss in-band and out-of-band control in greater
detail in §6.

Controller Controller

Switch Switch

Control Plane

EndhostEndhost

Data plane

Link

Figure 1: Entities in the Network Model

Similar to other impossibility proofs [9, 10], we do not
intend to imply that practitioners should not implement
these policies; rather, the main value of our proofs is to
elucidate points in the trade-off space so practitioners can
make informed choices.

2. MODEL
In this paper we wish to prove assertions that hold over

all possible controller algorithms and all possible network
topologies. Rather than reasoning about the full detail of
networks, we present a simple model that retains the core
properties we are attempting to reason about.

The entities in our model include a set of SDN controllers,
switches that implement rules set by the controllers, and
end-hosts. Figure 1 shows these various components graphi-
cally. We assume a separate control and data network. The
data network connects switches to each other and end-hosts
to switches. The control network connects controllers to
each other and individual switches to controllers. End-hosts
act as sources and sinks for packets in the network.

In our model, the control program is notified when a new
switch connects to the controller, or a new host attaches to
a connected switch. We define the domain of a controller to
be the set of all switches directly connected to the controller
and all end-hosts connected to these switches.

Interactions between switches and controllers are governed
by the following set of rules:

1: Each host is associated with a unique identifier E and a
topologically assigned address A. The entity identifier
is persistently tied to a particular end-host, while the
address associated with an end-host may change due to
host migration. Packet headers and forwarding rules
are specified in terms of addresses, while policies are
specified in terms of entities.3

2: Controllers query switches and end-hosts within their
domain to determine links, end-host identity and
addresses.

3: Each entity belongs to exactly one controller’s do-
main4. A controller cannot query an entity not in its
domain and must instead contact another controller to
do the querying on its behalf.

3Our model is agnostic to the mechanism hosts use to resolve
addresses. In practice a lookup service is often implemented
by the controllers themselves [12,20]
4Even if a switch is physically connected to multiple
controllers, only one of the controller’s is active to avoid
race conditions where multiple controllers push conflicting
updates to the same switch.

4: Controllers specify switch behavior as a set of rules,
each of which references one or more addresses and
an action. We allow two actions: one that forwards
packets along a link and one that drops packets.
While in practice switches allow for a richer set of
actions, these actions are sufficient for showing the
impossibility results.

In addition to these rules, we make the following assump-
tions throughout the paper:

• Out-of-Band Control The results presented here
assume an out-of-band control network, where the con-
trol network is separate from the data network and the
controllers never tunnel control information through
the data network. While SDN networks could use both
in-band and out-of-band control, many existing SDN
networks [1] only use out-of-band control. We discuss
the effect of switching to in-band control in §6.

• Fail-Stop Links We assume a fail-stop model for all
links, i.e. we do not model link recovery, nor do we
model link degradation due to partial failures. In real
networks links eventually recover, but this process may
take substantial time. A recent study of datacenter
link failures [11] shows that failed links generally take
several minutes to recover, with over 20% of failed
links taking over 5 minutes to be repaired. Link repair
times are thus several orders of magnitude larger than
control plane convergence times and our results focus
on the behavior of the network during the time when
such failures persist. Moreover, our results also hold
for stronger link failure models.

• Static Policies The controllers in our model rely on
a set of operator provided policies. We assume that all
controllers in a network have access to the same policy
specification. For our analysis, we assume operator
policies do not change. Mechanisms for consistently
pushing new operator policies to the data plane have
been described previously [21] and are not a focus of
our analysis.

• Policies Specified in Terms of Entities We assume
that policies are specified in terms of entity identifiers,
not addresses. This practice simplifies the task of
network management [6] and is particularly well suited
to networks that separate location from identifiers [8].
In §6 we discuss the implications of implementing
policies by instead placing constraints on addressing.

• Host Migration We assume that each end-host is
connected to exactly one switch at a given time, yet
we do allow for host migration. Host migrations are
common in enterprise networks, where mobile devices
might move around as a matter of course and in
datacenters where VM migration is common. We as-
sume that other than the switch notifications described
previously, host migration does not necessarily involve
any coordination with the network controller.

• Proactive Forwarding We assume that switches do
not reactively consult their parent controller to make
data plane decisions. We make this assumption merely
for convenience to limit the number of events we have
to consider in our results. Our results do not depend
on this assumption and hold even in the presence of
reactive control, as will become clear in the proofs.

• Dynamic Addresses We assume that end-host lo-
cations and addresses can change over time without
the intervention of controllers. We also assume that
the address space is not statically partitioned; that is,
addresses may be assigned arbitrarily.5

Within the model, a control application therefore oper-
ates on three kinds of information: policies provided by
operators, state determined by querying directly connected
switches and state obtained from other controllers. With
this information the control application produces a set of
rules and pushes them down to switches.

We use this model to analyze trade-offs between correct-
ness, availability and partition tolerance in SDN networks.
We provide precise definitions for these properties below:

• Availability In our model availability is a liveness
property: packets destined to an end-host should
eventually arrive as long as a path exists between
the sender and the receiver and communication is
not prohibited by policy. Since we assume fail-stop
links (and hence that partitions can last indefinitely),
availability requires that packets be delivered in the
presence of partial partitions. Naturally, we do not
require that packets be delivered when no physical
path exists.
• Partition Tolerance We say a policy is partition

tolerant if the network continues to operate in the pres-
ence of arbitrary partitions in the physical network.
• Correctness The definition of correctness used de-

pends on the network policy. The original CAP theo-
rem [10] defined consistency in terms of linearizable
reads and writes to data objects. The consistency
guarantees provided by data store systems are in-
tended to support a wide range of applications. In the
more limited context of SDN networks, there are fewer
policies, and those network policies often have simpler
correctness conditions. In particular, linearizability is
likely unnecessary for ensuring correct application of
most network policies. We therefore choose to analyze
a narrower set of correctness properties, each defined
by individual policies.

Later in §5 we generalize our results by framing
network consistency guarantees in terms of registers
and presenting some preliminary thoughts on consis-
tency guarantees that are sufficient to implement these
policies.

3. IMPOSSIBILITY RESULTS FOR POLI-
CIES DEPENDENT ON IDENTITY

In this section we prove that policies referencing the
identity of two or more entities are not generally imple-
mentable during partitions in the control network. The basic
intuition is that packets are routed on addresses, yet the
mapping between addresses and entities may change even
when partitioned controllers cannot receive updates. While
the main result in this section is fairly obvious given our
network model, it serves as an example of how one could
reason about impossibility results in SDN networks, and also
helps seed much of the discussion in §6.

5We observe that one can use static partitioning to
circumvent some of our results and we make a note of this
when applicable.

C1 C2

S1 S2

B D EA
Figure 2: An example network for a violation of isolation

We start by stating some general results applicable to all
such policies. Later we apply these results to two specific
policies: inter-tenant isolation and middlebox traversal.

3.1 Results
A policy references an entity either when the policy

statement explicitly refers to that entity, (e.g. ‘A’ and ‘B’
in a policy stating that end-host A may not communicate
with end-host B), or when the policy depends indirectly on
classes of entities (e.g. a policy stating that all traffic from
a particular host H must be compressed depends on com-
pression middleboxes). We ignore policies that are either
vacuously unachievable (such as the previously mentioned
compression policy in a network where no middlebox can
perform compression), or are vacuously enforceable (such as
the previously mentioned isolation policy where only one of
entities A and B is connected to the network).

In the model presented in §2 routing entries are specified
in terms of addresses. Controllers must therefore enforce
policies by correctly resolving addresses for all entities
referenced. However, during a control network partition,
controllers may not correctly resolve addresses for entities
outside their domain and hence cannot enforce policies
referencing such entities. Below we expand this intuition
into a formal proof.

Lemma 1 A controller cannot in general resolve the
address for an entity outside its domain in the presence of
network partitions, under the model described in §2.

Proof We prove this by showing a counterexample. As-
sume there exists a mechanism that allows a controller to
resolve the address for an entity outside its domain, even
in the presence of network partitions. Consider a network
with two controllers C1 and C2 and entity E which belongs
to controller C2’s domain. Consider applying the assumed
mechanism to resolve E’s addresses at controller C1 in the
presence of a control network partition between C1 and
C2. By Rule 4, addresses are topologically assigned and
can change due to a series of data plane events. Consider
a situation where at some point after the control network
is partitioned and entity E’s address changes from A0

E to
A1

E . Due to Rule 3, from controller C1’s perspective this is
identical to a situation where E’s address instead changes
from A0

E to A2
E (or remains unchanged). Since controller C1

cannot distinguish between these cases, it cannot correctly
resolve entity E’s address in all cases. This is a contradiction
and thus no such mechanism can exist.

Theorem 1 All three of correctness, availability and par-
tition tolerance cannot be achieved for policies referencing
two or more entities, under the model described in §2.

Proof This is a consequence of Lemma 1. Consider a case
where a policy references two entities A and B in different

domains. By Rule 4 a mechanism implementing this policy
must produce one or more rules which must either (a) specify
addresses for both A and B or (b) specify address for A
(respectively B) in B’s domain (respectively A’s domain).
In both these cases, a controller must resolve the address
for one or more entities outside its own domain. By Lemma
1 this is not possible under controller partition and hence
all three of correctness, availability and partition tolerance
cannot be achieved.

We now show that two of the three can always be achieved.
Correctness and Availability. This is equivalent to

enforcing these policies in the absence of failures and is hence
trivially satisfied.

Correctness and Partition Tolerance. This is triv-
ially satisfied by sending no packets from one controllers
domain to another.

Availability and Partition Tolerance. This is triv-
ially satisfied by allowing all packets from any source to any
destination.

3.2 Impossible Policies
Next we apply the previous result to two concrete policies:

• Isolation: Isolation policies are used to specify that
packets from a entity A can never reach another entity
B. Such a policy might be useful in the context of
a shared datacenter, or other cases where adversaries
potentially share infrastructure.

• Middlebox Traversal: Middleboxes are data plane
elements, commonly used to provide additional packet
processing services such as compression, virus scan-
ning, intrusion detection, or encryption. A Middlebox
Traversal policy indicates that traffic from a certain
source must always pass through a specific middlebox.
In our model, a middlebox is functionally equivalent to
a switch (i.e. we do not model the functional aspects
of a middlebox).

3.2.1 Isolation Policy
Isolation policies, as defined previously, reference at least

two entities (A and B in the example above). Therefore by
Theorem 1 an arbitrary isolation policy cannot be imple-
mented on arbitrary topologies when the control network is
partitioned.

As an example of one such condition, consider the network
in Figure 2 and an isolation policy requiring that A is
isolated from D. Enforcing this policy requires either
controller C1 to resolve the address for entity D, or for
controller C2 to resolve the address for entity A. By Lemma
1 this is impossible under control network partitions.

3.2.2 Middlebox Traversal
Middleboxes, as stated previously, are data plane elements

commonly used to provide packet processing services for
packets and network transfers in a network. Middleboxes
have limited processing capacity, making it essential to limit
the traffic passing through them.

Middlebox traversal policies specify that packets originat-
ing from or destined to a certain entity must pass through
a middlebox (and no other packets should pass through the
middlebox). For instance in the network shown in Figure 3,
a middlebox traversal policy might require that all traffic
originating at end-host A must pass through middlebox M .

C1
C2

S1 S2

B DA

M

Middlebox

S3

M
Figure 3: An example network with a middlebox.

Controllers implementing this policy must be able to
resolve addresses for both entity A and middlebox M , and
as shown by Theorem 1, this is impossible during control
network partitions.

3.3 Workarounds
Theorem 1 is not meant to show that it is strictly im-

possible to implement policies referencing multiple entities
in real networks. Rather, our intention is to show the
precise constraints that need to be circumvented by system
designers in order to work around the impossibility.

In general, when a policy references more than one entity,
it is essential that a single controller be able to identify
both entities unambiguously. This can either be achieved
by placing both entities in the same domain, or by tagging
packets with the identity of relevant entities. For instance, if
a packet was labeled unambiguously with the identity of the
source end-host, we would be able to achieve all of isolation,
availability and partition tolerance. The practical lesson
from this proof is that labels are a powerful mechanism
for communicating control plane information in-band. We
discuss this approach later in §6.

One can also enforce such identity based policies by
constraining address allocation. As an example, consider
a policy that applies to machines belonging to different
tenants in a multi-tenant datacenter. One could assign
each tenant a different address block (e.g. a unique /16 per
tenant) and enforce policies over these wild-card addresses
(for instance, 10.0.0.0/16 should not be able to communi-
cate with 11.0.0.0/16). When host migration occurs, new
addresses would need to assigned according to the policy.
The limitation of this approach is that it restricts choices
for where an end-host resides (in cases where topological
addressing is used).

4. EDGE DISJOINT ISOLATION
We now consider a policy that requires that traffic between

pairs of end-hosts travel along edge disjoint paths, i.e. that
no link carry traffic sent between different pairs of end-
hosts.6 We call this property edge disjoint isolation. Such
a policy might be applied in cases where competitors share
network infrastructure, and observable traffic patterns can
reveal information. This policy can also be considered a
simple version of traffic engineering, where traffic must be
load balanced across several network links.

Note that edge disjoint isolation might not always be
achievable, even without partitions. We only consider
situations where the policy is in fact achievable, i.e. can
be implemented in the network’s current topology.

6We allow packets to traverse the same switch(es).

S1

C1 S2

S3

S4

C3

C2

L0

L1

L2

L3

L4 L5A B D E

Figure 4: An example network for a violation of edge disjoint
isolation

4.1 Results

Theorem 2 Only two of edge disjoint isolation, availability
and partition tolerance are achievable under the model
described in §2.

Proof Here we show that there exist topologies where no
distributed algorithm can guarantee all three of edge disjoint
isolation, availability and partition tolerance. Consider the
topology shown in Figure 4 and a policy requiring that
traffic from A to D be edge disjoint isolated from traffic
going from B to E. Further, let us assume that there is
a distributed algorithm that enforces edge disjoint isolation
policies despite control network partitions.

Let us now consider a failure in link L5. The hypothetical
algorithm must now route traffic from both A to D and
from B to E through switch S2. However it follows from
Rule 3 that from the perspective of controller C1, this failure
scenario is identical to one where link L3 fails, in which
case not both of A’s and B’s traffic can traverse S2. Since
C1 cannot distinguish the two cases, its possible that both
A and B’s traffic would share a link, thus violating edge
disjoint isolation.

It can be shown that any two of the properties can be
achieved pairwise by following a similar line of reasoning as
in §3.1.

4.2 Workarounds
The impossibility of edge disjoint isolation results from

controllers lacking a consistent view of link failures in the
network. It is easy to see that this impossibility is resolved
if all controllers have consistent topology information and an
agreed-upon mechanism for selecting what path a particular
end-host pair should communicate over.

In our current model, topology information is exchanged
over the control network. However, a variety of traditional
link-state routing protocols, including OSPF [19], exchange
control messages over the data plane and these mechanisms
could be used to provide a consistent view of the topology.
The use of traditional routing protocols is effectively a form
of in-band control, which we discuss more fully in the next
section.

One could also encode link failure information either in
data packets, as is done in FCP [15] or in specific topologies
using mechanisms based on the incoming port for a packet.
Both of these methods are equivalent to tunneling control
information through the data plane.

5. THE NETWORK AS REGISTERS
Consistency models in the distributed systems literature

are commonly expressed in terms of the read and write
behavior of registers [16]. Such models express constraints
on values that can be read from a register at any point in

an execution. For instance atomic (linearizable) register [13]
guarantee that (i) reads return either the last value written,
or the value being written by a concurrent write, and that
(ii) following a read all subsequent reads return a value that
is at least as recent as the value returned.

In this paper we modeled the network as an asynchronous
message passing distributed system. One could instead
model the routing tables in the network as a collection of
registers the controllers have access to. In such a model the
registers store both the set of policies that must be enforced
in a network and the information required to enforce these
policies. For example identity policies presented in §3
can be implemented using registers containing the current
entity to address mappings for the network. Similarly, the
edge disjoint policy described in §4 can be implemented
using registers that can be queried to discover the network
topology.

In the register model the trade-off between correctness
and availability can be analyzed by determining the weakest
register required to implement a given network policy.
We observe that atomicity (linearizability) is sufficient to
implement the policies discussed so far. Gilbert and
Lynch [10] have previously shown that linearizability and
availability are not achievable in the presence of partitions
and consequently all three of correctness, availability and
partition tolerance cannot be achieved for these policies. It
is however doubtful that atomicity is the weakest consistency
model necessary for implementing common network policies.
We believe that determining a consistency model that is
both necessary and sufficient for network policies is an
important open problem.

6. DISCUSSION
In this section we attempt to distill practical design lessons

from our observations.

6.1 In-Band Control
It is commonly believed that out-of-band control networks

are simpler and more resilient than in-band control net-
works. Our findings suggest that näıve out-of-band control
may actually provide lower resilience than in-band control.
In particular, the impossibilities we have discussed so far
essentially boil down to the inability of controllers to update
their view of the network topology. With in-band control,
the only time the controllers cannot update their view is
when the data network is itself partitioned and the data
plane operations themselves cannot be carried out.

A hybrid approach can also circumvent these impossibil-
ities, where the controllers revert to in-band control when
the out-of-band network is partitioned. Hybrid approaches
provide comparable simplicity to pure out-of-band networks,
while simultaneously providing greater resilience.

6.2 Labels
In-band control essentially involves tunneling control pack-

ets across physical links. Another option is to attach control
information to data packets themselves. For example, the
impossibility of cross-domain policies can be circumvented
if the edge router labels each packet with the identity
of the source. More generally, the result of any packet
classification, e.g. the results of deep packet inspection,
could be attached to packets to implement complex policies
despite control plane partitions.

The extreme case of labeling is where the entire policy it-
self is attached to packets. This is essentially the mechanism
proposed by Active Networking [22].

6.3 Consistent Network Updates
Prior work by Reitblatt et al. [21] provides a set of

primitives for consistently applying planned configuration
changes in software-defined networks. In particular, their
work presents mechanisms for providing per-packet consis-
tency, guaranteeing that any individual packet is processed
by exactly one consistent global configuration, and per-
flow consistency, guaranteeing that all packets in a flow
are processed by exactly one consistent global configuration.
As noted by the authors these consistency models are
stronger than atomic consistency and hence the mechanisms
proposed cannot be used during partitions or in the presence
of other failures.

7. CONCLUSION
The main formal result in this paper is that for software-

defined networks facing network partitions, several common
network policies are not enforceable without sacrificing avail-
ability. Thus, SDN architects have a choice between policy
enforcement and network connectivity. Traditional networks
typically favor availability over policy enforcement, but the
flexibility of software-defined networks allows operators to
make a case-by-case decision about this trade-off depending
on the specific context and desired network policies.

We have described some ways to avoid these impossibility
results; that is, one can weaken the consistency model
required to implement certain policies, and thereby imple-
ment these policies even in the face of partitions. This
line of thought is similar to work on alternate consistency
models [3, 4, 17] that allow data stores to provide weakened
consistency guarantees without requiring them to trade-off
availability. Our work suggests that a fuller exploration of
consistency models for network policies is a fruitful area of
research.

8. ACKNOWLEDGMENTS
We thank Shivaram Venkataraman, Kay Ousterhout,

Peter Bailis, and Amin Tootoonchian for their feedback
and suggestions. This research is supported by NSF CNS
1040838 and NSF CNS 1015459.

9. REFERENCES
[1] Big Network Controller Datasheet. Retrieved

03/22/2013: http://www.bigswitch.com/sites/default/

files/sdn resources/bnc datasheet.pdf.

[2] D. Abadi. Problems with CAP, and Yahoo’s little

known NoSQL system.

http://dbmsmusings.blogspot.com/2010/04/

problems-with-cap-and-yahoos-little.html, 2010.

[3] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and

I. Stoica. HAT, not CAP: Towards Highly Available

Transactions. HotOS’13.

[4] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Bolt-on Causal Consistency. SIGMOD’13.

[5] E. Brewer. Towards Robust Distributed Systems.

PODC ’00 Invited Talk.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo,

N. McKeown, and S. Shenker. Ethane: Taking Control

of the Enterprise. SIGCOMM ’07.

[7] D. Clark. The Design Philosophy of the DARPA

Internet Protocols. CCR ’88.

[8] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The

Locator/ID Separation Protocol (LISP). RFC 6830.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson.

Impossibility of Distributed Consensus with One

Faulty Process. JACM ’85.

[10] S. Gilbert and N. Lynch. Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-Tolerant

Web Services. ACM SIGACT News ’02.

[11] P. Gill, N. Jain, and N. Nagappan. Understanding

Network Failures in Data Centers: Measurement,

Analysis, and Implications. SIGCOMM ’11.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,

C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and

S. Sengupta. VL2: A Scalable and Flexible Data

Center Network. SIGCOMM ’09.

[13] M. P. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. TOPLAS

’90.

[14] K. Kingsbury and P. Bailis. The network is reliable.

http://aphyr.com/posts/288-the-network-is-reliable,

2013.

[15] K. Lakshminarayanan, M. Caesar, M. Rangan,

T. Anderson, S. Shenker, and I. Stoica. Achieving

Convergence-Free Routing Using Failure-Carrying

Packets. CCR ’07.

[16] L. Lamport. On interprocess communication.

Distributed Computing ’86.

[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.

Andersen. Don’t Settle for Eventual: Scalable Causal

Consistency For Wide-Area Storage With COPS. In

SOSP 2011.

[18] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency,

Availability, and Convergence. University of Texas at

Austin Tech Report ’11.

[19] J. Moy. OSPF Version 2. RFC 2328.

[20] R. Niranjan Mysore, A. Pamboris, N. Farrington,

N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,

and A. Vahdat. PortLand: a Scalable Fault-Tolerant

Layer 2 Data Center Network Fabric. SIGCOMM ’09.

[21] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,

and D. Walker. Abstractions for Network Update.

SIGCOMM ’12.

[22] D. L. Tennenhouse and D. J. Wetherall. Towards an

Active Network Architecture. CCR ’96.

http://www.bigswitch.com/sites/default/files/sdn_resources/bnc_datasheet.pdf
http://www.bigswitch.com/sites/default/files/sdn_resources/bnc_datasheet.pdf
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://aphyr.com/posts/288-the-network-is-reliable

	Introduction
	Model
	Impossibility Results for Policies Dependent on Identity
	Results
	Impossible Policies
	Isolation Policy
	Middlebox Traversal

	Workarounds

	Edge Disjoint Isolation
	Results
	Workarounds

	The Network as Registers
	Discussion
	In-Band Control
	Labels
	Consistent Network Updates

	Conclusion
	Acknowledgments
	References

