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ABSTRACT
We present the design, implementation, and evaluation of B�, a pri-
vate WAN connecting Google’s data centers across the planet. B�
has a number of unique characteristics: i) massive bandwidth re-
quirements deployed to a modest number of sites, ii) elastic traf-
�c demand that seeks to maximize average bandwidth, and iii) full
control over the edge servers and network, which enables rate limit-
ing and demand measurement at the edge. �ese characteristics led
to a So�ware De�ned Networking architecture using OpenFlow to
control relatively simple switches built from merchant silicon. B�’s
centralized tra�c engineering service drives links to near ���� uti-
lization, while splitting application �ows among multiple paths to
balance capacity against application priority/demands. We describe
experience with three years of B� production deployment, lessons
learned, and areas for future work.

Categories and Subject Descriptors
C.�.� [Network Protocols]: Routing Protocols

Keywords
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1. INTRODUCTION
Modern wide area networks (WANs) are critical to Internet per-

formance and reliability, delivering terabits/sec of aggregate band-
width across thousands of individual links. Because individual
WAN links are expensive and because WAN packet loss is typically
thought unacceptable,WANrouters consist of high-end, specialized
equipment that place a premium on high availability. Finally, WANs
typically treat all bits the same. While this has many bene�ts, when
the inevitable failure does take place, all applications are typically
treated equally, despite their highly variable sensitivity to available
capacity.

Given these considerations, WAN links are typically provisioned
to ��-��� average utilization. �is allows the network service
provider to mask virtually all link or router failures from clients.
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Such overprovisioning delivers admirable reliability at the very real
costs of �-�x bandwidth over-provisioning and high-end routing
gear.

Wewere facedwith these overheads for building aWAN connect-
ing multiple data centers with substantial bandwidth requirements.
However, Google’s data center WAN exhibits a number of unique
characteristics. First, we control the applications, servers, and the
LANs all the way to the edge of the network. Second, our most
bandwidth-intensive applications perform large-scale data copies
from one site to another. �ese applications bene�t most from high
levels of average bandwidth and can adapt their transmission rate
based on available capacity.�ey could similarly defer to higher pri-
ority interactive applications during periods of failure or resource
constraint. �ird, we anticipated no more than a few dozen data
center deployments, making central control of bandwidth feasible.

We exploited these properties to adopt a so�ware de�ned net-
working (SDN) architecture for our data center WAN interconnect.
We were most motivated by deploying routing and tra�c engineer-
ing protocols customized to our unique requirements. Our de-
sign centers around: i) accepting failures as inevitable and com-
mon events, whose e�ects should be exposed to end applications,
and ii) switch hardware that exports a simple interface to program
forwarding table entries under central control. Network protocols
could then run on servers housing a variety of standard and custom
protocols. Our hope was that deploying novel routing, scheduling,
monitoring, andmanagement functionality and protocols would be
both simpler and result in a more e�cient network.

We present our experience deploying Google’s WAN, B�, using
So�ware De�ned Networking (SDN) principles and OpenFlow [��]
to manage individual switches. In particular, we discuss how we
simultaneously support standard routing protocols and centralized
Tra�c Engineering (TE) as our �rst SDN application. With TE, we:
i) leverage control at our network edge to adjudicate among compet-
ing demands during resource constraint, ii) use multipath forward-
ing/tunneling to leverage available network capacity according to
application priority, and iii) dynamically reallocate bandwidth in the
face of link/switch failures or shi�ing application demands. �ese
features allow many B� links to run at near ���� utilization and all
links to average ��� utilization over long time periods, correspond-
ing to �-�x e�ciency improvements relative to standard practice.

B� has been in deployment for three years, now carries more traf-
�c than Google’s public facing WAN, and has a higher growth rate.
It is among the �rst and largest SDN/OpenFlow deployments. B�
scales tomeet application bandwidth demandsmore e�ciently than
would otherwise be possible, supports rapid deployment and iter-
ation of novel control functionality such as TE, and enables tight
integration with end applications for adaptive behavior in response
to failures or changing communication patterns. SDN is of course



Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.

We had several additional motivations for our so�ware de�ned
architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).

�ese servers enable distributed routing and central tra�c engi-
neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-



Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.

Perhaps most importantly, we layered tra�c engineering on top
of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).

Each B� site consists of multiple switches with potentially hun-
dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.

In the rest of this section, we describe how we integrate ex-
isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.

Even so, the main reason we chose to build our own hardware
was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required



Figure �: A custom-built switch and its topology.

at individual sites, we needed a high-radix switch; deploying fewer,
larger switches yieldsmanagement and so�ware-scalability bene�ts.

To scale beyond the capacity available from individual switch
chips, we built B� switches from multiple merchant silicon switch
chips in a two-stage Clos topology with a copper backplane [��].
Fig. � shows a ���-port ��GE switch built from �� individual
��x��GEnon-blocking switch chips. We con�gure each ingress chip
to bounce incoming packets to the spine layer, unless the destination
is on the same ingress chip. �e spine chips forward packets to the
appropriate output chip depending on the packet’s destination.

�e switch contains an embedded processor running Linux. Ini-
tially, we ran all routing protocols directly on the switch. �is al-
lowed us to drop the switch into a range of existing deployments
to gain experience with both the hardware and so�ware. Next, we
developed an OpenFlow Agent (OFA), a user-level process running
on our switch hardware implementing a slightly extended version of
the Open Flow protocol to take advantage of the hardware pipeline
of our switches. �e OFA connects to a remote OFC, accepting
OpenFlow (OF) commands and forwarding appropriate packets
and link/switch events to the OFC. For example, we con�gure the
hardware switch to forward routing protocol packets to the so�ware
path. �e OFA receives, e.g., BGP packets and forwards them to the
OFC, which in turn delivers them to our BGP stack (§�.�).

�e OFA translates OF messages into driver commands to set
chip forwarding table entries. �ere are two main challenges here.
First, we must bridge between OpenFlow’s architecture-neutral ver-
sion of forwarding table entries and modern merchant switch sil-
icon’s sophisticated packet processing pipeline, which has many
linked forwarding tables of various size and semantics. �e OFA
translates the high level view of forwarding state into an e�cient
mapping speci�c to the underlying hardware. Second, the OFA ex-
ports an abstraction of a single non-blocking switch with hundreds
of ��Gb/s ports. However, the underlying switch consists ofmultiple
physical switch chips, each with individually-managed forwarding
table entries.

3.3 Network Control Functionality
Most B� functionality runs on NCS in the site controller layer co-

located with the switch hardware; NCS and switches share a dedi-
cated out-of-band control-plane network.

Paxos handles leader election for all control functionality. Paxos
instances at each site perform application-level failure detection
among a precon�gured set of available replicas for a given piece of
control functionality. When a majority of the Paxos servers detect
a failure, they elect a new leader among the remaining set of avail-
able servers. Paxos then delivers a callback to the elected leader with
a monotonically increasing generation ID. Leaders use this genera-
tion ID to unambiguously identify themselves to clients.

Figure �: Integrating Routing with OpenFlow Control.

We use a modi�ed version of Onix [��] for OpenFlow Control.
From the perspective of this work, the most interesting aspect of
the OFC is the Network Information Base (NIB).�e NIB contains
the current state of the network with respect to topology, trunk con-
�gurations, and link status (operational, drained, etc.). OFC repli-
cas are warm standbys. While OFAs maintain active connections to
multiple OFCs, communication is active to only one OFC at a time
and only a single OFC maintains state for a given set of switches.
Upon startup or new leader election, the OFC reads the expected
static state of the network from local con�guration, and then syn-
chronizes with individual switches for dynamic network state.

3.4 Routing
One of the main challenges in B� was integrating OpenFlow-

based switch control with existing routing protocols to support hy-
brid network deployments. To focus on core OpenFlow/SDN func-
tionality, we chose the open source Quagga stack for BGP/ISIS on
NCS. We wrote a Routing Application Proxy (RAP) as an SDN ap-
plication, to provide connectivity between Quagga and OF switches
for: (i) BGP/ISIS route updates, (ii) routing-protocol packets �ow-
ing between switches and Quagga, and (iii) interface updates from
the switches to Quagga.

Fig. � depicts this integration in more detail, highlighting the in-
teraction between hardware switches, the OFC, and the control ap-
plications. A RAPd process subscribes to updates from Quagga’s
RIB and proxies any changes to a RAP component running in the
OFC via RPC.�e RIBmaps address pre�xes to one ormore named
hardware interfaces. RAP caches theQuagga RIB and translates RIB
entries into NIB entries for use by Onix.

At a high level, RAP translates from RIB entries forming a
network-level view of global connectivity to the low-level hardware
tables used by the OpenFlow data plane. B� switches employ ECMP
hashing (for topology abstraction) to select an output port among
these next hops. �erefore, RAP translates each RIB entry into two
OpenFlow tables, a Flow table which maps pre�xes to entries into a
ECMP Group table. Multiple �ows can share entries in the ECMP
Group Table. �e ECMP Group table entries identify the next-hop
physical interfaces for a set of �ow pre�xes.

BGP and ISIS sessions run across the data plane using B� hard-
ware ports. However, Quagga runs on an NCS with no data-plane
connectivity.�us, in addition to route processing, RAPmust proxy
routing-protocol packets between the Quagga control plane and the



Figure �: Tra�c Engineering Overview.

corresponding switch data plane. We modi�ed Quagga to create
tuntap interfaces corresponding to each physical switch port it
manages. Starting at the NCS kernel, these protocol packets are for-
warded through RAPd, the OFC, and the OFA, which �nally places
the packet on the data plane. We use the reverse path for incoming
packets. While this model for transmitting and receiving protocol
packets was the most expedient, it is complex and somewhat brittle.
Optimizing the path between the switch and the routing application
is an important consideration for future work.

Finally, RAP informs Quagga about switch interface and port
state changes. Upon detecting a port state change, the switch OFA
sends anOpenFlowmessage toOFC.�eOFC then updates its local
NIB, which in turn propagates to RAPd. We also modi�ed Quagga
to create netdev virtual interfaces for each physical switch port.
RAPd changes the netdev state for each interface change, which
propagates to Quagga for routing protocol updates. Once again,
shortening the path between switch interface changes and the con-
sequent protocol processing is part of our ongoing work.

4. TRAFFIC ENGINEERING
�e goal of TE is to share bandwidth among competing applica-

tions possibly using multiple paths. �e objective function of our
system is to deliver max-min fair allocation[��] to applications. A
max-min fair solution maximizes utilization as long as further gain
in utilization is not achieved by penalizing fair share of applications.

4.1 Centralized TE Architecture
Fig. � shows an overview of our TE architecture. �e TE Server

operates over the following state:

● �eNetwork Topology graph represents sites as vertices and
site to site connectivity as edges. �e SDN Gateway con-
solidates topology events from multiple sites and individual
switches to TE. TE aggregates trunks to compute site-site
edges. �is abstraction signi�cantly reduces the size of the
graph input to the TE Optimization Algorithm (§�.�).● Flow Group (FG): For scalability, TE cannot operate
at the granularity of individual applications. �erefore,
we aggregate applications to a Flow Group de�ned as{source site , dest site ,QoS} tuple.● A Tunnel (T) represents a site-level path in the network, e.g.,
a sequence of sites (A → B → C). B� implements tunnels
using IP in IP encapsulation (see §�).● A Tunnel Group (TG)maps FGs to a set of tunnels and cor-
responding weights. �e weight speci�es the fraction of FG
tra�c to be forwarded along each tunnel.

(a) Per-application. (b) FG-level composition.

Figure �: Example bandwidth functions.

TE Server outputs the Tunnel Groups and, by reference, Tun-
nels and Flow Groups to the SDN Gateway. �e Gateway forwards
these Tunnels and Flow Groups to OFCs that in turn install them in
switches using OpenFlow (§�).

4.2 Bandwidth functions
To capture relative priority, we associate a bandwidth function

with every application (e.g., Fig. �(a)), e�ectively a contract between
an application and B�. �is function speci�es the bandwidth allo-
cation to an application given the �ow’s relative priority on an ar-
bitrary, dimensionless scale, which we call its fair share. We de-
rive these functions from administrator-speci�ed static weights (the
slope of the function) specifying relative application priority. In this
example, App� , App� , and App� have weights ��, �, and �.�, respec-
tively. Bandwidth functions are con�gured, measured and provided
to TE via Bandwidth Enforcer (see Fig. �).

Each FlowGroupmultiplexesmultiple application demands from
one site to another. Hence, an FG’s bandwidth function is a piecewise
linear additive composition of per-application bandwidth functions.
�e max-min objective function of TE is on this per-FG fair share
dimension (§�.�.) Bandwidth Enforcer also aggregates bandwidth
functions across multiple applications.

For example, given the topology of Fig. �(a), Bandwidth Enforcer
measures ��Gbps of demand for App� and �Gbps of demand for
App� between sitesA and B, yielding the composed bandwidth func-
tion for FG� in Fig. �(b). �e bandwidth function for FG� consists
only of ��Gbps of demand for App� . We �atten the con�gured per-
application bandwidth functions at measured demand because allo-
cating thatmeasured demand is equivalent to a FG receiving in�nite
fair share.

Bandwidth Enforcer also calculates bandwidth limits to be en-
forced at the edge. Details on Bandwidth Enforcer are beyond the
scope of this paper. For simplicity, we do not discuss the QoS aspect
of FGs further.

4.3 TE Optimization Algorithm
�e LP [��] optimal solution for allocating fair share among all

FGs is expensive and does not scale well. Hence, we designed an al-
gorithm that achieves similar fairness and at least ��� of the band-
width utilization with ��x faster performance relative to LP [��] for
our deployment.

�e TE Optimization Algorithm has two main components: (�)
Tunnel Group Generation allocates bandwidth to FGs using band-
width functions to prioritize at bottleneck edges, and (�) Tunnel
Group Quantization changes split ratios in each TG to match the
granularity supported by switch hardware tables.

We describe the operation of the algorithm through a concrete
example. Fig. �(a) shows an example topology with four sites. Cost
is an abstract quantity attached to an edgewhich typically represents
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Figure �: Two examples of TE Allocation with two FGs.

the edge latency. �e cost of a tunnel is the sum of cost of its edges.
�e cost of each edge in Fig. �(a) is � except edge A → D, which is
��. �ere are two FGs, FG�(A → B) with demand of ��Gbps and
FG�(A → C) with demand of ��Gbps. Fig. �(b) shows the band-
width functions for these FGs as a function of currently measured
demand and con�gured priorities.

Tunnel Group Generation allocates bandwidth to FGs based on
demand and priority. It allocates edge capacity among FGs accord-
ing to their bandwidth function such that all competing FGs on an
edge either receive equal fair share or fully satisfy their demand. It
iterates by �nding the bottleneck edge (with minimum fair share at
its capacity) when �lling all FGs together by increasing their fair
share on their preferred tunnel. A preferred tunnel for a FG is the
minimum cost path that does not include a bottleneck edge.

A bottleneck edge is not further used for TG generation. We thus
freeze all tunnels that cross it. For all FGs, we move to the next pre-
ferred tunnel and continue by increasing fair share of FGs and locat-
ing the next bottleneck edge. �e algorithm terminates when each
FG is either satis�ed or we cannot �nd a preferred tunnel for it.

We use the notation Ty
x to refer to the yth-most preferred tunnel

for FGx . In our example, we start by �lling both FG� and FG� on
their most preferred tunnels: T �

� = A → B and T �
� = A → C re-

spectively. We allocate bandwidth among FGs by giving equal fair
share to each FG. At a fair share of �.�, FG� is allocated ��Gbps and
FG� is allocated �.��Gbps according to their bandwidth functions.
At this point, edge A → B becomes full and hence, bottlenecked.
�is freezes tunnel T �

� . �e algorithm continues allocating band-
width to FG� on its next preferred tunnel T�

� = A→ C → B. At fair
share of �.��, FG� receives �.��Gbpsmore and FG� receives �.��Gbps
more making edge A → C the next bottleneck. FG� is now forced
to its third preferred tunnel T �

� = A → D → C → B. FG� is also
forced to its second preferred tunnel T�

� = A → D → C. FG� re-
ceives �.��Gbps more and becomes fully satis�ed. FG� receives the
remaining �.��Gbps.
�e allocation of FG� to its two tunnels is in the ratio �.��:�.��

(=̃ �.�:�.�, normalized so that the ratios sum to �.�) and allocation
of FG� to its three tunnels is in the ratio ��:�.��:�.�� (=̃ �.�:�.�:�.�).
FG� is allocated a fair share of �� while FG� is allocated in�nite fair
share as its demand is fully satis�ed.
TunnelGroupQuantization adjusts splits to the granularity sup-

ported by the underlying hardware, equivalent to solving an integer
linear programming problem. Given the complexity of determining
the optimal split quantization, we once again use a greedy approach.
Our algorithm uses heuristics to maintain fairness and throughput
e�ciency comparable to the ideal unquantized tunnel groups.
Returning to our example, we split the above allocation in mul-

tiples of �.�. Starting with FG� , we down-quantize its split ratios to
�.�:�.�. We need to add �.� to one of the two tunnels to complete
the quantization. Adding �.� to T �

� reduces the fair share for FG� be-

TE Construct Switch OpenFlowMessage Hardware Table
Tunnel Transit FLOW_MOD LPM Table
Tunnel Transit GROUP_MOD Multipath Table
Tunnel Decap FLOW_MOD Decap Tunnel Table
Tunnel Group Encap GROUP_MOD Multipath table,

Encap Tunnel table
Flow Group Encap FLOW_MOD ACL Table

Table �: Mapping TE constructs to hardware via OpenFlow.

low �, making the solution less max-min fair[��]� . However, adding
�.� to T�

� fully satis�es FG� while maintaining FG� ’s fair share at ��.
�erefore, we set the quantized split ratios for FG� to �.�:�.�. Sim-
ilarly, we calculate the quantized split ratios for FG� to �.�:�.�:�.�.
�ese TGs are the �nal output of TE algorithm (Fig. �(a)). Note
how an FG with a higher bandwidth function pushes an FG with a
lower bandwidth function to longer and lower capacity tunnels.

Fig. �(b) shows the dynamic operation of the TE algorithm. In
this example, App� demand falls from ��Gbps to �Gbps and the ag-
gregate demand for FG� drops from ��Gbps to ��Gbps, changing
the bandwidth function and the resulting tunnel allocation.

5. TE PROTOCOL AND OPENFLOW
We next describe how we convert Tunnel Groups, Tunnels, and

Flow Groups to OpenFlow state in a distributed, failure-prone en-
vironment.

5.1 TE State and OpenFlow
B� switches operate in three roles: i) an encapsulating switch ini-

tiates tunnels and splits tra�c between them, ii) a transit switch for-
wards packets based on the outer header, and iii) a decapsulating
switch terminates tunnels and then forwards packets using regular
routes. Table � summarizes the mapping of TE constructs to Open-
Flow and hardware table entries.

Source site switches implement FGs. A switch maps packets to
an FG when their destination IP address matches one of the pre-
�xes associated with the FG. Incoming packets matching an FG are
forwarded via the corresponding TG. Each incoming packet hashes
to one of the Tunnels associated with the TG in the desired ra-
tio. Each site in the tunnel path maintains per-tunnel forwarding
rules. Source site switches encapsulate the packet with an outer IP
header whose destination IP address uniquely identi�es the tun-
nel. �e outer destination-IP address is a tunnel-ID rather than
an actual destination. TE pre-con�gures tables in encapsulating-
site switches to create the correct encapsulation, tables in transit-site
switches to properly forward packets based on their tunnel-ID, and
descapsulating-site switches to recognize which tunnel-IDs should
be terminated. �erefore, installing a tunnel requires con�guring
switches at multiple sites.

5.2 Example
Fig. � shows an example where an encapsulating switch splits

�ows across two paths based on a hash of the packet header. �e
switch encapsulates packets with a �xed source IP address and a per-
tunnel destination IP address. Half the �ows are encapsulated with
outer IP src/dest IP addresses 2.0.0.1, 4.0.0.1 and forwarded
along the shortest path while the remaining �ows are encapsulated
with the label 2.0.0.1, 3.0.0.1 and forwarded through a transit
site. �e destination site switch recognizes that it must decapsulate
� S� is less max-min fair than S� if ordered allocated fair share of all
FGs in S� is lexicographically less than ordered allocated fair share
of all FGs in S�
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Figure �: Multipath WAN Forwarding Example.

Figure �: Layering tra�c engineering on top of shortest path for-
warding in an encap switch.

the packet based on a table entry pre-con�gured by TE. A�er de-
capsulation, the switch forwards to the destination based on the in-
ner packet header, using Longest Pre�x Match (LPM) entries (from
BGP) on the same router.

5.3 Composing routing and TE
B� supports both shortest-path routing and TE so that it can con-

tinue to operate even if TE is disabled. To support the coexistence
of the two routing services, we leverage the support for multiple for-
warding tables in commodity switch silicon.

Based on the OpenFlow �ow-entry priority and the hardware
table capability, we map di�erent �ows and groups to appropriate
hardware tables. Routing/BGP populates the LPM table with ap-
propriate entries, based on the protocol exchange described in §�.�.
TE uses the Access Control List (ACL) table to set its desired for-
warding behavior. Incoming packets match against both tables in
parallel. ACL rules take strict precedence over LPM entries.

In Fig. �, for example, an incoming packet destined to 9.0.0.1
has entries in both the LPM and ACL tables. �e LPM entry in-
dicates that the packet should be forwarded through output port
� without tunneling. However, the ACL entry takes precedence
and indexes into a third table, the Multipath Table, at index � with
� entries. Also in parallel, the switch hashes the packet header
contents, modulo the number of entries output by the ACL entry.
�is implements ECMP hashing [��], distributing �ows destined
to 9.0.0.0/24 evenly between two tunnels. Both tunnels are for-
warded through output port �, but encapsulated with di�erent sr-

(a) (b)
Figure ��: System transition from one path assignment (a) to another (b).

c/dest IP addresses, based on the contents of a fourth table, the En-
cap Tunnel table.

5.4 Coordinating TE State Across Sites
TE server coordinates T/TG/FG rule installation across multiple

OFCs. We translate TE optimization output to a per-site Tra�c En-
gineering Database (TED), capturing the state needed to forward
packets along multiple paths. Each OFC uses the TED to set the
necessary forwarding state at individual switches. �is abstraction
insulates the TE Server from issues such as hardware table manage-
ment, hashing, and programming individual switches.

TED maintains a key-value datastore for global Tunnels, Tunnel
Groups, and Flow Groups. Fig. ��(a) shows sample TED state cor-
responding to three of the four sites in Fig. �(a).

We compute a per-site TED based on the TGs, FGs, and Tunnels
output by the TE algorithm. We identify entries requiringmodi�ca-
tion by di�ng the desired TED state with the current state and gen-
erate a single TEop for each di�erence. Hence, by de�nition, a single
TE operation (TE op) can add/delete/modify exactly one TED en-
try at one OFC.�e OFC converts the TE op to �ow-programming
instructions at all devices in that site. �e OFCwaits for ACKs from
all devices before responding to the TE op. When appropriate, the
TE server may issue multiple simultaneous ops to a single site.

5.5 Dependencies and Failures
Dependencies among Ops: To avoid packet drops, not all ops

can be issued simultaneously. For example, we must con�gure a
Tunnel at all a�ected sites before con�guring the corresponding TG
and FG. Similarly, a Tunnel cannot be deleted before �rst remov-
ing all referencing entries. Fig. �� shows two example dependencies
(“schedules”), one (Fig. ��(a)) for creating TG� with two associated
Tunnels T� and T� for the A → B FG� and a second (Fig. ��(b)) for
the case where we remove T� from TG� .

Synchronizing TED between TE and OFC: Computing di�s re-
quires a common TED view between the TE master and the OFC.
A TE Session between the master TE server and the master OFC
supports this synchronization. We generate a unique identi�er for
the TE session based on mastership and process IDs for both end-
points. At the start of the session, both endpoints sync their TED
view. �is functionality also allows one source to recover the TED



from the other in case of restarts. TE also periodically synchronizes
TED state to a persistent store to handle simultaneous failures. �e
Session ID allows us to reject any op not part of the current session,
e.g., during a TE mastership �ap.

Ordering issues: Consider the scenario where TE issues a TG op
(TG�) to use two tunnels with T�:T� split �.�:�.�. A few millisec-
onds later, it creates TG� with a �:� split as a result of failure in T�.
Network delays/reordering means that the TG� op can arrive at the
OFC a�er the TG� op. We attach site-speci�c sequence IDs to TE
ops to enforce ordering among operations. �e OFC maintains the
highest session sequence ID and rejects ops with smaller sequence
IDs. TE Server retries any rejected ops a�er a timeout.

TE op failures: A TE op can fail because of RPC failures, OFC
rejection, or failure to program a hardware device. Hence, we track
a (Dirty/Clean) bit for each TED entry. Upon issuing a TE op, TE
marks the corresponding TED entry dirty. We clean dirty entries
upon receiving acknowledgment from theOFC.Otherwise, we retry
the operation a�er a timeout. �e dirty bit persists across restarts
and is part of TED. When computing di�s, we automatically replay
any dirty TED entry. �is is safe because TE ops are idempotent by
design.

�ere are some additional challenges when a TE Session cannot
be established, e.g., because of control plane or so�ware failure. In
such situations, TE may not have an accurate view of the TED for
that site. In our current design, we continue to assume the last
known state for that site and force fail new ops to this site. Force
fail ensures that we do not issue any additional dependent ops.

6. EVALUATION

6.1 Deployment and Evolution
In this section, we evaluate our deployment and operational expe-

rience with B�. Fig. �� shows the growth of B� tra�c and the rollout
of new functionality since its �rst deployment. Network tra�c has
roughly doubled in year ����. Of note is our ability to quickly de-
ploy new functionality such as centralized TE on the baseline SDN
framework. Other TE evolutions include caching of recently used
paths to reduce tunnel ops load andmechanisms to adapt TE to un-
responsive OFCs (§�).

We run � geographically distributed TE servers that participate
in master election. Secondary TE servers are hot standbys and can
assume mastership in less than �� seconds. �e master is typically
stable, retaining its status for �� days on average.

Table �(d) shows statistics about B� topology changes in the three
months from Sept. to Nov. ����. In that time, we averaged ���
topology changes per day. Because the TE Server operates on an
aggregated topology view, we can divide these remaining topology
changes into two classes: those that change the capacity of an edge in
the TE Server’s topology view, and those that add or remove an edge
from the topology. We found that we average only � such additions
or removals per day. When the capacity on an edge changes, the
TE server may send operations to optimize use of the new capacity,
but the OFC is able to recover from any tra�c drops without TE
involvement. However, when an edge is removed or added, the TE
server must create or tear down tunnels crossing that edge, which
increases the number of operations sent to OFCs and therefore load
on the system.

Our main takeaways are: i) topology aggregation signi�cantly re-
duces path churn and system load; ii) even with topology aggrega-
tion, edge removals happenmultiple times a day; iii) WAN links are
susceptible to frequent port �aps and bene�t from dynamic central-
ized management.

Figure ��: Evolution of B� features and tra�c.

(a) TE Algorithm
Avg. Daily Runs ���
Avg. Runtime �.�s
Max Runtime �.�s

(b) Topology
Sites ��
Edges
(Unidirectional) ��

(c) Flows
Tunnel Groups ���
Flow Groups ����
Tunnels in Use ���
Tunnels Cached ����

(d) Topology Changes
Change Events ���/day
Edge Add/Delete �/day

Table �: Key B� attributes from Sept to Nov ����.

6.2 TE Ops Performance
Table � summarizes aggregate B� attributes and Fig. �� shows a

monthly distribution of ops issued, failure rate, and latency dis-
tribution for the two main TE operations: Tunnel addition and
Tunnel Group mutation. We measure latency at the TE server be-
tween sending a TE-op RPC and receiving the acknowledgment.
�e nearly ���x reduction in tunnel operations came from an op-
timization to cache recently used tunnels (Fig. ��(d)). �is also has
an associated drop in failed operations.

We initiate TG ops a�er every algorithm iteration. We run our
TE algorithm instantaneously for each topology change and peri-
odically to account for demand changes. �e growth in TG opera-
tions comes from adding new network sites. �e drop in failures in
May (Month �) and Nov (Month ��) comes from the optimizations
resulting from our outage experience (§ �).

To quantify sources of network programming delay, we periodi-
cally measure latency for sending a NoOp TE-Op from TE Server
to SDNGateway to OFC and back. �e ��th percentile time for this
NoOp is one second (Max RTT in our network is ���ms). High la-
tency correlates closely with topology changes, expected since such
changes require signi�cant processing at all stack layers and delay-
ing concurrent event processing.

For every TE op, we measure the switch time as the time between
the start of operation processing at the OFC and the OFC receiving
acks from all switches.

Table � depicts the switch time fraction (STF = Switch time
Overall TE op time )

for three months (Sep-Nov ����). A higher fraction indicates that
there is promising potential for optimizations at lower layers of the
stack. �e switch fraction is substantial even for control across the
WAN.�is is symptomatic of OpenFlow-style control still being in
its early stages; neither our so�ware or switch SDKs are optimized
for dynamic table programming. In particular, tunnel tables are typ-
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Figure ��: Stats for various TE operations for March-Nov ����.

Op Latency Avg Daily Avg ��th-perc
Range (s) Op Count STF STF
�-� ���� �.�� �.��
�-� ���� �.�� �.��
�-� ��� �.�� �.��
�-∞ ��� �.�� �.��

Table �: Fraction of TG latency from switch.

Failure Type Packet Loss (ms)
Single link �
Encap switch ��
Transit switch neighboring an encap switch ����
OFC �
TE Server �
TE Disable/Enable �

Table �: Tra�c loss time on failures.

ically assumed to be “set and forget” rather than targets for frequent
recon�guration.

6.3 Impact of Failures
We conducted experiments to evaluate the impact of failure

events on network tra�c. We observed tra�c between two sites and
measured the duration of any packet loss a�er six types of events: a
single link failure, an encap switch failure and separately the fail-
ure of its neighboring transit router, an OFC failover, a TE server
failover, and disabling/enabling TE.

Table � summarizes the results. A single link failure leads to tra�c
loss for only a few milliseconds, since the a�ected switches quickly
prune their ECMP groups that include the impaired link. An encap
switch failure results in multiple such ECMP pruning operations at
the neighboring switches for convergence, thus taking a few mil-
liseconds longer. In contrast, the failure of a transit router that is
a neighbor to an encap router requires a much longer convergence
time (�.� seconds). �is is primarily because the neighboring en-
cap switch has to update its multipath table entries for potentially
several tunnels that were traversing the failed switch, and each such
operation is typically slow (currently ���ms).

By design, OFC and TE server failure/restart are all hitless. �at
is, absent concurrent additional failures during failover, failures of
these so�ware components do not cause any loss of data-plane traf-
�c. Upon disabling TE, tra�c falls back to the lower-priority for-
warding rules established by the baseline routing protocol.

6.4 TE Algorithm Evaluation
Fig. ��(a) shows how global throughput improves as we varymax-

imum number of paths available to the TE algorithm. Fig. ��(b)

(a) (b)
Figure ��: TE global throughput improvement relative to shortest-
path routing.

shows how throughput varies with the various quantizations of path
splits (as supported by our switch hardware) among available tun-
nels. Adding more paths and using �ner-granularity tra�c splitting
both givemore �exibility to TE but it consumes additional hardware
table resources.

For these results, we compare TE’s total bandwidth capacity with
path allocation against a baseline where all �ows follow the shortest
path. We use production �ow data for a day and compute average
improvement across all points in the day (every �� seconds).

For Fig. ��(a) we assume a �
�� path-split quantum, to focus on sen-

sitivity to the number of available paths. We see signi�cant improve-
ment over shortest-path routing, even when restricted to a single
path (which might not be the shortest). �e throughput improve-
ment �attens at around � paths.

For Fig. ��(b), we �x the maximum number of paths at �, to show
the impact of path-split quantum. �roughput improves with �ner
splits, �attening at �

�� .�erefore, in our deployment, we use TEwith
a quantum of �

� and � paths.
While ��� average throughput increase is substantial, the main

bene�ts come during periods of failure or high demand. Consider a
high-priority data copy that takes place once a week for � hours, re-
quiring half the capacity of a shortest path. Moving that copy o� the
shortest path to an alternate route only improves average utilization
by �� over the week. However, this reduces our WAN’s required
deployed capacity by a factor of �.

6.5 Link Utilization and Hashing
Next, we evaluate B�’s ability to driveWAN links to near ����uti-

lization. MostWANs are designed to run at modest utilization (e.g.,
capped at ��-��� utilization for the busiest links), to avoid packet
drops and to reserve dedicated backup capacity in the case of failure.
�e busiest B� edges constantly run at near ���� utilization, while
almost all links sustain full utilization during the course of each day.



We tolerate high utilization by di�erentiating among di�erent tra�c
classes.

�e two graphs in Fig. �� show tra�c on all links between two
WAN sites. �e top graph shows how we drive utilization close to
���� over a ��-hour period. �e second graph shows the ratio of
high priority to low priority packets, and packet-drop fractions for
each priority. A key bene�t of centralized TE is the ability to mix
priority classes across all edges. By ensuring that heavily utilized
edges carry substantial low priority tra�c, local QoS schedulers can
ensure that high priority tra�c is insulated from loss despite shallow
switch bu�ers, hashing imperfections and inherent tra�c bursti-
ness. Our low priority tra�c tolerates loss by throttling transmis-
sion rate to available capacity at the application level.

(a)

(b)

Figure ��: Utilization and drops for a site-to-site edge.

Site-to-site edge utilization can also be studied at the granular-
ity of the constituent links of the edge, to evaluate B�’s ability to
load-balance tra�c across all links traversing a given edge. Such
balancing is a prerequisite for topology abstraction in TE (§�.�).
Fig. �� shows the uniform link utilization of all links in the site-to-
site edge of Fig. �� over a period of �� hours. In general, the results
of our load-balancing scheme in the �eld have been very encour-
aging across the B� network. For at least ��� of site-to-site edges,
the max:min ratio in link utilization across constituent links is �.��
without failures (i.e., �� from optimal), and �.� with failures. More
e�ective load balancing during failure conditions is a subject of our
ongoing work.

Figure ��: Per-link utilization in a trunk, demonstrating the e�ec-
tiveness of hashing.

7. EXPERIENCE FROM AN OUTAGE
Overall, B� system availability has exceeded our expectations.

However, it has experienced one substantial outage that has been
instructive both inmanaging a largeWAN in general and in the con-
text of SDN in particular. For reference, our public facing network
has also su�ered failures during this period.

�e outage started during a planned maintenance operation, a
fairly complex move of half the switching hardware for our biggest
site from one location to another. One of the new switches was in-
advertently manually con�gured with the same ID as an existing
switch. �is led to substantial link �aps. When switches received
ISIS Link State Packets (LSPs) with the same ID containing di�erent
adjacencies, they immediately �ooded new LSPs through all other
interfaces.�e switcheswith duplicate IDswould alternate respond-
ing to the LSPs with their own version of network topology, causing
more protocol processing.

Recall that B� forwards routing-protocols packets through so�-
ware, from Quagga to the OFC and �nally to the OFA. �e OFC
to OFA connection is the most constrained in our implementation,
leading to substantial protocol packet queueing, growing to more
than ���MB at its peak.

�e queueing led to the next chain in the failure scenario: normal
ISIS Hello messages were delayed in queues behind LSPs, well past
their useful lifetime. �is led switches to declare interfaces down,
breaking BGP adjacencies with remote sites. TE Tra�c transiting
through the site continued to work because switches maintained
their last known TE state. However, the TE server was unable to
create new tunnels through this site. At this point, any concurrent
physical failures would leave the network using old broken tunnels.

With perfect foresight, the solution was to drain all links from
one of the switches with a duplicate ID. Instead, the very reasonable
response was to reboot servers hosting the OFCs. Unfortunately,
the high system load uncovered a latent OFC bug that prevented
recovery during periods of high background load.

�e system recovered a�er operators drained the entire site, dis-
abled TE, and �nally restarted the OFCs from scratch. �e outage
highlighted a number of important areas for SDN andWANdeploy-
ment that remain active areas of work:

�. Scalability and latency of the packet IO path between the
OFC and OFA is critical and an important target for evolving
OpenFlow and improving our implementation. For exam-
ple, OpenFlow might support two communication channels,
high priority for latency sensitive operations such as packet
IO and low priority for throughput-oriented operations such
as switch programming operations. Credit-based�ow control
would aid in bounding the queue buildup. Allowing certain
duplicate messages to be dropped would help further, e.g.,
consider that the earlier of two untransmitted LSPs can sim-
ply be dropped.

�. OFA should be asynchronous and multi-threaded for more
parallelism, speci�cally in a multi-linecard chassis where
multiple switch chips may have to be programmed in parallel
in response to a single OpenFlow directive.

�. We require additional performance pro�ling and reporting.
�erewere a number of “warning signs” hidden in system logs
during previous operations and it was no accident that the
outage took place at our largest B� site, as it was closest to its
scalability limits.

�. Unlike traditional routing control systems, loss of a control
session, e.g., TE-OFC connectivity, does not necessarily in-
validate forwarding state. With TE, we do not automati-
cally reroute existing tra�c around an unresponsive OFC



(i.e., we fail open). However, this means that it is impos-
sible for us to distinguish between physical failures of un-
derlying switch hardware and the associated control plane.
�is is a reasonable compromise as, in our experience, hard-
ware is more reliable than control so�ware. Wewould require
application-level signals of broken connectivity to e�ectively
disambiguate between WAN hardware and so�ware failures.

�. �e TE server must be adaptive to failed/unresponsive OFCs
when modifying TGs that depend on creating new Tunnels.
We have since implemented a �x where the TE server avoids
failed OFCs in calculating new con�gurations.

�. Most failures involve the inevitable human error that occurs
in managing large, complex systems. SDN a�ords an oppor-
tunity to dramatically simplify system operation andmanage-
ment. Multiple, sequenced manual operations should not be
involved for virtually any management operation.

�. It is critical to measure system performance to its breaking
point with published envelopes regarding system scale; any
system will break under su�cient load. Relatively rare sys-
tem operations, such as OFC recovery, should be tested under
stress.

8. RELATED WORK
�ere is a rich heritage of work in So�ware De�ned Network-

ing [�, �, ��, ��, ��] and OpenFlow [��, ��] that informed and in-
spired our B� design. We describe a subset of these related e�orts in
this section.

While there has been substantial focus on OpenFlow in the data
center [�, ��, ��], there has been relatively little focus on the WAN.
Our focus on the WAN stems from the criticality and expense of
the WAN along with the projected growth rate. Other work has
addressed evolution of OpenFlow [��, ��, ��]. For example, De-
voFlow[��] reveals a number of OpenFlow scalability problems. We
partially avoid these issues by proactively establishing �ows, and
pulling �ow statistics both less frequently and for a smaller number
of �ows. �ere are opportunities to leverage a number of DevoFlow
ideas to improve B�’s scalability.
Route Control Platform (RCP)[�] describes a centralized ap-

proach for aggregating BGP computation from multiple routers in
an autonomous system in a single logical place. Our work in some
sense extends this idea to �ne-grained tra�c engineering and de-
tails an end-to-end SDN implementation. Separating the routing
control plane from forwarding can also be found in the current gen-
eration of conventional routers, although the protocols were histor-
ically proprietary. Our work speci�cally contributes a description of
the internal details of the control/routing separation, and techniques
for stitching individual routing elements together with centralized
tra�c engineering.
RouteFlow’s[��, ��] extension of RCP is similar to our integration

of legacy routing protocols into B�. �e main goal of our integra-
tion with legacy routing was to provide a gradual path for enabling
OpenFlow in the production network. We view BGP integration as
a step toward deploying new protocols customized to the require-
ments of, for instance, a private WAN setting.
Many existing production tra�c engineering solutions use

MPLS-TE [�]: MPLS for the data plane, OSFP/IS-IS/iBGP to dis-
tribute the state and RSVP-TE[�] to establish the paths. Since each
site independently establishes paths with no central coordination,
in practice, the resulting tra�c distribution is both suboptimal and
non-deterministic.
Many centralized TE solutions [�, ��, ��, ��, ��, ��, ��] and al-

gorithms [��, ��] have been proposed. In practice, these systems
operate at coarser granularity (hours) and do not target global opti-

mization during each iteration. In general, we view B� as a frame-
work for rapidly deploying a variety of tra�c engineering solutions;
we anticipate future opportunities to implement a number of tra�c
engineering techniques, including these, within our framework.

It is possible to use linear programming (LP) to �nd a globally
max-min fair solution, but is prohibitively expensive [��]. Approx-
imating this solution can improve runtime [�], but initial work in
this area did not address some of the requirements for our network,
such as piecewise linear bandwidth functions for prioritizing �ow
groups and quantization of the �nal assignment. One recent e�ort
explores improving performance of iterative LP by delivering fair-
ness and bandwidth while sacri�cing scalability to the larger net-
works [��]. Concurrent work [��] further improves the runtime of
an iterative LP-based solution by reducing the number of LPs, while
using heuristics to maintain similar fairness and throughput. It is
unclear if this solution supports per-�ow prioritization using band-
width functions. Our approach delivers similar fairness and ���
of the bandwidth utilization compared to LP, but with sub-second
runtime for our network and scales well for our future network.

Load balancing and multipath solutions have largely focused on
data center architectures [�, ��, ��], though at least one e�ort re-
cently targets the WAN [��]. �ese techniques employ �ow hash-
ing, measurement, and �ow redistribution, directly applicable to
our work.

9. CONCLUSIONS
�is paper presents the motivation, design, and evaluation of B�,

a So�ware De�nedWAN for our data center to data center connec-
tivity. We present our approach to separating the network’s control
plane from the data plane to enable rapid deployment of new net-
work control services. Our �rst such service, centralized tra�c en-
gineering allocates bandwidth among competing services based on
application priority, dynamically shi�ing communication patterns,
and prevailing failure conditions.

Our So�ware De�ned WAN has been in production for three
years, now serves more tra�c than our public facingWAN, and has
a higher growth rate. B� has enabled us to deploy substantial cost-
e�ectiveWANbandwidth, runningmany links at near ���� utiliza-
tion for extended periods. At the same time, SDN is not a cure-all.
Based on our experience, bottlenecks in bridging protocol packets
from the control plane to the data plane and overheads in hardware
programming are important areas for future work.

While our architecture does not generalize to all SDNs or to all
WANs, we believe there are a number of important lessons that can
be applied to a range of deployments. In particular, we believe that
our hybrid approach for simultaneous support of existing routing
protocols and novel tra�c engineering services demonstrates an ef-
fective technique for gradually introducing SDN infrastructure into
existing deployments. Similarly, leveraging control at the edge to
both measure demand and to adjudicate among competing services
based on relative priority lays a path to increasing WAN utilization
and improving failure tolerance.
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