
Internet Engineering Task Force Individual Submission
INTERNET-DRAFT Lennox/Schulzrinne
draft-lennox-sip-reg-payload-01.ps Columbia University

October 31, 2000
Expires: April 2001

Transporting User Control Information in SIP REGISTER Payloads

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its

working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

To view the list Internet-Draft Shadow Directories, seehttp://www.ietf.org/shadow.html.

Copyright Notice

Copyright (c) The Internet Society (2000). All Rights Reserved.

Abstract

Several newly developed languages and interfaces, such as the CPL and SIP CGI, allow users or
administrators to specify how a SIP proxy and redirect server should process calls. This document
defines how SIPREGISTER requests and responses can be used to transport scripts between user agents
and SIP proxy and redirect servers.

Contents

1 Introduction 2

2 Conventions Of This Document 2

3 Header Field Definitions 3
3.1 Content-Disposition . 3
3.2 Accept-Disposition . 3
3.3 If-Unmodified-Since . 4

4 Transport Details 4
4.1 Script Upload and Removal . 4
4.2 Server Response. 6

5 Persistence Model 7

6 Examples 7

7 Usage notes 9

8 Security Considerations 9

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

9 IANA Considerations 10

10 Changes from earlier versions 10
10.1 Changes from draft -00 . 10
10.2 Changes from IPTel draft -00 . 10

11 Authors’ Addresses 11

1 Introduction

Several newly developed languages and interfaces, such as the CPL [1] and SIP CGI [2] allow users or ad-
ministrators to specify how Internet telephony servers should process calls. Scripts typically can be created
on a client, but executed on an Internet telephony server.

There therefore needs to be a method of transporting these scripts from a client to a server, and of
retrieving them from the server so the client can know the current status or modify the script. This method
should integrate cleanly with the existing infrastructure of Internet telephony, without requiring significant
additional protocol traffic or complexity in either a client or a server.

This document defines how the payload of SIP [3]REGISTER messages, and their responses, can be
used to transport these scripts to SIP registration servers alongside the user’s registration. Since clients
typically will need to register anyway, and servers will need to have registrars to process the clients’ regis-
trations, this technique does not impose much additional overhead on servers and clients.

This technique is not appropriate for all environments — most obviously, it is not useful for H.323 [4]
servers — and we do not anticipate that it will be the only such transport mechanism developed. Other
protocols considered have included transporting scripts over LDAP [5], ACAP [6], or HTTP file upload [7],
or transport mechanisms developed from scratch.

The advantages of this technique, over these other possible methods for transfering scripts to a registra-
tion server, are twofold. First of all, a SIP client already needs to know the registrar and addresses to use
in order to register aContact location. Re-using this registration infrastructure makes it trivial to know the
location to which a script should be sent. Other methods would require some correlation mechanism, or
additional configuration options — a client would need to be told what HTTP server (for example) to use,
in addition to knowing its SIP registrar.

Additionally, using this mechanism small SIP end systems can send and retrieve scripts without needing
to implement additional protocols. Small embedded end systems are common for SIP; whereas parallel
protocols would impose significant additional complexity in these devices, the mechanism described in this
document requires very little of these devices over and above the base SIP specification.

2 Conventions Of This Document

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [8] and indicate requirement levels for compliant implementations of SIP register payload script up-
loading.

Some paragraphs are indented, like this; they give motivations of design choices, or questions for future discus-
sion in the development of the specification. They are not normative to the specification of the protocol.

Lennox/Schulzrinne Expires April 2001 [Page 2]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

3 Header Field Definitions

Script uploading borrows a number of header fields from HTTP and related MIME protocols. This section
defines these extended headers.

3.1 Content-Disposition

TheContent-Disposition header field is defined in RFC 2183 [9]. It has also been added to SIP in the work-
in-progress revised SIP specification “2543bis” [10]. InREGISTER requests or responses, this header field
is used to describe the intended purpose of a message body. The grammar of this header field is as follows:

Content-Disposition = “Content-Disposition” “:”
disposition-type *(“;” disposition-param)

disposition-type = “script” | “sip-cgi” | token
disposition-param = action-param

| modification-date-param
| generic-param

action-param = “action” “=” action-value
action-value = “store” | “remove” | token
modification-date-param = “modification-date” “=” quoted-date-time
quoted-date-time = <" > SIP-date <" >

The grammar symbols “token” and “generic-param” are defined in RFC 2543 [3].
The Content-Disposition header field serves to describe the purpose of the message body. The dis-

position type describes the purpose of the material contained in the body of the message. Currently, two
disposition types are defined. The type “script” indicates a CPL script or a similar scripting environment
whose use in a SIP server can be uniquely determined by its media type. The type “sip-cgi” refers to SIP CGI
scripts, which can be any media type executable on the server platform. Additional types can be registered
with IANA through the procedure defined in RFC 2183 [9].

TheContent-Type of the uploaded payload is not sufficient to describe the purpose of the payload to the server.
A script with a given purpose could, conceivably, be of any of a large number of media types, particularly for SIP
CGI.

The action parameter to the header field is used when uploading scripts, to specify what the server
should do with the script uploaded. If a non-zero-length script is specified, the action “store”MUST be
given. The action “remove”MUST only be used when accompanied by a zero-length body.

Themodification-date parameter is used to indicate the time when the script was last modified. This is
used for versioning, to prevent potential race conditions (see Sections 4 and 7).

If multipart MIME types [11] are used to indicate several distinct scripts (see Section 4.2), this header
field MUST be included in the MIME part header, not in the general SIP header.

3.2 Accept-Disposition

TheAccept-Disposition header field is used to indicate what content disposition types areacceptable to a
client or server.

Accept-Disposition = “Accept-Disposition” “:”
#((disposition-type | “*”) *(“;” generic-param))

Lennox/Schulzrinne Expires April 2001 [Page 3]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

The special meta-type “*” matches every content disposition type, and indicates that any content dispo-
sition isacceptable.

Theaction andmodification-date parameters are not meaningful forAccept-Disposition.

The Accept-Disposition header field is not currently defined by any other published document as far as we
know, but it is a natural counterpart toContent-Disposition. (In general, mostContent-* header fields have corre-
spondingAccept-* fields.)

3.3 If-Unmodified-Since

The If-Unmodified-Since request header field is defined in section 14.28 of the HTTP/1.1 specification,
RFC 2616 [12]. It is used to make a request conditional. If the requested resource has not been mod-
ified since the time specified in this field, the serverSHOULD perform the requested operation as if the
If-Unmodified-Since header field were not present.

If the requested resource has been modified since the specified time, the serverMUST NOT perform the
requested operation, andMUST return 412 Precondition Failed.

Specifically, for register bodies, this header field is used to indicate that the client does not want the
provided content to be stored if the corresponding content has been modified on the server since the given
time.

The syntax of this header field is as follows:

If-Unmodified-Since = “If-Unmodified-Since” “:” SIP-date

An example of this field is:

If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If the request normally (i.e., without theIf-Unmodified-Since header) would result in anything other
than a 2xx or 412 status, theIf-Unmodified-Since header fieldSHOULD be ignored.

If the specified date is invalid, the header field is ignored.

4 Transport Details

This section describes the procedures by which scripts are uploaded to a server, and retrieved from it.

4.1 Script Upload and Removal

To upload a script, the registration client places the script in the body of the SIPREGISTER request. Bod-
ies of SIP requests are described in [3]. TheContent-Type header field is set to the media type of the
submitted script. The MIME typeapplication/cpl+xml designates CPL scripts.ClientsSHOULD

upload SIP CGI scripts as an appropriate media type for the language the script is written in (for exam-
ple, application/x-perl), or application/octet-stream if no such media type exists or is
known. RegistrarsMAY perform validation on the media types if they know certain types of scripts cannot
be executed on their servers, butSHOULD be permissive about unknown or ambiguous media types for SIP
CGI scripts.

Lennox/Schulzrinne Expires April 2001 [Page 4]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

Which types of SIP CGI scripts can be successfully run on a server depends on the server’s environment, includ-
ing which scripting languages are installed on it. It is possible that the user has more knowledge of this environment
than the server.

Script uploadsMUST also be accompanied by aContent-Disposition header field (see Section 3.1)
describing the purpose of the message body. This header fieldMUST have anaction parameter indicat-
ing whether the script is to be stored or removed, andMAY have amodification-date parameter giving a
timestamp for the script.

A script registrar’s normal behavior is to enter the script in its database, as specified in section 5, associ-
ated with the user in theTo field of theREGISTER message. However, if a zero-length script is submitted
with the actionremove, any existing script of the user’s with the given disposition type is instead deleted
from the database.

Note that having a zero-length script, and not having any script, are quite distinct conditions, and both are legal.

A script registrarMAY choose to add contents with an unknown disposition type and anaction=store
parameter to its script database. (In this case itSHOULD include a “*” field in Accept-Disposition headers
that it sends — see Section 4.2.) ItMAY alternately reject a script with an unknown disposition type with a
4xx response.

We anticipate that the mechanism described in this specification can also be used for purposes such as users’
speed-dial lists or device configuration files, and that new disposition types would be registered for these.

To delete a script, a client sends aREGISTER message with itsContent-Disposition header field with
an the appropriate type and aaction parameter of “remove”, and aContent-Length header field of 0. If
there is no script defined with the specified purpose, this message does nothing. When a script is deleted,
the serverSHOULD return to its default behavior, just as if no script had ever been uploaded.

A client MAY include anIf-Unmodified-Since header field (see Section 3.3) to indicate that the up-
loaded script should only be accepted if the script on the server has not been modified since the given date.
This is typically used if a client has downloaded a script (see Section 4.2), modified it, and wishes to upload
the modified script; theIf-Unmodified-Since header field guarantees that the script has not in the meantime
been modified by any other client.

The serverMAY perform syntactic and semantic validation on scripts at the time they are uploaded to
the server. If the script is not valid, the serverSHOULD return a 400-class error to the registration request
indicating the problem. ItMAY include in the body of the response an explanation of why the script was
considered invalid, if the registration included anAccept header field with an appropriate media type for
such an explanation (such astext/html or text/plain).

When a script with the same disposition type as an existing script is successfully uploaded for a given
user, the previous script is replaced in the server. Scripts with different disposition types are stored and
deleted independently.

How scripts interact with calls on the server is not defined by this document. In particular, which script
applies to calls in progress at the time a script is added, changed or deleted is not defined by this document,
but MAY be defined by specifications of script languages. However, if a current or new script affects the
handling ofREGISTER requests, the upload processSHOULD be handled entirely by the existing script;
the new script does not take effect until the upload process has completed.

The entity which executes the user’s script — i.e., a proxy or redirect server — needs to haveaccess to
the uploaded scripts. This document does not specify how this is done; typically, the registrar and proxy
server are co-located. There normally will be a way for a registrar to pass information to an appropriate

Lennox/Schulzrinne Expires April 2001 [Page 5]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

proxy server; normal SIP information such as registeredContact locations needs to be passed in order for a
registrar to be useful.

Though the storage of scripts with different disposition types is independent, a serverMAY choose not
to execute some scripts if scripts with another disposition are present, for instance only executing one of a
CPL and SIP CGI script.

If a script upload fails for any reason (including a validation failure, or an unsatisfiedIf-Unmodified-
Since header), the script serverMUST NOT perform any other actions associated with a successfulREGIS-
TER request, such as enteringContact headers in the registration database.

A client MAY also include in the upload request anAccept-Disposition header field listing disposition
types it wants to receive in its response. (See Section 4.2.)

4.2 Server Response

In a successful response to anyREGISTER request, whether or not a script payload was included, the
serverSHOULD return the currently stored scripts in the body of the response, unless the client requested
otherwise.

If the request contained anAccept header, the serverSHOULD NOT return any scripts whose media
types do not match that header. Similarly, if the request contained anAccept-Disposition header, the server
SHOULD NOT return scripts whose disposition types do not match that header.

Empty headers are legal for both theAccept andAccept-Disposition headers. (Grammatically, they
are “#”, not “1#”.) If a client does not want to receive any scripts in response to a registration, itSHOULD

include an emptyAccept-Disposition header field in itsREGISTER request. ServersSHOULD correctly
honor emptyAccept headers as well, but these are less likely to be useful for clients.

If multiple scripts are registered and match theAccept andAccept-Disposition headers, the server
SHOULD return all of them in a multipart content if and only if the client included an appropriatemul-
tipart/* media type in itsAccept header. Otherwise, the serverMAY select any of the matching regis-
tered scripts to return. A client which cannot accept a multipart media typeSHOULD NOT include multiple
Accept-Disposition headers in its request.

Each returned scriptMUST have its media type specified by aContent-Type header, and its disposi-
tion type by aContent-Disposition header. TheContent-Disposition header fieldSHOULD include the
modification-date parameter indicating the time the script was modified. This header fieldSHOULD NOT

include anaction parameter, as the server is not requesting that the client perform any actions.
The serverSHOULD NOT return any registered scripts if the response to the registration request was an

error condition.
To inform a client of what types of scripts it supports, a serverSHOULD includeAccept andAccept-

Disposition headers in any response to a registration, response to anOPTIONS request directed at the
registrar request, and any response which rejected a registration on the grounds of an unsupporteddisposition
or media type. A server which accepts arbitrary disposition typesSHOULD include the wildcard disposition
pattern “*” in its Accept-Disposition header.

Note: IncludingAccept headers in arbitraryREGISTER responses is against the strict wording of RFC 2543
[3], which says thatAccept headers are only allowed in requests or 415 (Unsupported Media Type) responses.
However, it is always legal to include a header field in any request or response, as clients which do not understand it
in a given context simply ignore it. The work-in-progress revised SIP specification [10] allows this usage.

Lennox/Schulzrinne Expires April 2001 [Page 6]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

5 Persistence Model

Registrations in SIP are normally transient — the data in theContact header fields last only for the length of
time specified in the registration’sExpires header, and clients must refresh their registrations periodically.

In contrast, scripts sent to registration servers using the method described in this document are persistent
— they remain in the server until replaced or deleted, and they do not need to be refreshed. ServersSHOULD

therefore store uploaded scripts in non-volatile storage so they persist through server restarts or failures.
ClientsSHOULD only upload scripts when they are explicitly requested to, andSHOULD NOT transmit their
scripts in every registration request.

The model of standard SIP registrations is that each client registers itself; if a location changes or hosts die, old
registrations naturally time out. Since a user can be simultaneously registered from many locations, several clients
re-registering periodically present no conflicts.

The model of scripts is quite different. A user only has one script (or at least only of a given type) at a time, so
if clients periodically re-uploaded scripts, two clients with different specified scripts would cause “script flapping,”
as the behavior specified in the server changed frequently, with unpredictable and probably surprising behavior.
Moreover, one of the most important purposes of scripts is to control the processing of a user’s requests when
he or she isnot registered from any location; if scripts timed out and had to be refreshed, this goal could not be
accomplished.

6 Examples

The first example shows a user uploading a simple call-filtering SIP CGI script written in Perl to his server.
Note that he is transmitting both a contact address, which persists only for 30 minutes, the time specified by
theExpires header, and a script, which persists indefinitely. This allows him subsequently to register new
contact addresses and have his script apply equally to them. (See [2] for an explanation of SIP CGI as used
in the script.)

The use of Basic authorization here is for the purposes of the example only; in actual practice much
more robust authenticationSHOULD be used. See section 8.

REGISTER sip:sip.example.com SIP/2.0
From: Joe User <sip:joe@example.com>
To: Joe User <sip:joe@example.com>
CSeq: 18 REGISTER
Expires: 1800
Call-ID: 39485832@joespc.example.com
Contact: sip:joe@joespc.example.com
Accept: application/x-perl, application/sdp, text/html
Accept-Disposition: sip-cgi
Authorization: Basic am9lOnBhc3N3b3JkAFBX
Content-Type: application/x-perl
Content-Length: 137
Content-Disposition: sip-cgi; action=store

#!/usr/bin/perl
if ($ENV{HTTP_FROM} =˜ /telemarketers.com/) {

print "SIP/2.0 603 Go away\n"

Lennox/Schulzrinne Expires April 2001 [Page 7]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

} else {
exit(0); # Default action

}

In the second example, a few minutes later, the user registers a new contact address, but does not change
his script. In the response to the registration, the server reminds him of his contact addresses and his current
script.

His client sends this request:

REGISTER sip:sip.example.com SIP/2.0
From: Joe User <sip:joe@example.com>
To: Joe User <sip:joe@example.com>
CSeq: 19 REGISTER
Expires: 1800
Call-ID: 39485832@joespc.example.com
Contact: sip:joe@joeshome.example.com
Accept: application/x-perl, application/sdp, text/html
Accept-Disposition: sip-cgi
Authorization: Basic am9lOnBhc3N3b3JkAFBX
Content-Length: 0

And the server replies with this response:

SIP/2.0 200 OK
From: Joe User <sip:joe@example.com>
To: Joe User <sip:joe@example.com>
CSeq: 19 REGISTER
Contact: sip:joe@joespc.example.com
Contact: sip:joe@joeshome.example.com
Accept: application/cpl+xml, */*
Accept-Disposition: script, sip-cgi
Content-Type: application/x-perl
Content-Disposition: sip-cgi;

modification-date="Wed, 25 Oct 2000 21:21:54 GMT"
Content-Length: 137

#!/usr/bin/perl
if ($ENV{HTTP_FROM} =˜ /telemarketers.com/) {

print "SIP/2.0 603 Go away\n"
} else {

exit(0); # Default action
}

Finally, the user decides to eliminate his script, and the server responds in the same manner as it would
respond to an ordinary registration, as though no script had ever been uploaded:

Lennox/Schulzrinne Expires April 2001 [Page 8]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

REGISTER sip:sip.example.com SIP/2.0
From: Joe User <sip:joe@example.com>
To: Joe User <sip:joe@example.com>
CSeq: 20 REGISTER
Call-ID: 39485832@joespc.example.com
Contact: sip:joe@joeshome.example.com
Authorization: Basic am9lOnBhc3N3b3JkAFBX
Accept: application/x-perl, application/sdp, text/html
Content-Length: 0
Content-Disposition: sip-cgi; action=remove

SIP/2.0 200 OK
From: Joe User <sip:joe@example.com>
To: Joe User <sip:joe@example.com>
CSeq: 20 REGISTER
Contact: sip:joe@joespc.example.com
Contact: sip:joe@joeshome.example.com
Accept: application/cpl+xml, */*
Accept-Disposition: script, sip-cgi
Content-Length: 0

7 Usage Notes

Because scripts can be long, clients which upload scripts, or which present anAccept header field which
could cause scripts to be returned,SHOULD send theirREGISTER messages over TCP rather than UDP.

A user agent which downloads a script to allow a user to edit it, and then re-uploads the script once the
editing is complete,SHOULD include aIf-Unmodified-Since header field in the re-uploading process with
a value equal to the downloaded script’smodification-date. This guarantees that the script has not been
modified by any other user agent since it was downloaded.

8 Security Considerations

Scripts transported by this mechanism can control how a server processes private information intended for
a user. Therefore, a serverMUST reject all un-authenticated attempts to submit, alter, or delete a script. It
is very stronglyRECOMMENDED that that the server require an authentication method which verifies the
integrity of the submitted script, to prevent an attacker from replaying a script submission with a different
script body. Examples of such authentication methods are Digest authentication [13] with the quality of
protection “auth-int”, and SIP’s PGP authentication. Alternately, transport or network-layer authentication
and integrity verification (TLS [14] or IPSec [15]) can be used between the client and server.

It is alsoRECOMMENDED that a server authenticate and provide integrity verification of the scripts it
returns. PGP, transport-layer and network-layer authentication accomplish this as well.

It may be possible to use Digest authentication for server-to-client authentication, but it is not clear how nonce
handling would work.

Lennox/Schulzrinne Expires April 2001 [Page 9]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

9 IANA Considerations

The process for registering newContent-Disposition values and parameters is given in RFC 2183 [9].
This document defines two newContent-Disposition values, “script” and “sip-cgi”, and one new pa-

rameter, “action”, which can have the value “store” or “remove”.

10 Changes From Earlier Versions

10.1 Changes From Draft -00

The changebars in the Postscript and PDF versions of this document indicate significant changes from this
version.

• Improved wording in abstract and introduction: this is a specification, not a proposal. It also applies
only to SIP.

• Added wording to the introduction motivating the use of this specification rather than the other pos-
sitiblities.

• Changed to using theContent-Disposition header, to be in line with rfc2543bis and HTTP. Elimi-
natedContent-Purpose andContent-Action in favor of the new header.

• Added a paragraph motivating the separation ofContent-Disposition types from media types.

• AddedAccept-Disposition header.

• AddedIf-Unmodified-Since header.

• Separated description of header syntax from upload and download procedures.

• Clarified that scripts are per-user, and associated with the user in theTo header.

• Clarified that the model is that proxy servers have access to the registered scripts.

• Added usage note that user agents which support download-edit-upload functionality should use the
If-Unmodified-Since header to prevent race conditions.

• Expanded upon the security considerations. Added mention ofqop=auth-int.

10.2 Changes From IPTel Draft -00

This document was originally published asdraft-iptel-sip-reg-payload-00 , but the consensus
of the IPTel working group was that this should not be a work item of that group.

• AddedContent-Purpose andContent-Action headers.

• Changed the procedure by which scripts are deleted.

• Eliminated the pseudo-media-typeapplication/sip-cgi , as it is counter to the spirit of MIME.
Instead, established that SIP CGI scripts can be any media type.

Lennox/Schulzrinne Expires April 2001 [Page 10]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

• Added “Conventions,” “Usage Notes,” and “IANA Considerations” sections.

• Updated examples to use the syntax of the current version of SIP CGI.

• Updated references to refer to the latest versions of all documents.

11 Authors’ Addresses

Jonathan Lennox
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
electronic mail:lennox@cs.columbia.edu

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

References

[1] J. Lennox and H. Schulzrinne, “CPL: a language for user control of internet telephony services,” In-
ternet Draft, Internet Engineering Task Force, Mar. 1999. Work in progress.

[2] J. Lennox, J. Rosenberg, and H. Schulzrinne, “Common gateway interface for SIP,” Internet Draft,
Internet Engineering Task Force, June 2000. Work in progress.

[3] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Request
for Comments 2543, Internet Engineering Task Force, Mar. 1999.

[4] International Telecommunication Union, “Packet based multimedia communication systems,” Rec-
ommendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Feb.
1998.

[5] M. Wahl, T. Howes, and S. Kille, “Lightweight directoryaccess protocol (v3),” Request for Comments
2251, Internet Engineering Task Force, Dec. 1997.

[6] C. Newman and J. G. Myers, “ACAP – application configuration access protocol,” Request for Com-
ments 2244, Internet Engineering Task Force, Nov. 1997.

[7] E. Nebel and L. Masinter, “Form-based file upload in HTML,” Request for Comments 1867, Internet
Engineering Task Force, Nov. 1995.

Lennox/Schulzrinne Expires April 2001 [Page 11]

INTERNET-DRAFT draft-lennox-sip-reg-payload-01.ps October 31, 2000

[8] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

[9] R. Troost, S. Dorner, and K. Moore, “Communicating presentation information in internet messages:
The content-disposition header field,” Request for Comments 2183, Internet Engineering Task Force,
Aug. 1997.

[10] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: Session initiation protocol,” Internet
Draft, Internet Engineering Task Force, Aug. 2000. Work in progress.

[11] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol – HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

[13] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
neering Task Force, June 1999.

[14] T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
neering Task Force, Jan. 1999.

[15] S. Kent and R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 2401,
Internet Engineering Task Force, Nov. 1998.

Full Copyright Statement

Copyright (c) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Lennox/Schulzrinne Expires April 2001 [Page 12]

