Internet Engineering Task Force
INTERNET-DRAFT J. Lennox, J.Rosenberg, H.Schulzrinne
draft-lennox-sip-cgi-00.ps Columbia U./Bell Labs
October 16, 1998
Expires: April 1999

Common Gateway Interface for SIP

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “lid-abstracts.txt” listing contained
in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited.

Copyright Notice
Copyright (c) The Internet Society (1998). All Rights Reserved.

Abstract

In an Internet telephony environment, it is critical to have a means by which new services are created
and deployed rapidly and efficiently. In the web world, the Common Gateway Interface (CGI) has served
as popular means towards programming web services. Due to the similarities between SIP and HTTP,
CGI seems a good candidate for service creation in a SIP environment. This draft proposes a SIP-CGI
interface for providing SIP services on a SIP server.

Contents
1 Introduction 2
2 Motivations 3
3 Differences from HTTP-CGI 4
3.1 BasicModel e e e e e 4
3.2 Time of EXECULION o o e e e e e 5
3.3 Naming e e e e 6
3.4 Environment Variables 6
3.5 TIMEIS . . . e e e e s 6
4 SIP CGI Specification 6
4.1 IntroducCtion. e e e 6
4.1.1 RelationshipwithHTTPCGI 6

4.1.2 Terminology e e 6

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

4.1.3 Specifications e e 7
4.1.4 Terminology e e 7
4.2 Notational Conventions and Generic Grammar v v e 7
4.3 Message Metadata (Meta-Variables) 7
4.3.1 AUTHTYPE e 8
4.3.2 CONTENTLENGTH e e e e e 8
4.3.3 CONTENTTYPE e e e e e e 8
4.3.4 GATEWAYINTERFACE e e e 8
4.3.5 HTTP* . . . e 8
4.3.6 REMOTEADDR e e 9
4.3.7 REMOTEHOST e e e 9
4.3.8 REMOTEIDENT e e e e 9
4.3.9 REMOTEUSER e 9
4.3.10 REQUESTMETHOD e e e e e e e 9
4.3.11 REQUESTURI e 10
4.3.12 RESPONSIETATUS e e e e s e e e 10
4.3.13 RESPONSIREASON e e e e 10
4.3.14 SCRIPTCOOKIE e e e e e e 10
4.3.15 SERVERNAME e 10
4.3.16 SERVERPORT e 10
4.3.17 SERVERPROTOCOL. e e e e e e 10
4.3.18 SERVERSOFTWARE e e e e e 10
4.4 Invokingthe script 11
4.5 Datalnputtothe SIP-CGIScript. 11
4.6 Data Output fromthe SIP-CGI Script 11
4.6.1 Primary CGlHeaders. e 12
4.6.2 Secondary CGlHeaders. 13
4.7 Locally generated reSponSeS. e e e e e e 14
4.8 SIP-CGland REGISTER e e e e 14
5 Security Considerations 14
6 Full Copyright Statement 14
7 Authors’ Addresses 15

1 Introduction

In an Internet telephony environment, it is critical to have a means by which new services are created
and deployed rapidly and efficiently. In traditional telephony networks, this was accomplished through
IN service creation environments, which provided an interface for manipulating objects and relationships
related to telephony.

The Internet has provided new fora for creation of services. The web has become one of the most
important applications on the Internet. Originally, web servers simply translated URL's into files stored on
a local system, and returned the file as content. Over time, servers evolved to provide dynamic content, and

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 2]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

forms provided a means for soliciting user input. In essence, what evolved was a means for service creation
in a web environment. There are now many means for creation of dynamic web content, including server
side JavaScript, servlets, and the common gateway interface, CGIl. Each of these have different strengths
and weaknesses for creation of dynamic content.

Internet telephony lies at the crossroads of telephony and the web, and presents unigue challenges for
service creation. Creation of services in Internet telephony is strongly tied to the services provided by the
signaling protocol. The Session Initiation Protocol (SIP) [1] has been developed for initiation and termina-
tion of multimedia sessions, including Internet telephony. SIP borrows heavily from HTTP, inheriting its
client-server interation and much of its syntax and semantics. For this reason, the web service creation envi-
ronments, and CGl in particular, seem attractive as starting points for developing SIP based service creation
environments.

2 Motivations
CGl has a number of strengths which make it attractive as an environment for creating SIP services:

Language independence:CGIl works with perl, C, VisualBasic, tcl, and many other languages.

Exposes all headers:CGl exposes the content of all the headers in an HTTP request to the CGI application.
An application can make use of these as it sees fit, and ignore those it doesn’t care about. This allows
all aspects of an HTTP request to be considered for creation of content. In a SIP environment, headers
have greater importance than in HTTP. They carry critical information about the transaction, including
caller and callee, subject, contact addresses, organizations, extension names, registration parameters
and expirations, call status, and call routes, to name a few. It is therefore critical for SIP services to
have as much access to these headers as possible. For this reason, CGl is very attractive.

Creation of Responses:CGl is advantageous in that it can create all parts of a response, including headers,
status codes and reason phrases, in addition to message bodies. This is not the case for other mech-
anisms, such as Java servlets, which are focused primarily on the body. In a SIP environment, it is
critical to be able to generate all aspects of a response (and, all aspects of new or proxied requests),
since the body is usually not of central importance in SIP service creation.

Component Reuse:Many of the CGI utilities allow for easy reading of environment variables, parsing of
form data, and often parsing and generation of header fields. Since SIP reuses the basic RFC822 [2]
syntax of HTTP, all of these tools are immediately applicable to SIP CGl.

Familiar Environment: Many web programmers are familiar with CGI.

Ease of extensibility: Since CGl is an interface and not a language, it becomes easy to extend and reapply
to other protocols, such as SIP.

The generality, extensibility, and detailed control and access to information provided by CGI, coupled
with the range of tools that exist for it, which can be immediately applied to SIP, make it an good mechanism
for SIP service creation.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 3]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

3 Differences from HTTP-CGI

Certainly, SIP is different from HTTP. A SIP server does different things than a web server. As such,
SIP-CGI must build upon the basic HTTP-CGI.

3.1 Basic Model
The basic model for HTTP-CGI is depicted in figure 1.

Figure 1: HTTP CGI Model

A client issues an HTTP request, the server executes a CGI script, and the CGI script returns a response,
which is forwarded to the client. The main job of the script is to generate the body for the response.
In a SIP server, the model is different, and is depicted in Figure 2.

req ------- req ------- req
| _— — — |
| client | resp | server| resp | server| resp | client |
| . — e |
| | CGI
|
| I
| CGI |
| prog. |
|

Figure 2: SIP CGI Model

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 4]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

The client generates a request, which is forwarded to a server. The server may generate a response (such
as an error or redirect response). Or, if the server is a proxy server, the request is proxied to another server,
and eventually to a client, and the response is passed back upstream, through the server, and back towards
the client. A SIP proxy server may additionally fork requests, generating multiple requests in response to a
received request. Generally, a proxy server will not generate the content in responses. These contain session
descriptions created by user agents. Services, such as call forward and mobility services, are based on the
decisions the server makes about (1) when, to where, and how many requests to proxy downstream, and (2)
when to send a response back upstream. Creation of services such as ad-hoc bridging will require the server
to generate new requests of its own, and for it to modify and generate content in responses.

So, in HTTP, the server is mainly concerned about generation of responses, a SIP server is mainly
concerned about proxying of requests, proxying of responses, generation of responses, and generation of
requests. Furthermore, a single request may generate, simultaneously, multiple responses, proxied requests,
and new requests. This implies that SIP-CGI must encompass a greater set of functions than in HTTP-CGI.
When a request arrives at a server, the CGlI script is executed, and must be able to simultaneously cause
requests to be created and proxied, and responses to be created and forwarded upstream. These functions
are a super-set of the simple end-server request/response model, which means SIP-CGI may be designed as
a backward-compatible extension of HTTP-CGI.

3.2 Time of Execution

In HTTP-CGI, a script is executed once for each request. It generates the response, and then terminates.
There is no state maintained across requests from the same user, as a general rule (although this can be done
— and is — for more complex services such as database accesses, which essentially encapsulate state in
client-side cookies or dynamically-generated URLS). A transaction is just a single request, and a response.

In SIP-CGI, since a request can generate many new and proxied requests, these themselves will generate
responses. A service will often require these responses to be processed, and additional requests of responses
to be generated. As a result, whereas an HTTP-CGI script executes once per transaction, a SIP-CGI script
must maintain control somehow over numerous events.

In order to enable this, and to stay with the original CGl model, we mandate that a SIP CGI script
executes when a message arrives, and after generating output (in the form of additional messages), terminate.
State is maintained by allowing the CGl to return an opaque token to the server. When the CGI script is
called again for the same transaction, this token is passed back to the CGI script. When called for a new
transaction, no token is passed.

For example, consider a request which arrives at a SIP server. The server calls a CGI script, which gen-
erates a provisional response and a proxied request. It also returns a token to the server. It then terminates.
The response is sent upstream, and the request is proxied. When the response to the proxied request arrives,
the script is executed again. The environment variables are set based on the content of the new response.
The script is also passed back the token. Using the token as its state, the script decides to proxy the request
to a different location. It therefore returns a proxied request, and another token. The server forwards this
new request, and when the response comes, calls the CGI script once more, and passes back the token. This
time, the script generates a final response, and passes this back to the server. The server sends the response
to the client, destroys the token, and the transaction is complete.

In many cases, calling the CGlI script on the reception of every message is inefficient. CGI scripts come
at the cost of significant overhead since they generally require creation of a new process. Therefore, it is
important in SIP-CGI for a script to indicate, after it is called the first time, under what conditions it will be

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 5]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

called for the remainder of the transaction. If the script is not called, the server will take the “default” action,
as specified in this document. This allows an application designer to trade off flexibility for computational
resources.

So, in summary, whereas an HTTP-CGI script executes once during a transaction, a single SIP-CGI
script may execute many times during a transaction, and may specify at which points it would like to have
control for the remainder of the transaction.

3.3 Naming

In HTTP-CGI, the CGl script itself is generally the resource named in the Request URI of the HTTP request.
This is not so in SIP. In general, the request URI hames a user to be called. The mapping to a script to be
executed may depend on other SIP headers, inclutiingnd From fields, the SIP method, status codes,

and reason phrases. As such, the mapping of a message to a CGlI script is purely a matter of local policy
administration at a server. A server may have a single script which always executes, or it may have multiple
scripts, and the target is selected by some parts of the header.

3.4 Environment Variables

In HTTP-CGI, environment variables are set with the values of the paths and other aspects of the request.
As there is no notion of a path in SIP, some of these environment variables do not make sense.

3.5 Timers

In SIP, certain services require that the script gets called not only when a message arrives, but when some
timer expires. The classic example of this is “call-forward no answer.” To be implemented with SIP-CGI,
the first time the script is executed, it must generate a proxied request, and also indicate a time at which to be
called again if no response comes. This kind of feature is not present in HTTP-CGI, and some rudimentary
support for it is needed in SIP-CGI.

4 SIP CGI Specification

4.1 Introduction
4.1.1 Relationship with HTTP CGl

This SIP CGI specification is based on work-in-progress revision 1.1 of the HTTP CGI standard [3]. This
document is a product of the informal CGI-WG, which is not an official IETF working group at this time.
CGI-WG’s homepage is located at the URItp://Web.Golux.Com/coar/cgi/ , and the most
recent versions of the CGI specification are available there. A number of sections of this document will
refer to sections from the HTTP-CGI specification, as [HTTP-CGI:xx], rather than repeat information from
that document verbatim.

4.1.2 Terminology

In this document, the key wordsfUsT”, “ MUST NOT", “ REQUIRED', “ SHALL”", “ SHALL NOT”, “ SHOULD",
“SHOULD NOT’, “RECOMMENDED’, “MAY ", and “OPTIONAL" are to be interpreted as described in RFC
2119 [4] and indicate requirement levels for compliant SIP CGIl implementations.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 6]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

4.1.3 Specifications

The terms “system defined” and “implementation defined” are used to refer to functions and features of SIP
CGlI which are not defined in the main part of this specification. The definitions of these can be found in
[HTTP-CGI:1.3].

4.1.4 Terminology

The terms “meta-variable,” “script,” and “server” are defined in [HTTP-CGI:1.4]. A “message” is a SIP
request or response, typically either the one that triggered the invocation of the CGI script, or one that the
CGil script caused to be sent.

4.2 Notational Conventions and Generic Grammar

In this specification we use the Augmented Backus-Naur Form notation described in RFC 2234 [5]. The
basic rules described in [HTTP-CGI:2.2] are used to describe basic parsing constructs.

4.3 Message Metadata (Meta-Variables)

Each SIP-CGI implementationusT define a mechanism to pass data about the message from the server to
the script. The meta-variables containing these data are accessed by the script in a system defined manner.
In all cases, a missing meta-variable is equivalent to a zero-length or NULL value, and vice versa. The
representation of the characters in the meta-variables is system defined.

Case is not significant in the meta-variable names, in that there cannot be two different variables whose
names differ in case only. Here they are shown using a canonical representation of capitals plus underscore
(“_"). The actual representation of the names is system defined; for a particular system the representation
MAY be defined differently than this.

(This description of meta-variables is taken verbatim from [HTTP-CGI:4].)

The meta-variables from HTTP-CGI are:

AUTH_TYPE
CONTENT_LENGTH
CONTENT_TYPE
GATEWAY_INTERFACE
HTTP_*
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REQUEST_METHOD
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

The new variables introduced in SIP-CGI are:

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 7]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

REQUEST_URI
RESPONSE_STATUS
RESPONSE_REASON
SCRIPT_COOKIE

The HTTP-CGI variable®ATHINFO, PATHTRANSLATEDQUERYSTRING, andSCRIPT_NAME
are not meaningful in the SIP-CGI context, and are omitted from this specification.
A servermMAY also set any additional meta-variables it chooses.

4.3.1 AUTH.TYPE

See [HTTP-CGI:4.1]. The auth-scheme token can alsdidpest or pgp corresponding to the authentication
methods detailed in the SIP specification.

For the complex authentication schemes, the seaMeruLD perform the authentication checking itself.
If the authentication failed, this meta-varialdaouLD NOT be set.

4.3.2 CONTENTLENGTH
See [HTTP-CGI:4.2]. If the message contains a body, this meta-vanalge be set set even if @ontent-
Length header field was not included in the message.

4.3.3 CONTENT.TYPE
See [HTTP-CGI:4.3].

4.3.4 GATEWAY_INTERFACE

The version of the SIP-CGI specification to which this server complies. Syntax:
GATEWAY_INTERFACE = "SIP-CGI”"/” 1*digit ".” 1*digit

Note that the major and minor numbers are treated as separate integers and hence each may be incre-
mented higher than a single digit. Thus SIP-CGI/2.4 is a lower version than SIP-CGI/2.13 which in turn
is lower than SIP-CGI/12.3. Leading zemag ST be ignored by scripts angHouLD NOT be generated by
servers.
This document defines the 1.1 version of the SIP-CGl interface.
For maximal compatibility with existing HTTP-CGI libraries, we want to keep this as similar as possible to the
syntax of CGI 1.1. However, wedo want it to be clear that this is indeed SIP-CGI. Making HTTP-CGI'’s version

identifier a substring of the SIP-CGI identifier seemed like a reasonable compromise. (The existing CGl libraries
we checked do not seem to check the version.)

XXX: check more than just Perl.

435 HTTP*

These meta-variables encode the header data of the message; see [HTTP-CGI:4.5]. The server is not re-
quired to create meta-variables for all the header fields it receives; however, because of the relatively greater

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 8]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

importance of headers in SIP, the sersapuULD provide all headers which are not either potentially sensi-
tive authorization information, such dsithorization, or which are available via other SIP CGI variables,
such aLontent-Length andContent-Type.

The variable names are specifiedHiETP* rather thanSIP _* in order to make it easier to use existing CGI
libraries unmodified.

4.3.6 REMOTE_ADDR

This is the IP address of the host sending the message to this server; see [HTTP-CGI:4.9]. This is not
necessarily that of the originating client or user agent server.

For locally generated responses (see section 4.7), this should be the loopback address (i.e. 127.0.0.1 for
IPv4).

4.3.7 REMOTE_HOST
This is the hostname of the host sending the message to this server. See [HTTP-CGI:4.10].

4.3.8 REMOTELIDENT

The identity information supported about the connection by a RFC 1413 [6] request, if available; see [HTTP-
CGl:4.11].

The servemMAY choose not to support this feature, and it is anticipated that not many implementations
will, as the information is not particularly useful in the presence of complex proxy paths.

4.3.9 REMOTE.USER

If AUTHTYPEwas specified, this specifies the identity specified by that authorization information. See
[HTTP-CGI:4.12].

TBD: specify the syntax of this field for digest and pgp authentication.

4.3.10 REQUESTMETHOD

If the message triggering the script was a request, the method with which the request was made, as described
in section 4.2 of the SIP/2.0 specification [1]; otherwise NULL.

REQUEST_METHOD = sip-method

sip-method = "INVITE” | 'BYE” | "TOPTIONS” | "CANCEL"
| "REGISTER”
| extension-method

extension-method = token

Note that ACK is not appropriate for the SIP-CGI/1.1 environment. The implications of REGISTER in
the CGI context are discussed in section 4.8.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 9]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

4.3.11 REQUESTURI

This meta-variable is specific to requests made with SIP.
REQUEST_URI = SIP-URL ; SIP-URL is defined in section 2 of [1].

If the message triggering the script was a request, this variable indicates the URI specified with the
request method. This variable is only preseREQUESTMETHOIB non-NULL.

This meta-variable fills the roles of HTTP-CGBCRIPT_.NAMEPATHINFO, andQUERYSTRING.

4.3.12 RESPONSESTATUS

RESPONSE_STATUS = Status-Code ; Status-Code is defined in
; section 5.1.1 of [1].

If the message triggering the script was a response, this variable indicates the numeric code specified in
the response.

4.3.13 RESPONSEREASON

RESPONSE_REASON = Reason-Phrase ; Reason-Phrase is defined in
; section 5.1.1 of [1].

If the message triggering the script was a response, this variable indicates the textual string specified in
the response.

4.3.14 SCRIPT.COOKIE
SCRIPT_COOKIE = *gchar

This is the value the script passed to the server after an earlier message in this transaction in the optional
CGlI headeiScript-Cookie. See the description of that header in section 4.6.2 below.

4.3.15 SERVERNAME
See [HTTP-CGI:4.15].

4.3.16 SERVERPORT
See [HTTP-CGI:4.16].

4.3.17 SERVERPROTOCOL

The name and revision of the protocol with which the message arrived; see [HTTP-CGI:4.17]. This will
usually be “SIP/2.0".

4.3.18 SERVERSOFTWARE
See [HTTP-CGI:4.16].

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 10]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

4.4 Invoking the script

The script is invoked in a system defined manner. Unless specified otherwise, this will be by treating the file
containing the script as an executable program, and running it as a child process of the server.
The servelsHOULD NOT provide any command line arguments to the script.

Command line arguments are used for indexed queries in HTTP CGI; HTTP indexed queries do not have an
equivalent in SIP.

4.5 Data Input to the SIP-CGI Script

As there may be a data entity attached to the request, thesg be a system defined method for the script

to read these data. Unless defined otherwise, this will be via the ‘standard input’ file descriptor.
TheremusT be at leasCONTENILENGTHoytes available for the script to readdONTENILENGTH

is not NULL. The script is not obliged to read the data, bumitsT NOT attempt to read more than

CONTENILENGTHytes, even if more data are available.

4.6 Data Output from the SIP-CGI Script

A SIP CGlI's output consists of any number of messages, each corresponding to actions which the script is
requesting that the server perform. Messages can contain three kinds of header fields: primary CGI header
fields, secondary CGI header fields, and SIP header fields. Primary CGI header fields determine the nature
of the action performed, and are described in section 4.6.1. Secondary CGI header fields pass additional
instructions or information to the server, and are described in section 4.6.2.

A messagevusT contain exactly one primary CGI header field, amgv also contain any number of
secondary CGI header fields and SIP header fieldsyardcontain a SIP body.

All header fields occurring in an output message MUST be specified one per line; SIP-CGI/1.1 makes
no provision for continuation lines.

The generic syntax of CGI header fields is specified in [HTTP-CGI:8.2].

A serverMAY choose to honor only some of the requests or responses; in particlaQuiLD NOT
accept any responses followinggatus message which sends a definitive response.

The messages sent by a script are delimited as follows:

1. If the message does not containCantent-Type header field, or if it contains the header field
"Content-Length: 0" , then it is terminated by a blank line.

2. If the message contains bo@ontent-Type and Content-Length header fields, the message has
a body consisting of th€ontent-Length octets following the blank line below the set. The next
message begins after the body (and optionally some number of blank lines). If the script closes its
output prematurely, the serveHoOULD report a 500-class server error.

3. If the message contai@ontent-Type but notContent-Length, the message’s body similarly begins
with the blank line following the set; this body extends until the script closes its output. In this case,
this is necessarily the last message the script can send.

4. If amessage contains a non-z&antent-Length but does not contain@ontent-Type, it is an error.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 11]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

4.6.1 Primary CGI Headers

Status
Status = "Status” ".” 3*digit SP reason-phrase NL

This primary CGI header causes the server to generate a SIP response and relay it in the “appropriate”
direction: either responding to a request, or forwarding on in place of the triggering response. If SIP
headers are specified in the associated message, they replace whatever default header the server would have
otherwise generated.

For compatibility with HTTP-CGI, a servesHOULD interpret a header set containingcantent-Type
header field and no primary CGI header field as though it contdiedus: 200 OK". This usage
is deprecated.

Proxy-Request-To
Proxy-Request-To = "Proxy-Request-To” "." SIP-URI

This primary CGI header causes the server to forward the given request to the specified SIP URI. It may
be sent either by a script triggered by a request, or by a script triggered by a response on a server which is
running statefully and remembers the original request.

Any SIP header fielthAy be specified in the associated message. Specified SIP headers replace all those
in the original message in their entirety; if a script wants to preserve headers from the original message as
well as adding new ones, it can concatenate them by the usual rules of header concatenation. New header
fields are added to the message after Bath headers but before any other headers.

A script MAY specify that a SIP header is to be deleted from the message by specifying a field name
without a field body, as in

Subject:

If the message does not specify a body, the body from the initial request is used. A message with
Content-Length: 0 is specifying an empty body; this causes the body to be deleted from the mes-
sage.

If the initial request was authenticated by any means other than ‘basic,’ the SadpiLD NOT add,
change, or remove any end-to-end headers, as this would break the authentication.

Forward-Response

Forward-Response = "Forward-Response””.” "yes

This primary CGI header causes the server to forward the triggering response on to its appropriate final
destination. It may only be sent by a script triggered by a response. The same rules apply for accompanying
SIP headers and message bodies aRrfoxy-Request-To.

No other value than “yes” is allowed for this field. A value is only included for syntactic consistency.

Initiate-Request
Initiate-Request = "Initiate-Request” ":” sip-method sip-uri

This primary CGI header causes the server to initiate a new SIP request, with the specified method, to
the specified URI. Any SIP headeiry be included in the request.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 12]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

Default-Action
Default-Action = "Default-Action” ”.” "yes”

This primary CGI header tells the server to execute the default action at this point in the transaction. The
default actions are:

Request received: When the request is first received, the default action of the server is check the registration
database against the request, and either proxy or redirect the request based on the action specified by
the user agent in the registation.

Proxied response received:If a response is received to a proxied request, the server forwards the response
towards the caller if the response was a 200 or 600 class response, and sends a CANCEL on all
pending branches. If the response was informational, the state machinery for that branch is updated,
and the response is not proxied upstream towards the caller. For 300, 400, and 500 class responses,
an ACK is sent, and the response is forwarded upstream towards the caller if all other branches have
terminated, and the response is the best received so far. If not all branches have terminated, the server
does nothing. If all branches have terminated, but this response is not the best, the best is forwarded
upstream. This is the basic algorithm outlined in the SIP specification.

Generated Response Receivedf the original CGI script generated its own request, and a response arrives,
the default action is to ACK the response if it is INVITE, otherwise nothing is done.

This heademusT NOT be combined with any other headers exceptipt-Cookie.

If a SIP CGl script produces no output at all before closing its communication channel, the server
SHOULD assume this primary action.
4.6.2 Secondary CGIl Headers
Script-Cookie

Script-Cookie = "Script-Cookie” ":” < ” > *qchar <” >
"Script-Cookie” "

This secondary CGI header allows the script to pass a quoted-string to the server. If the header had
a value, subsequent requests on this transaction branch will haBCREPT_COOKIEmeta-variable set.
Sending this secondary header without a value will cause subsequent transactions not to have the variable
set; this is useful to clear a script cookie from a transaction.

This allows a SIP CGl script to retain state across multiple invocations in a complex transaction.

ReExecute-On
ReExecute-On = "ReExecute-On” ™" ("all” | "final-responses” | "never”)

This secondary header allows the script to inform the server of the conditions upon which the server
should re-execute the script or take the default action. The keyword “all” means that the script would like
to be re-executed when any response for the transaction is received. The keyword “final-responses” means
that the script would like to be invoked upon any final responses (all but 1xx). The keywork “never” means
the script should not be executed again. In cases where the script is not executed, the default action is taken.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 13]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

Timeout
Timeout = "Timeout””” (HTTP-date | delta-seconds)

This secondary CGI header allows a script to request that the server lower its timeout threshold for a
Proxy-Request-To or New-Request message. Serves{ouULD, however, disregard any attempt to raise
the timeout limit.

This sets the threshhold only for the immediate timeout of the request. Any subsequent timeouts have
their default value unless this header is also specified in subsequent script invocations. The default SIP
timeouts are given in section 10 of [1].

When a timeout expires, the CGI script is invoked with the locally-generated “408 Request Timeout”
response. This occurs whether the timeout was explicitly set or had its default value. See section 4.7.

This CGI header should not be confused with the SIP helaxpires.

This allows a SIP-CGI script in a proxy server to implement services like “Call Forward No Answer” to trigger
after a user-determined time.

4.7 Locally generated responses

In a proxy environment, locally generated responses such as “408 Request Tigieout’D be sent to the
CGl script in the same manner as received messages are. However, messages which merely report a problem
with a message, such as “400 Bad RequesthuLD NOT be.

This is the other half of the requirements for the implementation of the “Call Forward No Answer” service, along
with the Timeout header.

4.8 SIP-CGIl and REGISTER

The specific semantics of a SIP-CGI script which is triggered by a REGISTER request are somewhat dif-
ferent than that of those triggered by call-related requests; however, allowing user control of registration
may in some cases be useful. The two specific primary header return values for REGISTER that need to
be discussed are “Status: 200" and “Default-Action: yes”. In the former case, the selwerLD assume

that the CGI script is handling the registration internally, areuLD NOT add the registration to its in-

ternal registration database; in the latter case, the ser@vLD add the registration to its own database.

The server alsgsHouLD NOT add the registration if a 3xx, 4xx, 5xx, or 6xx status was returned, or if the
registration request was proxied to another location.

5 Security Considerations

TODO

6 Full Copyright Statement

Copyright (C) The Internet Society (1998). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 14]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

However, this document itself may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.”

7 Authors’ Addresses

Jonathan Lennox

Dept. of Computer Science

Columbia University

1214 Amsterdam Avenue

New York, NY 10027

USA

electronic maillennox@cs.columbia.edu

Jonathan Rosenberg

Rm. 4C-526

Bell Laboratories, Lucent Technologies
101 Crawfords Corner Rd.

Holmdel, NJ 07733

USA

electronic mailjdrosen@bell-labs.com

Henning Schulzrinne

Dept. of Computer Science

Columbia University

1214 Amsterdam Avenue

New York, NY 10027

USA

electronic mail:schulzrinne@cs.columbia.edu

References

[1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Internet
Draft, Internet Engineering Task Force, Sept. 1998. Work in progress.

[2] D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Comments (Stan-
dard) STD 11, 822, Internet Engineering Task Force, Aug. 1982. (Obsoletes RFC733); (Updated by
RFC987); (Updated by RFC1327).

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 15]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps October 16, 1998

[3] D. Robinson and K. Coar, “The WWW common gateway interface version 1.1,” Internet Draft, Internet
Engineering Task Force, May 1998. Work in progress.

[4] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” BC 2119, Internet Engineering
Task Force, Mar. 1997.

[5] D. Crocker and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for Comments
(Proposed Standard) 2234, Internet Engineering Task Force, Nov. 1997.

[6] M. S. Johns, “Identification protocol,” Request for Comments (Proposed Standard) 1413, Internet En-
gineering Task Force, Feb. 1993. (Obsoletes RFC931).

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 16]

