
Internet Engineering Task Force IPTEL WG
INTERNET-DRAFT Lennox/Schulzrinne
draft-ietf-iptel-cpl-03.ps Columbia University

October 25, 2000
Expires: April, 2001

CPL: A Language for User Control of Internet Telephony Services

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its

working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

To view the list Internet-Draft Shadow Directories, seehttp://www.ietf.org/shadow.html.

Copyright Notice

Copyright (c) The Internet Society (2000). All Rights Reserved.

Abstract

The Call Processing Language (CPL) is a language that can be used to describe and control Internet
telephony services. It is designed to be implementable on either network servers or user agent servers. It
is meant to be simple, extensible, easily edited by graphical clients, and independent of operating system
or signalling protocol. It is suitable for running on a server where users may not be allowed to execute
arbitrary programs, as it has no variables, loops, or ability to run external programs.

This document is a product of the IP Telephony (IPTEL) working group of the Internet Engineering
Task Force. Comments are solicited and should be addressed to the working group’s mailing list at
iptel@lists.research.bell-labs.com and/or the authors.

Contents

1 Introduction 3
1.1 Conventions of this document . 4

2 Structure of CPL scripts 4
2.1 High-level structure . 4
2.2 Abstract structure of a call processing action . 4
2.3 Location model . 5
2.4 XML structure . 5

3 Document information 6
3.1 CPL Document Identifiers for XML . 7
3.2 MIME Registration . 7

4 Script structure: overview 8

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

5 Switches 8
5.1 Address switches . 8

5.1.1 Usage ofaddress-switch with SIP . 10
5.2 String switches . 10

5.2.1 Usage ofstring-switch with SIP . 11
5.3 Time switches . 12

5.3.1 Motivations for the iCal subset . 15
5.4 Priority switches . 16

5.4.1 Usage ofpriority-switch with SIP . 16

6 Location modifiers 16
6.1 Explicit location . 16

6.1.1 Usage oflocation with SIP . 17
6.2 Location lookup. 17

6.2.1 Usage oflookup with SIP . 18
6.3 Location Removal . 19

6.3.1 Usage ofremove-location with SIP . 19

7 Signalling actions 19
7.1 Proxy . 19

7.1.1 Usage ofproxy with SIP . 21
7.2 Redirect . 21

7.2.1 Usage ofredirect with SIP . 22
7.3 Reject . 22

7.3.1 Usage ofredirect with SIP . 22

8 Other actions 23
8.1 Mail . 23

8.1.1 Suggested Content of Mailed Information 23
8.2 Log . 24

9 Subactions 24

10 Ancillary information 25

11 Default actions 25

12 CPL Extensions 26

13 Examples 27
13.1 Example: Call Redirect Unconditional . 27
13.2 Example: Call Forward Busy/No Answer . 27
13.3 Example: Call Forward: Redirect and Default . 27
13.4 Example: Call Screening . 27
13.5 Example: Priority and Language Routing. 27
13.6 Example: Outgoing Call Screening . 28

Lennox/Schulzrinne Expires April, 2001 [Page 2]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

13.7 Example: Time-of-day Routing . 28
13.8 Example: Location Filtering 28
13.9 Example: Non-call Actions . 29
13.10Example: Hypothetical Extensions. 30
13.11Example: A Complex Example . 32

14 Security considerations 35

15 IANA considerations 35

16 Acknowledgments 35

A An algorithm for resolving time switches 35

B Suggested Usage of CPL with H.323 36
B.1 Usage ofaddress-switch with H.323 . 36
B.2 Usage ofstring-switch with H.323 . 37
B.3 Usage ofpriority-switch with H.323 . 38
B.4 Usage oflocation with H.323 . 38
B.5 Usage oflookup with H.323 . 38
B.6 Usage ofremove-location with H.323 . 38

C The XML DTD for CPL 38

D Changes from earlier versions 44
D.1 Changes from draft -02 . 44
D.2 Changes from draft -01 . 44
D.3 Changes from draft -00 . 45

E Authors’ Addresses 46

1 Introduction

The Call Processing Language (CPL) is a language that can be used to describe and control Internet tele-
phony services. It is not tied to any particular signalling architecture or protocol; it is anticipated that it will
be used with both SIP [1] and H.323 [2].

The CPL is powerful enough to describe a large number of services and features, but it is limited in
power so that it can run safely in Internet telephony servers. The intention is to make it impossible for users
to do anything more complex (and dangerous) than describing Internet telephony services. The language is
not Turing-complete, and provides no way to write loops or recursion.

The CPL is also designed to be easily created and edited by graphical tools. It is based on XML [3], so
parsing it is easy and many parsers for it are publicly available. The structure of the language maps closely
to its behavior, so an editor can understand any valid script, even ones written by hand. The language is also
designed so that a server can easily confirm scripts’ validity at the time they are delivered to it, rather that
discovering them while a call is being processed.

Implementations of the CPL are expected to take place both in Internet telephony servers and in advanced

Lennox/Schulzrinne Expires April, 2001 [Page 3]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

clients; both can usefully process and direct users’ calls. This document primarily addresses the usage in
servers. A mechanism will be needed to transport scripts between clients and servers; this document does
not describe such a mechanism, but related documents will.

The framework and requirements for the CPL architecture are described in RFC 2824, “Call Processing
Language Framework and Requirements” [4].

1.1 Conventions of this document

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [5] and indicate requirement levels for compliant CPL implementations.

In examples, non-XML strings such as-action1- , -action2- , and so forth, are sometimes used.
These represent further parts of the script which are not relevant to the example in question.

Some paragraphs are indented, like this; they give motivations of design choices, or questions for future discus-
sion in the development of the CPL, and are not essential to the specification of the language.

2 Structure of CPL scripts

2.1 High-level structure

A CPL script consists of two types of information:ancillary informationabout the script, andcall processing
actions.

A call processing action is a structured tree that describes the decisions and actions a telephony signalling
server performs on a call set-up event. There are two types of call processing actions:top-level actionsare
actions that are triggered by signalling events that arrive at the server. Two top-level action names are
defined: incoming, the action performed when a call arrives whose destination is the owner of the script;
andoutgoing, the action performed when a call arrives whose originator is the owner of the script.Sub-
actionsare actions which can be called from other actions. The CPL forbids sub-actions from being called
recursively: see section 9.

Ancillary information is information which is necessary for a server to correctly process a script, but
which does not directly describe any actions. Currently, no ancillary information is defined, but the section
is reserved for use byextensions.

2.2 Abstract structure of a call processing action

Abstractly, a call processing action is described by a collection of nodes, which describe actions that can be
performed or choices which can be made. A node may have several parameters, which specify the precise
behavior of the node; they usually also have outputs, which depend on the result of the condition or action.

For a graphical representation of a CPL action, see Figure 1. Nodes and outputs can be thought of
informally as boxes and arrows; the CPL is designed so that actions can be conveniently edited graphically
using this representation. Nodes are arranged in a tree, starting at a single root node; outputs of nodes are
connected to additional nodes. When an action is run, the action or condition described by the top-level
node is performed; based on the result of that node, the server follows one of the node’s outputs, and that
action or condition is performed; this process continues until a node with no specified outputs is reached.
Because the graph is acyclic, this will occur after a bounded and predictable number of nodes are visited.

Lennox/Schulzrinne Expires April, 2001 [Page 4]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

If an output to a node is not specified, it indicates that the CPL server should perform a node- or protocol-
specific action. Some nodes have specific default actions associated with them; for others, the default action
is implicit in the underlying signalling protocol, or can be configured by the administrator of the server. For
further details on this, see section 11.

Address−switch
field: from
subfield: host

example.com

otherwise

location

example.com

url: sip:jones@
location

example.com
voicemail.

proxy
timeout: 10s

redirect

Call failure

timeout
busy

url: sip:jones@

Voicemail

subdomain−of:

Figure 1: Sample CPL Action: Graphical Version

2.3 Location model

For flexibility, one piece of information necessary for the function of a CPL is not given as node parameters:
the set of locations to which a call is to be directed. Instead, this set of locations is stored as an implicit
global variable throughout the execution of a processing action (and its sub-actions). This allows locations
to be retrieved from external sources, filtered, and so forth, without requiring general language support for
such actions (which could harm the simplicity and tractability of understanding the language). The specific
actions which add, retrieve, or filter location sets are given in section 6.

For the incoming top-level processing action, the location set is initialized to the empty set. For the
outgoing action, it is initialized to the destination address of the call.

2.4 XML structure

Syntactically, CPL scripts are represented by XML documents. XML is thoroughly specified by [3], and
implementors of this specification should be familiar with that document, but as a brief overview, XML
consists of a hierarchical structure of tags; each tag can have a number of attributes. It is visually and
structurally very similar to HTML [6], as both languages are simplifications of the earlier and larger standard
SGML [7].

See Figure 2 for the XML document corresponding to the graphical representation of the CPL script
in Figure 1. Both nodes and outputs in the CPL are represented by XML tags; parameters are represented
by XML tag attributes. Typically, node tags contain output tags, and vice-versa (with one exception; see

Lennox/Schulzrinne Expires April, 2001 [Page 5]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:jones@voicemail.example.com">
<redirect />

</location>
</subaction>

<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:jones@example.com">

<proxy timeout="10">
<busy> <sub ref="voicemail" /> </busy>
<noanswer> <sub ref="voicemail" /> </noanswer>
<failure> <sub ref="voicemail" /> </failure>

</proxy>
</location>

</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 2: Sample CPL Script: XML Version

section 6.1).
The connection between the output of a node and another node is represented by enclosing the tag

representing the pointed-to node inside the tag for the outer node’s output. Convergence (several outputs
pointing to a single node) is represented by sub-actions, discussed further in section 9.

The higher-level structure of a CPL script is represented by tags corresponding to each piece of meta-
information, sub-actions, and top-level actions, in order. This higher-level information is all enclosed in a
special tagcpl, the outermost tag of the XML document.

A complete Document Type Declaration for the CPL is provided in Appendix C. The remainder of the
main sections of this document describe the semantics of the CPL, while giving its syntax informally. For
the formal syntax, please see the appendix.

3 Document information

This section gives meta-information about CPL scripts.

Lennox/Schulzrinne Expires April, 2001 [Page 6]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

3.1 CPL Document Identifiers for XML

A CPL script list which appears as a top-level XML document is identified with the formal public identifier
“-//IETF//DTD RFCxxxx CPL 1.0//EN”. If this document is published as an RFC, “xxxx” will be replaced
by the RFC number.

A CPL embedded as a fragment within another XML document is identified with the XML namespace
identifier “http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-03.txt”. If this document is published as an
RFC, the namespace identifier will be “http://www.rfc-editor.org/rfc/rfcxxxx.txt”, where xxxx is the RFC
number.

Note that the URIs specifying XML namespaces are only globally unique names; they do not have to reference
any particular actual object. The URI of a canonical source of this specification meets the requirement of being
globally unique, and is also useful to document the format.

3.2 MIME Registration

As an XML type, CPL’s MIME registration conforms with “XML Media Types” [8] as well as RFC 2048
[9].

MIME media type name: application

MIME subtype name: cpl+xml

Mandatory parameters: none

Optional parameters: charset
As for application/xml in “XML Media Types.”

Encoding considerations: As for application/xml in “XML Media Types.”

Security considerations: See section 14, and section 10 of “XML Media Types.”

Interoperability considerations: Different CPL servers may use incompatible address types. However, all
potential interoperability issues should be resolvable at the time a script is uploaded; there should be
no interoperability issues which cannot be detected until runtime.

Published specification: This document.

Applications which use this media type: None publicly released at this time, as far as the authors are
aware.

Additional information: Magic number: None

File extension: .cpl or .xml

Macintosh file type code: “TEXT”

Person and e-mail address for further information:
Jonathan Lennox<lennox@cs.columbia.edu>
Henning Schulzrinne<hgs@cs.columbia.edu>

Intended usage: COMMON

Author/Change Controller: The IETF.

Lennox/Schulzrinne Expires April, 2001 [Page 7]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

4 Script structure: overview

As mentioned, a CPL script consists of ancillary information, subactions, and top-level actions. The full
syntax of thecpl node is given in Figure 3.

Tag: cpl
Parameters: none

Sub-tags: ancillary See section 10
subaction See section 9
outgoing Top-level actions to take on this user’s

outgoing calls
incoming Top-level actions to take on this user’s

incoming calls

Figure 3: Syntax of the top-levelcpl tag

Call processing actions, both top-level actions and sub-actions, consist of nodes and outputs. Nodes and
outputs are both described by XML tags. There are four categories of CPL nodes:switches, which represent
choices a CPL script can make;location modifiers, which add or remove locations from the location set;
signalling actions, which cause signalling events in the underlying protocol; andnon-signalling actions,
which take an action but do not effect the underlying protocol.

5 Switches

Switches represent choices a CPL script can make, based on either attributes of the original call request or
items independent of the call.

All switches are arranged as a list of conditions that can match a variable. Each condition corresponds
to a node output; the output points to the next node to execute if the condition was true. The conditions are
tried in the order they are presented in the script; the output corresponding to the first node to match is taken.

There are two special switch outputs that apply to every switch type. The outputnot-present, which
MAY occur anywhere in the list of outputs, is true if the variable the switch was to match was not present in
the original call setup request. (In this document, this is sometimes described by saying that the information
is “absent”.) The outputotherwise, which MUST be the last output specified if it is present, matches if no
other condition matched.

If no condition matches and nootherwise output was present in the script, the default script action is
taken. See section 11 for more information on this.

5.1 Address switches

Address switches allow a CPL script to make decisions based on one of the addresses present in the original
call request. They are summarized in Figure 4.

Address switches have two node parameters:field, andsubfield. The mandatoryfield parameter allows
the script to specify which address is to be considered for the switch: either the call’s origin address (field
“origin”), its current destination address (field “destination”), or its original destination (field “original-
destination”), the destination the call had before any earlier forwarding was invoked. ServersMAY define

Lennox/Schulzrinne Expires April, 2001 [Page 8]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Node: address-switch
Outputs: address Specific addresses to match

Parameters: field origin, destination, or original-destination
subfield address-type, user, host, port, tel, or display,

(also: password andalias-type)

Output: address
Parameters: is exact match

contains substring match (fordisplay only)
subdomain-of sub-domain match (forhost, tel only)

Figure 4: Syntax of theaddress-switch node

additional field values.
The optionalsubfield specifies what part of the address is to be considered. The possible subfield

values are:address-type, user, host, port, tel, anddisplay. Additional subfield valuesMAY be defined
for protocol-specific values. (The subfieldpassword is defined for SIP in Section 5.1.1; the subfieldalias-
type is defined for H.323 in Appendix B.1.)If no subfield is specified, the “entire” address is matched; the
precise meaning of this is defined for each underlying signalling protocol. ServersMAY define additional
subfield values.

The subfields are defined as follows:

address-type This indicates the type of the underlying address; i.e., the URI scheme, if the address can be
represented by a URI. The types specifically discussed by this document aresip, tel, andh323. The
address type is not case-sensitive. It has a value for all defined address types.

user This subfield of the address indicates, for e-mail style addresses, the user part of the address. For
telephone number style address, it includes the subscriber number. This subfield is case-sensitive; it
may be absent.

host This subfield of the address indicates the Internet host name or IP address corresponding to the address,
in host name, IPv4, or IPv6 format. For host names only, subdomain matching is supported with the
subdomain-of match operator. It is not case sensitive, and may be absent.

port This subfield indicates the TCP or UDP port number of the address, numerically in decimal format. It
is not case sensitive, as itMUST only contain decimal digits. It may be absent; however, for address
types with default ports, an absent port matches the default port number.

tel This subfield indicates a telephone subscriber number, if the address contains such a number. It is
not case sensitive (the telephone numbers may contain the symbols ‘A’ ‘B’ ‘C’ and ‘D’), and may
be absent. It may be matched using thesubdomain-of match operator. Punctuation and separator
characters in telephone numbers are discarded.

display This subfield indicates a “display name” or user-visible name corresponding to an address. It is
a Unicode string, and is matched using the case-insensitive algorithm described in section 5.2. The
contains operator may be applied to it. It may be absent.

Lennox/Schulzrinne Expires April, 2001 [Page 9]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

For any completely unknown subfield, the serverMAY reject the script at the time it is submitted with
an indication of the problem; if a script with an unknown subfield is executed, the serverMUST consider the
not-present output to be the valid one.

Theaddress output tag may take exactly one of three possible parameters, indicating the kind of match-
ing allowed.

is An output with this match operator is followed if the subfield being matched in theaddress-switch
exactly matches the argument of the operator. It may be used for any subfield, or for the entire address
if no subfield was specified.

subdomain-of This match operator applies only for the subfieldshost andtel. In the former case, it matches
if the hostname being matched is a subdomain of the domain given in the argument of the match
operator; thus,subdomain-of="example.com" would match the hostnames “example.com”,
“research.example.com”, and “zaphod.sales.internal.example.com”. IP addresses may be given as
arguments to this operator; however, they only match exactly. In the case of thetel subfield, the
output matches if the telephone number being matched has a prefix that matches the argument of
the match operator;subdomain-of="1212555" would match the telephone number “1 212 555
1212.”

contains This match operator applies only for the subfielddisplay. The output matches if the display name
being matched contains the argument of the match as a substring.

5.1.1 Usage ofaddress-switch with SIP

For SIP, theorigin address corresponds to the address in theFrom header;destination corresponds to the
Request-URI; andoriginal-destination corresponds to theTo header.

Thedisplay subfield of an address is the display-name part of the address, if it is present. Because of
SIP’s syntax, thedestination address field will never have adisplay subfield.

Theaddress-type subfield of an address is the URI scheme of that address. Other address fields depend
on thataddress-type.

For sip URLs, theuser, host, andport subfields correspond to the “user,” “host,” and “port” elements
of the URI syntax. Thetel subfield is defined to be the “user” part of the URI if and only if the “user=phone”
parameter is given to the URI. An additional subfield,password is defined to correspond to the “password”
element of the SIP URI, and is case-sensitive.However, use of this field isNOT RECOMMENDED for
general security reasons.

For tel URLs, thetel anduser subfields are the subscriber name; in the former case, visual separators
are stripped. Thehost andport subfields are both not present.

For h323 URLs, subfieldsMAY be set according to the scheme described in Appendix B.
For other URI schemes, only theaddress-type subfield is defined by this specification; serversMAY

set other pre-defined subfields, orMAY support additional subfields.
If no subfield is specified for addresses in SIP messages, the string matched is the URI part of the

address. For “sip” URLs, all parameters are stripped; for other URLs, the URL is used verbatim.

5.2 String switches

String switches allow a CPL script to make decisions based on free-form strings present in a call request.
They are summarized in Figure 5.

Lennox/Schulzrinne Expires April, 2001 [Page 10]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Node: string-switch
Outputs: string Specific string to match

Parameters: field subject, organization, user-agent,
language, or display

Output: string
Parameters: is exact match

contains substring match

Figure 5: Syntax of thestring-switch node

String switches have one node parameter:field. The mandatoryfield parameter specifies which string
is to be matched.

String switches are dependent on the call signalling protocol being used.
Five fields are defined, listed below. The value of each of these fields, except as specified, is a free-form

Unicode string with no other structure defined.

subject The subject of the call.

organization The organization of the originator of the call.

user-agent The name of the program or device with which the call request was made.

language The languages in which the originator of the call wishes to receive responses. This contains a
list of RFC 1766 [10] language tags, separated by commas.

Note that matching based oncontains is likely to be much more useful than matching based onis, for this
field.

display Free-form text associated with the call, intended to be displayed to the recipient, with no other
semantics defined by the signalling protocol.

Strings are matched as case-insensitive Unicode strings, in the following manner. First, strings are
canonicalized to the “Compatibility Composition” (KC) form, as specified in Unicode Technical Report
15 [11]. Then, strings are compared using locale-insensitive caseless mapping, as specified in Unicode
Technical Report 21 [12].

Code to perform the first step, in Java and Perl, is available; see the links from Annex E of UTR 15 [11].
The case-insensitive string comparison in the Java standard class libraries already performs the second step; other
Unicode-aware libraries should be similar.

The output tags of string matching are namedstring, and have a mandatory argument, one ofis or
contains, indicating whole-string match or substring match, respectively.

5.2.1 Usage ofstring-switch with SIP

For SIP, the fieldssubject, organization, anduser-agent correspond to the SIP header fields with the same
name. These are used verbatim as they appear in the message.

Lennox/Schulzrinne Expires April, 2001 [Page 11]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

The fieldlanguage corresponds to the SIPAccept-Language header. It is converted to a list of comma-
separated languages as described above.

The fielddisplay is not used, and is never present.

5.3 Time switches

Time switches allow a CPL script to make decisions based the time and/or date the script is being executed.
They are summarized in Figure 6.

Time switches are independent of the underlying signalling protocol.

Node: time-switch
Outputs: time Specific time to match

Parameters: tzid RFC 2445 Time Zone Identifier
tzurl RFC 2445 Time Zone URL

Output: time
Parameters: dtstart Start of interval (RFC 2445 DATE-TIME)

dtend End of interval (RFC 2445 DATE-TIME)
duration Length of interval (RFC 2445 DURATION)
freq Frequency of recurrence (one of “daily”,

“weekly”, “monthly”, or “yearly”)
interval How often the recurrence repeats
until Bound of recurrence (RFC 2445 DATE-TIME)
byday List of days of the week
bymonthday List of days of the month
byyearday List of days of the year
byweekno List of weeks of the year
bymonth List of months of the year
wkst First day of workweek

Figure 6: Syntax of thetime-switch node

Time switches are based on a large subset of how recurring intervals of time are specified inthe Internet
Calendaring and Scheduling Core Object Specification (iCal COS), RFC 2445 [13].

This allows CPLs to be generated automatically from calendar books. It also allows us to re-use the extensive
existing work specifying time intervals.

The subset was designed with the goal that a time-switch can be evaluated — an instant can be determined to
fall within an interval, or not — in constant (O(1)) time.

An algorithm to whether an instant falls within a given recurrence is given in Appendix A.
The time-switch tag takes two optional parameters,tzid and tzurl, both of which are defined in RFC

2445 (sections 4.8.3.1 and 4.8.3.5 respectively). The TZID is the identifying label by which a time zone
definition is referenced. If it begins with a forward slash (solidus), it references a to-be-defined global time
zone registry; otherwise it is locally-defined at the server. The TZURL gives a network location from which
an up-to-date VTIMEZONE definition for the timezone can be retrieved.

Lennox/Schulzrinne Expires April, 2001 [Page 12]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

While TZID labels that do not begin with a forward slash are locally defined, it isRECOMMENDED that
servers support at least the naming scheme used by Olson Time Zone database [14]. Examples of timezone
databases that use the Olson scheme are thezoneinfo files on most Unix-like systems, and the standard
JavaTimeZone class.

If a script is uploaded with atzid andtzurl which the CPL server does not recognize or cannot resolve,
it SHOULD diagnose and reject this at script upload time. If neithertzid nor tzurl are present, all non-UTC
times within this time switch should be interpreted as being “floating” times, i.e. that they are specified in
the local timezone of the CPL server.

Because of daylight-savings-time changes over the course of a year, it is necessary to specify time switches in a
given timezone. UTC offsets are not sufficient, or a time-of-day routing rule which held between 9 am and 5 pm in
the eastern United States would start holding between 8 am and 4 pm at the end of October.

Authors of CPL servers should be careful to handle correctly the intervals when local time is discontinu-
ous, at the beginning or end of daylight-savings time. Note especially that some times may occur more than
once when clocks are set back. The algorithm in Appendix A is believed to handle this correctly.

Time nodes specify a list of periods during which their output should be taken. They have two required
parameters:dtstart, which specifies the beginning of the first period of the list, and exactly one ofdtend or
duration, which specify the ending time or the duration of the period, respectively. Thedtstart anddtend
parameters are formatted as iCal COS DATE-TIME values, as specified in section 4.3.5 of RFC 2445 [13].
Because time zones are specified in the top-leveltime-switch tag, only forms 1 or 2 (floating or UTC times)
can be used. Theduration parameter is given as an iCal COS DURATION parameter, as specified in section
4.3.6 of RFC 2445. Both the DATE-TIME and the DURATION syntaxes are subsets of the corresponding
syntaxes from ISO 8601 [15].

For a recurring interval, theduration parameterMUST be less than twenty-four hours. For non-recurring
intervals, durations of any length are permitted.

If no other parameters are specified, a time node indicates only a single period of time. More com-
plicated sets periods intervals are constructed as recurrences. A recurrence is specified by including the
freq parameter, which indicates the type of recurrence rule. No parameters other thandtstart, dtend, and
duration SHOULD be specified unlessfreq is present.

The freq parameter takes one of the following values:daily, to specify repeating periods based on an
interval of a day or more;weekly, to specify repeating periods based on an interval of a week or more;
monthly, to specify repeating periods based on an interval of a month or more; andyearly, to specify
repeating periods based on an interval of a year or more. These values are not case-sensitive.

The valuessecondly, minutely, andhourly are present in iCal, but were removed from CPL.

The interval parameter contains a positive integer representing how often the recurrence rule repeats.
The default value is “1”, meaning every second for asecondly rule, or every minute for aminutely rule,
every hour for anhourly rule, every day for adaily rule, every week for aweekly rule, every month for a
monthly rule and every year for ayearly rule.

Theuntil parameter defines an iCal COS DATE or DATE-TIME value which bounds the recurrence rule
in an inclusive manner. If the value specified byuntil is synchronized with the specified recurrence, this date
or date-time becomes the last instance of the recurrence. If specified as a date-time value, then itMUST be
specified in an UTC time format. If not present, the recurrence is considered to repeat forever.

iCal also defines acount parameter, which allows an alternate method of specifying a bound to a recurrence.
This bound has been removed from CPL. Translating from full iCal recurrences to CPL recurrences requires that
the count parameter be converted to anuntil parameter, which can be done by enumerating the recurrence and
determining its final date.

Lennox/Schulzrinne Expires April, 2001 [Page 13]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Thebyday parameter specifies a comma-separated list of days of the week.MO indicates Monday;TU
indicates Tuesday;WE indicates Wednesday;TH indicates Thursday;FR indicates Friday;SA indicates
Saturday;SU indicates Sunday. These values are not case-sensitive.

Eachbyday value can also be preceded by a positive (+n) or negative (-n) integer. If present, this
indicates the nth occurrence of the specific day within themonthly or yearly recurrence. For example,
within a monthly rule, +1MO (or simply 1MO) represents the first Monday within the month, whereas -
1MO represents the last Monday of the month. If an integer modifier is not present, it means all days of this
type within the specified frequency. For example, within amonthly rule, MO represents all Mondays within
the month.

Thebymonthday parameter specifies a comma-separated list of days of the month. Valid values are 1
to 31 or -31 to -1. For example, -10 represents the tenth to the last day of the month.

Thebyyearday parameter specifies a comma-separated list of days of the year. Valid values are 1 to
366 or -366 to -1. For example, -1 represents the last day of the year (December 31st) and -306 represents
the 306th to the last day of the year (March 1st).

The byweekno parameter specifies a comma-separated list of ordinals specifying weeks of the year.
Valid values are 1 to 53 or -53 to -1. This corresponds to weeks according to week numbering as defined in
ISO 8601 [15]. A week is defined as a seven day period, starting on the day of the week defined to be the
week start (seewkst). Week number one of the calendar year is the first week which contains at least four
(4) days in that calendar year. This parameter is only valid foryearly rules. For example, 3 represents the
third week of the year.

Note: Assuming a Monday week start, week 53 can only occur when Thursday is January 1 or if it is a leap year
and Wednesday is January 1.

Thebymonth parameter specifies a comma-separated list of months of the year. Valid values are 1 to
12.

Thewkst parameter specifies the day on which the workweek starts. Valid values areMO, TU, WE,
TH, FR, SA andSU. This is significant when aweekly recurrence has an interval greater than 1, and a
byday parameter is specified. This is also significant in ayearly recurrence when abyweekno parameter
is specified. The default value isMO, following ISO 8601 [15].

iCal also includes the Byxxx parametersbysecond, byminute, byhour, andbysetpos, which have been re-
moved from CPL.

If byxxx parameter values are found which are beyond the available scope (ie,bymonthday=“30” in
February), they are simply ignored.

Byxxx parameters modify the recurrence in some manner. Byxxx rule parts for a period of time which is
the same or greater than the frequency generally reduce or limit the number of occurrences of the recurrence
generated. For example,freq=“daily” bymonth=“1” reduces the number of recurrence instances from all
days (if thebymonth parameter is not present) to all days in January. Byxxx parameters for a period of
time less than the frequency generally increase or expand the number of occurrences of the recurrence. For
example,freq=“yearly” bymonth=“1,2” increases the number of days within the yearly recurrence set from
1 (if bymonth parameter is not present) to 2.

If multiple Byxxx parameters are specified, then after evaluating the specifiedfreq andinterval param-
eters, the Byxxx parameters are applied to the current set of evaluated occurrences in the following order:
bymonth, byweekno, byyearday, bymonthday, andbyday; thenuntil is evaluated.

Here is an example of evaluating multiple Byxxx parameters.

Lennox/Schulzrinne Expires April, 2001 [Page 14]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<time dtstart="19970105T083000" duration="P10M"
freq="yearly" interval="2" bymonth="1" byday="SU">

First, theinterval=“2” would be applied tofreq=“YEARLY” to arrive at “every other year.” Then,by-
month=“1” would be applied to arrive at “every January, every other year.” Then,byday=“SU” would be
applied to arrive at “every Sunday in January, every other year.” Then the time of day is derived fromdtstart
to end up in “every Sunday in January from 8:30:00 AM to 8:40:00 AM, every other year.” Similarly, if the
byday, bymonthday or bymonth parameter were missing, the appropriate day or monthwould have been
retrieved from thedtstart parameter.

The iCal COS RDATE, EXRULE and EXDATE recurrence rules are not specifically mapped to com-
ponents of the time-switch node. Equivalent functionality to the exception rules can be attained by using
the ordering of switch rules to exclude times using earlier rules; equivalent functionality to the additional-
date RDATE rules can be attained by usingsub nodes (see section 9) to link multiple outputs to the same
subsequent node.

Thenot-present output is never true for a time switch. However, itMAY be included, to allow switch
processing to be more regular.

5.3.1 Motivations for the iCal subset

(This sub-sub-section is non-normative.)
The syntax of the CPLtime-switch was based on that of the iCal COS RRULE, but as mentioned above,

certain features were omitted and restrictions were added. Specifically:

1. All recurrence intervals and rules describing periods less than a day were removed. These were the
frequenciessecondly, minutely, andhourly, and the Byxxx rulesbysecond, byminute, andbyhour.

2. Thecount andbysetpos parameters were removed.

3. Durations were constrained to less than 24 hours for recurring intervals.

These restrictions were added so that time switches could be resolved efficiently, inO(1) time. This
restriction means that it must be possible to resolve a time switch without having to enumerate all its recur-
rences fromdtstart to the present interval. As far as we have been able to determine, it is not possible to
test whether thecount andbysetpos parameters are satisfied without performing such an enumeration.

Constant running time of time switches also requires that a candidate starting time for a recurrence can
be established quickly and uniquely, to check whether it satisfies the other restrictions. This requires that
a recurrence’s duration not be longer than its repetition interval, so that a given instant cannot fall within
several consecutive repetitions of the recurrence. We guaranteed this by eliminating durations longer than
24 hours, and repetitions shorter than that period. The one-day point seemed to be the most generally useful
place to place this division, as some investigationshowed that many common calendaring applications do not
support durations longer than a day, none that we found supported repetitions shorter than a day. Eliminating
sub-day repetitions also greatly simplifies the handling of daylight-savings transitions.

The algorithm given in Appendix A runs in constant time, and motivated the development of this iCal
subset.

Lennox/Schulzrinne Expires April, 2001 [Page 15]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

5.4 Priority switches

Priority switches allow a CPL script to make decisions based on the priority specified for the original call.
They are summarized in Figure 7. They are dependent on the underlying signalling protocol.

Node: priority-switch
Outputs: priority Specific priority to match

Parameters: none

Output: priority
Parameters: less Match if priority is less than specified

greater Match if priority is greater than specified
equal Match if priority is equal to specified

Figure 7: Syntax of thepriority-switch node

Priority switches take no parameters.
Thepriority tags take one of the three parametersgreater, less, andequal. The values of these tags are

one of the following priorities:in decreasing order,emergency, urgent, normal, andnon-urgent. These
values are matched in a case-insensitive manner. Outputs with theless parameter are taken if the priority of
the message is less than the priority given in the argument; and so forth.

If no priority header is specified in a message, the priority is considered to benormal. If an unknown
priority is given, the priority is considered to be equivalent tonormal for the purposes ofgreater andless
comparisons, but it is compared literally forequal comparisons.

Since every message has a priority, thenot-present output is never true for a priority switch. However,
it MAY be included, to allow switch processing to be more regular.

5.4.1 Usage ofpriority-switch with SIP

The priority of a SIP message corresponds to thePriority header in the message.

6 Location modifiers

The abstract location model of the CPL is described in section 2.3. The behavior of several of the signalling
actions (defined in section 7) is dependent on the current location set specified. Location nodes add or
remove locations from the location set.

There are three types of location nodes defined.Explicit locationsadd literally-specified locations to the
current location set;location lookupsobtain locations from some outside source; andlocation filtersremove
locations from the set, based on some specified criteria.

6.1 Explicit location

Explicit location nodes specify a location literally. Their syntax is described in Figure 8.
Explicit location nodes are dependent on the underlying signalling protocol.

Lennox/Schulzrinne Expires April, 2001 [Page 16]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Node: location
Outputs: any node

Parameters: url URL of address to add to location set
priority Priority of this location (0.0− 1.0)
clear Whether to clear the location set before adding the new value

Figure 8: Syntax of thelocation node

Explicit location nodes have threenode parameters. The mandatoryurl parameter’s value is the URL
of the address to add to the location set. Only one address may be specified per location node; multiple
locations may be specified by cascading these nodes.

The optionalpriority parameter specifies a priority for the location. Its value is a floating-point number
between0.0 and1.0. The optionalclear parameter specifies whether the location set should be cleared
before adding the new location to it. Its value can be “yes” or “no”, with “no” as the default.

Basic location nodes have only one possible output, since there is no way that they can fail. (If a basic
location node specifies a location which isn’t supported by the underlying signalling protocol, the script
serverSHOULD detect this and report it to the user at the time the script is submitted.) Therefore, its XML
representation does not have explicit output nodes; the<location> tag directly contains another node
tag.

6.1.1 Usage oflocation with SIP

All SIP locations are represented as URLs, so the locations specified inlocation tags are interpreted directly.

6.2 Location lookup

Locations can also be specified up through external means, through the use of location lookups. The syntax
of these tags is given in Figure 9.

Location lookup is dependent on the underlying signalling protocol.
Location lookup nodes have one mandatory parameter, and four optional parameters. The mandatory

parameter issource, the source of the lookup. This can either be a URL, or a non-URL value. If the value
of source is a URL, it indicates a location which returns theapplication/url media type. The server
adds the locations returned by the URL to the location set.

Non-URL sources indicate a source not specified by a URL which the server can query for addresses to
add to the location set. The only non-URL source currently defined isregistration, which specifies all the
locations currently registered with the server.

Thelookup node also has four optional parameters. Thetimeout parameter which specifies the time, in
seconds, the script is willing to wait for the lookup to be performed. If this is not specified, its default value
is 30. Theclear parameter specifies whether the location set should be cleared before the new locations are
added.

The other two optional parameters affect the interworking of the CPL script with caller preferences and
caller capabilities. By default, a CPL serverSHOULD invoke the appropriate caller preferences filtering
of the underlying signalling protocol, if the corresponding information is available. The two parameters
use and ignore allow the script to modify how the script applies caller preferences filtering. The specific

Lennox/Schulzrinne Expires April, 2001 [Page 17]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Node: lookup
Outputs: success Action if lookup was successful

notfound Action if lookup found no addresses
failure Action if lookup failed

Parameters: source Source of the lookup
timeout Time to try before giving up on the lookup
use Caller preferences fields to use
ignore Caller preferences fields to ignore
clear Whether to clear the location set before adding the new values

Output: success
Parameters: none

Output: notfound
Parameters: none

Output: failure
Parameters: none

Figure 9: Syntax of thelookup node

meaning of the values of these parameters is signalling-protocol dependent; see Section 6.2.1 for SIP and
Appendix B.5 for H.323.

Lookup has three outputs:success, notfound, and failure. Notfound is taken if the lookup process
succeeded but did not find any locations; failure is taken if the lookup failed for some reason, including that
specified timeout was exceeded. If a given output is not present, script execution terminates and the default
action is taken.

ClientsSHOULD specify the three outputssuccess, notfound, andfailure in that order, so their script
complies with the DTD given in Appendix C, but serversMAY accept them in any order.

6.2.1 Usage oflookup with SIP

Caller preferences for SIP are defined in “SIP Caller Preferences and Callee Capabilities” [16]. By default,
a CPL serverSHOULD honor anyAccept-Contact andReject-Contact headers of the original call request,
as specified in that document. The two parametersuse and ignore allow the script to modify the data
input to the caller preferences algorithm. These parameters both take as their arguments comma-separated
lists of caller preferences parameters. Ifuse is given, the server applies the caller preferences resolution
algorithm only to those preference parameters given in theuse parameter, and ignores all others; if the
ignore parameter is given, the server ignores the specified parameters, and uses all the others. Only one of
use andignore can be specified.

The addr-spec part of the caller preferences is always applied, and the script cannot modify it.
If a SIP server does not support caller preferences and callee capabilities, if the call request does not

contain any preferences, or if the callee’s registrations do not contain any capabilities, theuse and ignore
parameters are ignored.

Lennox/Schulzrinne Expires April, 2001 [Page 18]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

6.3 Location Removal

A CPL script can also remove locations fromthe location set, through the use of theremove-location node.
The syntax of this node is defined in Figure 10.

The meaning of this node is dependent on the underlying signalling protocol.

Node: remove-location
Outputs: any node

Parameters: location Location to remove
param Caller preference parameters to apply
value Value of caller preference parameters

Figure 10: Syntax of theremove-location node

A remove-location node removes locations from the location set. It is primarily useful following a
lookup node.

The remove-location node has three optional parameters. The parameterlocation gives the URL (or
a signalling-protocol-dependent URL pattern) of location or locations to be removed from the set. If this
parameter is not given, all locations, subject to the constraints of the other parameters, are removed from the
set.

If param and value are present, their values are comma-separated lists of caller preferences parameters
and corresponding values, respectively. The where the nth entry in the param list matches the nth entry in
the value list. ThereMUST be the same number of parameters as values specified. The meaning of these
parameters is signalling-protocol dependent.

6.3.1 Usage ofremove-location with SIP

For SIP-based CPL servers, theremove-location node has the same effect on the location set as aReject-
Contact header in caller preferences [16]. The value of thelocation parameter is treated as though it were
the addr-spec field of a Reject-Contact header; thus, an absent header is equivalent to an addr-spec of “*” in
that specification. Theparam andvalue parameters are treated as though they appeared in the params field
of a Reject-Location header, as “; param=value” for each one.

If the CPL server does not support caller preferences and callee capabilities, or if the callee did not
supply any preferences, theparam andvalue parameters are ignored.

7 Signalling actions

Signalling action nodes cause signalling events in the underlying signalling protocol. Three signalling ac-
tions are defined: “proxy,” “redirect,” and “reject.”

7.1 Proxy

Proxy causes the triggering call to be forwarded on to the currently specified set of locations. The syntax of
the proxy node is given in Figure 11.

The specific actions invoked by theproxy node are signalling-protocol-dependent, though the general
concept should apply to any signalling protocol.

Lennox/Schulzrinne Expires April, 2001 [Page 19]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Node: proxy
Outputs: busy Action if call attempt returned “busy”

noanswer Action if call attempt was not answered before timeout
redirection Action if call attempt was redirected
failure Action if call attempt failed
default Default action for unspecified outputs

Parameters: timeout Time to try before giving up on the call attempt
recurse Whether to recursively look up redirections
ordering What order to try the location set in.

Output: busy
Parameters: none

Output: noanswer
Parameters: none

Output: redirection
Parameters: none

Output: failure
Parameters: none

Output: default
Parameters: none

Figure 11: Syntax of theproxy node

After a proxy action has completed, the CPL server chooses the “best” response to the call attempt, as
defined by the signalling protocol or the server’s administrative configuration rules.

If the call attempt was successful, CPL execution terminates and the server proceeds to its default be-
havior (normally, to allow the call to be set up). Otherwise, the action corresponding to one of theproxy
node’s outputs is taken. Thebusy output is followed if the call was busy;noanswer is followed if the call
was not answered before thetimeout parameter expired;redirection is followed if the call was redirected;
andfailure is followed if the call setup failed for any other reason.

If one of the conditions above is true, but the corresponding output was not specified, thedefault output
of the proxy node is followed instead. If there is also nodefault node specified, CPL execution termi-
nates and the server returns to its default behavior (normally, to forward the best response upstream to the
originator).

Note: CPL extensions to allow in-call or end-of-call actions will require an additional output, such assuccess,
to be added.

If no locations were present in the set, or if the only locations in the set were locations to which the
server cannot proxy a call (for example, “http” URLs), thefailure output is taken.

Proxy has three optional parameters. Thetimeout parameter specifies the time, in seconds, to wait
for the call to be completed or rejected; after this time has elapsed, the call attempt is terminated and the

Lennox/Schulzrinne Expires April, 2001 [Page 20]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

noanswer branch is taken. If this parameter is not specified, the default value is 20 seconds if theproxy
node has anoanswer or default output specified; otherwise the serverSHOULD allow the call to ring for a
reasonably long period of time (to the maximum extent that server policy allows).

The second optional parameter isrecurse, which can take two values,yes or no. This specifies whether
the server should automatically attempt to place further call attempts to telephony addresses in redirection
responses that were returned from the initial server. Note that if the value ofrecurse is yes, theredirection
output to the script is never taken. In this case this outputSHOULD NOT be present. The default value of this
parameter isyes.

The third optional parameter isordering. This can have three possible values:parallel, sequential, and
first-only. This parameter specifies in what order the locations of the location set should be tried. Parallel
asks that they all be tried simultaneously; sequential asks that the one with the highest priority be tried
first, the one with the next-highest priority second, and so forth, until one succeeds or the set is exhausted.
First-only instructs the server to try only the highest-priority address in the set, and then follow one of the
outputs. The priority of locations in a set is determined by server policy, though CPL serversSHOULD honor
thepriority parameter of thelocation tag. The default value of this parameter isparallel.

Once a proxy action completes, if control is passed on to other actions, all locations which have been
used are cleared from the location set. That is, the location set is emptied of proxyable locationsif the
ordering wasparallel or sequential; the highest-priority item in the set is removed from the set ifordering
was first-only. (In all cases, non-proxyable locations such as “http” URIs remain.)In the case of a
redirection output, the new addresses to which the call was redirected are then added to the location set.

7.1.1 Usage ofproxy with SIP

For SIP, the best response to aproxy node is determined by the algorithm of the SIP specification. The
node’s outputs correspond to the following events:

busy A 486 or 600 response was the best response received to the call request.

redirection A 3xx response was the best response received to the call request.

failure Any other 4xx, 5xx, or 6xx response was the best response received to the call request.

no-answer No final response was received to the call request before the timeout expired.

SIP serversSHOULD honor theq parameter of SIP registrations and the output of the caller preferences
lookup algorithm when determining location priority.

7.2 Redirect

Redirect causes the server to direct the calling party to attempt to place its call to the currently specified set
of locations. The syntax of this node is specified in Figure 12.

The specific behavior the redirect node invokes is dependent on the underlying signalling protocol in-
volved, though its semantics are generally applicable.

Redirect immediately terminates execution of the CPL script, so this node has no outputs. It has one
parameter,permanent, which specifies whether the result returned should indicate that this is a permanent
redirection. The value of this parameter is either “yes” or “no” and its default value is “no.”

Lennox/Schulzrinne Expires April, 2001 [Page 21]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Node: redirect
Outputs: none

Parameters: permanent Whether the redirection should be
considered permanent

Figure 12: Syntax of theredirect node

7.2.1 Usage ofredirect with SIP

The SIP serverSHOULD send a 3xx class response to a call request upon executing aredirect tag. If per-
manent wasyes, the serverSHOULD send the response “301 Moved permanently”; otherwise itSHOULD

send “302 Moved temporarily”.

7.3 Reject

Reject nodes cause the server to reject the call attempt. Their syntax is given in Figure 13. The specific
behavior they invoke is dependent on the underlying signalling protocol involved, though their semantics
are generally applicable.

Node: reject
Outputs: none

Parameters: status Status code to return
reason Reason phrase to return

Figure 13: Syntax of thereject node

This immediately terminates execution of the CPL script, so this node has no outputs.
This node has two arguments:status andreason. Thestatus argument is required, and can take one

of the valuesbusy, notfound, reject, anderror, or a signalling-protocol-defined status.
Thereason argument optionally allows the script to specify a reason for the rejection.

7.3.1 Usage ofredirect with SIP

Servers which implement SIPSHOULD also allow thestatus field to be a numeric argument corresponding
to a SIP status in the 4xx, 5xx, or 6xx range.

TheySHOULD send the “reason” parameter in the SIP reason phrase.
A suggested mapping of the named statuses is as follows. ServersMAY use a different mapping, though

similar semanticsSHOULD be preserved.

busy : 486 Busy Here

notfound : 404 Not Found

reject : 603 Decline

error : 500 Internal Server Error

Lennox/Schulzrinne Expires April, 2001 [Page 22]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

8 Other actions

In addition to the signalling actions, the CPL defines several actions which do not affect and are not depen-
dent on the telephony signalling protocol.

8.1 Mail

The mail node causes the server to notify a user of the status of the CPL script through electronic mail. Its
syntax is given in Figure 14.

Node: mail
Outputs: any node

Parameters: url Mailto url to which the mail should be sent

Figure 14: Syntax of themail node

The mail node takes one argument: amailto URL giving the address, and any additional desired
parameters, of the mail to be sent. The server sends the message containing the content to the given url; it
SHOULD also include other status information about the original call request and the CPL script at the time
of the notification.

Using a full mailto URL rather than just an e-mail address allows additional e-mail headers to be specified,
such as<mail url="mailto:jones@example.com?subject=lookup%20failed" />.

Mail nodes have only one output, since failure of e-mail delivery cannot reliably be known in real-time.
Therefore, its XML representation does not have explicit output nodes: the<mail> tag directly contains
another node tag.

Note that the syntax of XML requires that ampersand characters, “&”, which are used as parameter
separators inmailto URLs, be quoted as “& ” inside parameter values (see section C.12 of [3]).

8.1.1 Suggested Content of Mailed Information

This section presents suggested guidelines for the mail sent as a result of themail node, for requests triggered
by SIP. The message mailed (triggered by any protocol)SHOULD contain all this information, but servers
MAY elect to use a different format.

1. If the mailto URI did not specify a subject header, the subject of the e-mail is “[CPL]” followed by
the subject header of the SIP request. If the URI specified a subject header, it is used instead.

2. TheFrom field of the e-mail is set to a CPL server configured address, overriding anyFrom field in
themailto URI.

3. AnyReply-To header in the URI is honored. If none is given, then an e-mail-ized version of the origin
field of the request is used, if possible (e.g., a SIPFrom header with a sip: URI would be converted
to an e-mail address by stripping the URI scheme).

4. If themailto URI specifies a body, it is used. If none was specified, the bodySHOULD contain at least
the identity of the caller (both the caller’s display name and address), the date and time of day, the call
subject, and if available, the call priority.

Lennox/Schulzrinne Expires April, 2001 [Page 23]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

The serverSHOULD honor the user’s requested languages, and send the mail notification using an ap-
propriate language and character set.

8.2 Log

The Log node causes the server to log information about the call to non-volatile storage. Its syntax is
specified in Figure 15.

Node: log
Outputs: any node

Parameters: name Name of the log file to use
comment Comment to be placed in log file

Figure 15: Syntax of thelog node

Log takes two arguments, both optional:name, which specifies the name of the log, andcomment,
which gives a comment about the information being logged. ServersSHOULD also include other information
in the log, such as the time of the logged event, information that triggered the call to be logged, and so forth.
Logs are specific to the owner of the script which logged the event. If thename parameter is not given, the
event is logged to a standard, server-defined log file for the script owner. This specification does not define
how users may retrieve their logs from the server.

The name of a log is a logical name only, and does not necessarily correspond to any physical file on the
server. The interpretation of the log file name is server defined, as is a mechanism to access these logs. The
CPL serverSHOULD NOT directly map log names uninterpreted onto local file names, for security reasons,
lest a security-critical file be overwritten.

A correctly operating CPL serverSHOULD NOT ever allow thelog event to fail. As such, log nodes
have only one output, and their XML representation does not have explicit output nodes. A CPL<log> tag
directly contains another node tag.

9 Subactions

XML syntax defines a tree. To allow more general call flow diagrams, and to allow script re-use and
modularity, we define subactions.

Two tags are defined for subactions: subaction definitions and subaction references. Their syntax is
given in Figure 16.

Subactions are defined throughsubaction tags. These tags are placed in the CPL after any ancillary
information (see section 10) but before any top-level tags. They take one argument:id, a token indicating a
script-chosen name for the subaction.

Subactions are called fromsub tags. Thesub tag is a “pseudo-node”: it can be used anyplace in a CPL
action that a true node could be used. It takes one parameter,ref, the name of the subaction to be called.
Thesub tag contains no outputs of its own; control instead passes to the subaction.

References to subactionsMUST refer to subactions defined before the current action. Asub tagMUST

NOT refer to the action which it appears in, or to any action defined later in the CPL script. Top-level actions
cannot be called fromsub tags, or through any other means. Script serversMUST verify at the time the
script is submitted that nosub node refers to any sub-action which is not its proper predecessor.

Lennox/Schulzrinne Expires April, 2001 [Page 24]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

Tag: subaction
Subtags: any node

Parameters: id Name of this subaction

Pseudo-node: sub
Outputs: none in XML tree

Parameters: ref Name of subaction to execute

Figure 16: Syntax of subactions andsub pseudo-nodes

Allowing only back-references of subs forbids any sort of recursion. Recursion would introduce the possibility
of non-terminating or non-decidable CPL scripts, a possibility our requirements specifically excluded.

Every subMUST refer to a subaction ID defined within the same CPL script. No external links are
permitted.

If any subsequent version or extension defines external linkages, it should probably use a different tag, perhaps
XLink [17]. Ensuring termination in the presence of external links is a difficult problem.

10 Ancillary information

No ancillary information is currently defined for CPL scripts. If ancillary information, not part of any action,
is found to be necessary for scripts in the future, it will be added to this section.

The (trivial) definition of the ancillary information section is given in Figure 17.

It may be useful to include timezone definitions inside CPL scripts directly, rather than referencing them exter-
nally with tzid andtzurl parameters. If it is, they will be included here.

Tag: ancillary
Parameters: none

Subtags: none

Figure 17: Syntax of theancillary tag

11 Default actions

When a CPL action reaches an unspecified output, the action it takes is dependent on the current state of
script execution. This section gives the actions that should be taken in each case.

no location or signalling actions performed, location set empty:Look up the user’s location through
whatever mechanism the server would use if no CPL script were in effect. Proxy, redirect, or send a
rejection message, using whatever policy the server would use in the absence of a CPL script.

no location or signalling actions performed, location set non-empty:(This can only happen for outgo-
ing calls.) Proxy the call to the addresses in the location set.

Lennox/Schulzrinne Expires April, 2001 [Page 25]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

location actions performed, no signalling actions:Proxy or redirect the call, whichever is the server’s
standard policy, to the addresses in the current location set. If the location set is empty, returnnot-
found rejection.

noanswer output of proxy, no timeout given: (This is a special case.) If thenoanswer output of a proxy
node is unspecified, and no timeout parameter was given to the proxy node, the call should be allowed
to ring for the maximum length of time allowed by the server (or the request, if the request specified
a timeout).

proxy action previously taken: Return whatever the “best” response is of all accumulated responses to the
call to this point, according to the rules of the underlying signalling protocol.

12 CPL Extensions

ServersMAY support additional CPL features beyond those listed in this document. Some of the extensions
which have been suggested are a means of querying how a call has been authenticated; richer control over
H.323 addressing; end-system or administrator-specific features; regular-expression matching for strings
and addresses; mid-call or end-of-call controls; and the parts of iCal COS recurrence rules omitted from
time switches.

CPL extensions are indicated by XML namespaces [18]. Every extensionMUST have an appropriate
XML namespace assigned to it. All XML tags and attributes that are part of the extensionMUST be appro-
priately qualified so as to place them within that namespace.

Tags or attributes in a CPL script which are in the global namespace (i.e., not associated with any names-
pace) are equivalent to tags and attributes in the CPL namespace “http://www.ietf.org/internet-drafts/draft-
ietf-iptel-cpl-03.txt”.

A CPL serverMUST reject any script which contains a reference to a namespace which it does not
understand. ItMUST reject any script which contains an extension tag or attribute which is not qualified to
be in an appropriate namespace.

A CPL script SHOULD NOT specify any namespaces it does not use. For compatibility with non-
namespace-aware parsers, a CPL scriptSHOULD NOT specify the base CPL namespace for a script which
does not use any extensions.

A syntax such as

<extension-switch>
<extension has="http://www.example.com/foo">

[extended things]
</extension>
<otherwise>

[non-extended things]
</otherwise>

</extension-switch>
was suggested as an alternate way of handling extensions. This would allow scripts to be uploaded to a server

without requiring a script author to somehow determine which extensions a server supports. However, experi-
ence developing other languages, notably Sieve [19], was that this added excessive complexity to languages. The
extension-switch tag could, of course, itself be defined in a CPL extension.

It is unfortunately true that XML DTDs, such as the CPL DTD given in appendix C, are not powerful enough
to encompass namespaces, since the base XML specification (which defines DTDs) predates the XML namespace

Lennox/Schulzrinne Expires April, 2001 [Page 26]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

specification. XML schemas [20] are a work in progress to define a namespace-aware method for validating XML
documents, as well as improving upon DTDs’ expressive power in many other ways.

13 Examples

13.1 Example: Call Redirect Unconditional

The script in Figure 18 is a simple script which redirects all calls to a single fixed location.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<location url="sip:smith@phone.example.com">
<redirect />

</location>
</incoming>

</cpl>

Figure 18: Example Script: Call Redirect Unconditional

13.2 Example: Call Forward Busy/No Answer

The script in Figure 19 illustrates some more complex behavior. We see an initial proxy attempt to one
address, with further actions if that fails. We also see how several outputs take the same action, through the
use of subactions.

13.3 Example: Call Forward: Redirect and Default

The script in Figure 20 illustrates further proxy behavior. The server initially tries to proxy to a single
address. If this attempt is redirected, a new redirection is generated using the locations returned. In all other
failure cases for the proxy node, a default action — forwarding to voicemail — is performed.

13.4 Example: Call Screening

The script in Figure 21 illustrates address switches and call rejection, in the form of a call screening script.
Note also that because the address-switch lacks anotherwise clause, if the initial pattern did not match,
the script does not define any action. The server therefore proceeds with its default action, which would
presumably be to contact the user.

13.5 Example: Priority and Language Routing

The script in Figure 22 illustrates service selection based on a call’s priority value and language settings. If
the call request had a priority of “urgent” or higher, the default script action is taken. Otherwise, the language

Lennox/Schulzrinne Expires April, 2001 [Page 27]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:jones@voicemail.example.com" >
<proxy />

</location>
</subaction>

<incoming>
<location url="sip:jones@jonespc.example.com">

<proxy timeout="8">
<busy>

<sub ref="voicemail" />
</busy>
<noanswer>

<sub ref="voicemail" />
</noanswer>

</proxy>
</location>

</incoming>
</cpl>

Figure 19: Example Script: Call Forward Busy/No Answer

string field is checked for the string “es” (Spanish). If it is present, the call is proxied to a Spanish-speaking
operator; other calls are proxied to an English-speaking operator.

13.6 Example: Outgoing Call Screening

The script in Figure 23 illustrates a script filtering outgoing calls, in the form of a script which prevent 1-900
(premium) calls from being placed. This script alsoillustrates subdomain matching.

13.7 Example: Time-of-day Routing

Figure 24 illustrates time-based conditions and timezones.

13.8 Example: Location Filtering

Figure 24 illustrates filtering actions on the location set. In this example, we assume that version 0.9beta2
of the “Inadequate Software SIP User Agent” mis-implements some features, and so we must work around
its problems. We assume, first, that the value of its “feature” parameter in caller preferences is known to be
unreliable, so we ignore it; we also know that it cannot talk successfully to one particular mobile device we
may have registered, so we remove that location from the location set. Once these two actions have been
completed, call setup is allowed to proceed normally.

Lennox/Schulzrinne Expires April, 2001 [Page 28]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<subaction id="voicemail">
</subaction>

<incoming>
<location url="sip:jones@jonespc.example.com">

<proxy>
<redirection>

<redirect />
</redirection>
<default>

<location url="sip:jones@voicemail.example.com" >
<proxy />

</location>
</default>

</proxy>
</location>

</incoming>
</cpl>

Figure 20: Example Script: Call Forward: Redirect and Default

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<address-switch field="origin" subfield="user">
<address is="anonymous">

<reject status="reject"
reason="I don’t accept anonymous calls" />

</address>
</address-switch>

</incoming>
</cpl>

Figure 21: Example Script: Call Screening

13.9 Example: Non-call Actions

Figure 26 illustrates non-call actions; in particular, alerting a user by electronic mail if the lookup server
failed. The primary motivation for having themail node is to allow this sort of out-of-band notification of
error conditions, as the user might otherwise be unaware of any problem.

Lennox/Schulzrinne Expires April, 2001 [Page 29]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<priority-switch>
<priority greater="urgent" />
<otherwise>

<string-switch field="language">
<string contains="es">

<location url="sip:spanish@operator.example.com">
<proxy />

</location>
</string>
<otherwise>

<location url="sip:english@operator.example.com">
<proxy />

</location>
</otherwise>

</string-switch>
</otherwise>

</priority-switch>
</incoming>

</cpl>

Figure 22: Example Script: Priority and Language Routing

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<outgoing>

<address-switch field="original-destination" subfield="tel">
<address subdomain-of="1900">

<reject status="reject"
reason="Not allowed to make 1-900 calls." />

</address>
</address-switch>

</outgoing>
</cpl>

Figure 23: Example Script: Outgoing Call Screening

13.10 Example: Hypothetical Extensions

The example in Figure 27 shows a hypothetical extension which implements distinctive ringing. The XML
namespace “http://www.example.com/distinctive-ring” specifies a new node namedring.

Lennox/Schulzrinne Expires April, 2001 [Page 30]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<time-switch tzid="America/New_York"
tzurl="http://zones.example.com/tz/America/New_York">

<time dtstart="20000703T090000" duration="P8H"
freq="weekly" byday="MO,TU,WE,TH,FR">

<lookup source="registration">
<success>

<proxy />
</success>

</lookup>
</time>
<otherwise>

<location url="sip:jones@voicemail.example.com">
<proxy />

</location>
</otherwise>

</time-switch>
</incoming>

</cpl>

Figure 24: Example Script: Time-of-day Routing

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<string-switch field="user-agent">
<string is="Inadequate Software SIP User Agent/0.9beta2">

<lookup source="registration" ignore="feature">
<success>

<remove-location location="sip:me@mobile.provider.net">
<proxy />

</remove-location>
</success>

</lookup>
</string>

</string-switch>
</incoming>

</cpl>

Figure 25: Example Script: Location Filtering

Lennox/Schulzrinne Expires April, 2001 [Page 31]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<lookup source="http://www.example.com/cgi-bin/locate.cgi?user=jones"
timeout="8">

<success>
<proxy />

</success>
<failure>

<mail url="mailto:jones@example.com?subject=lookup%20failed" />
</failure>

</lookup>
</incoming>

</cpl>

Figure 26: Example Script: Non-call Actions

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl xmlns="http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-
03.txt"

xmlns:dr="http://www.example.com/distinctive-ring">
<incoming>

<address-switch field="origin">
<address is="sip:boss@example.com">

<dr:ring ringstyle="warble" />
</address>

</address-switch>
</incoming>

</cpl>

Figure 27: Example Script: Hypothetical Distinctive-Ringing Extension

The example in Figure 28 implements a hypothetical new attribute for address switches, to allow regular-
expression matches. It defines a new attributeregex for the standardaddress node. In this example, the
global namespace is not specified.

13.11 Example: A Complex Example

Finally, Figure 29 is a complex example which shows the sort of sophisticated behavior which can be
achieved by combining CPL nodes. In this case, the user attempts to have his calls reach his desk; if he does
not answer within a small amount of time, calls from his boss are forwarded to his celphone, and all other
calls are directed to voicemail.

Lennox/Schulzrinne Expires April, 2001 [Page 32]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<address-switch field="origin" subfield="user"
xmlns:re="http://www.example.com/regex">

<address re:regex="(.*\.smith|.*\.jones)">
<reject status="reject"

reason="I don’t want to talk to Smiths or Joneses" />
</address>

</address-switch>
</incoming>

</cpl>

Figure 28: Example Script: Hypothetical Regular-Expression Extension

Lennox/Schulzrinne Expires April, 2001 [Page 33]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:jones@voicemail.example.com">
<redirect />

</location>
</subaction>

<incoming>
<location url="sip:jones@phone.example.com">

<proxy timeout="8">
<busy>

<sub ref="voicemail" />
</busy>
<noanswer>

<address-switch field="origin">
<address contains="boss@example.com">

<location url="tel:+19175551212">
<proxy />

</location>
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</noanswer>

</proxy>
</location>

</incoming>
</cpl>

Figure 29: Example Script: A Complex Example

Lennox/Schulzrinne Expires April, 2001 [Page 34]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

14 Security considerations

The CPL is designed to allow services to be specified in a manner which prevents potentially hostile or
mis-configured scripts from launching security attacks, including denial-of-service attacks. Because script
runtime is strictly bounded by acyclicity, and because the number of possible script actions are strictly
limited, scripts should not be able to inflict damage upon a CPL server.

Because scripts can direct users’ telephone calls, the method by which scripts are transmitted from a
client to a serverMUST be strongly authenticated. Such a method is not specified in this document.

Script serversSHOULD allow server administrators to control the details of what CPL actions are per-
mitted.

15 IANA considerations

This document registers the MIME typeapplication/cpl+xml . See section 3.2.

16 Acknowledgments

This document was reviewed and commented upon by IETF IP Telephony Working Group. We specifically
acknowledge the following people for their help:

The outgoing call screening script was written by Kenny Hom.
Paul E. Jones contributed greatly to the mappings of H.323 addresses.
The text of the time-switch section was taken (lightly modified) from RFC 2445 [13], by Frank Dawson

and Derik Stenerson.
We drew a good deal of inspiration, notably the language’s lack of Turing-completeness and the syntax

of string matching, from the specification of Sieve [19], a language for user filtering of electronic mail
messages.

Thomas F. La Porta and Jonathan Rosenberg had many useful discussions, contributions, and sugges-
tions.

A An algorithm for resolving time switches

The following algorithm resolves, in constant time, whether a given instant falls within a repetition of a
time-switch recurrence. Open-source Java code implementing this algorithm is available on the world wide
web at<http://www.cs.columbia.edu/˜lennox/Cal-Code/> .

1. Compute the time of the call, in the timezone of the time switch. (No step after this needs to consider
time zones — all calculations are done using continuously-running standard Gregorian time.)

2. If the call time is earlier thandtstart, fail NOMATCH.

3. If the call time is less thanduration after dtstart, succeedMATCH.

4. Determine the smallest unit specified in abyxxx rule or by thefreq. Call this theMinimum Unit.
Determine the previous instant (before the call time) when all the time units smaller than the minimum
unit are the same as those ofdtstart. (For all minimum units, the time-of-day must be the same as

Lennox/Schulzrinne Expires April, 2001 [Page 35]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

dtstart. If the minimum unit is a week, the day-of-the-week must be the same asdtstart. If the
minimum unit is a month, the day-of-the-month must be the same asdtstart. If the minimum unit is
a year, the month and day-of-month must both be the same asdtstart. (Note that this means it may
be necessary to roll back more than one minimum unit — if the minimum unit is a month, then some
months do not have a 31st (or 30th or 29th) day; if the minimum unit is a year, then some years do
not have a February 29th. In the Gregorian calendar, it is never necessary to roll back more than two
months, or eight years (four years between 1904 and 2096).)

Call this instant theCandidate Start Time.

5. If the time between the candidate start time and the call time is more than the duration, failNO-
MATCH.

6. If the candidate start time is later than theuntil parameter of the recurrence, failNOMATCH.

7. Call the unit of thefreq parameter of the recurrence theFrequency Unit.Determine the frequency unit
enclosing the Candidate Start Time, and that enclosingdtstart. Calculate the number of frequency
units that have passed between these two times. If this is not a multiple of theinterval parameter, fail
NOMATCH.

8. For everybyxxx rule, confirm that the candidate start time matches one of the options specified by
thatbyxxx rule. If not, failNOMATCH.

9. SucceedMATCH.

B Suggested Usage of CPL with H.323

This appendix gives a suggested usage of CPL with H.323 [2]. Study Group 16 of the ITU, which developed
H.323, is proposing to work on official CPL mappings for that protocol. This section is therefore not
normative.

B.1 Usage ofaddress-switch with H.323

Address switches are specified in section 5.1. This section specifies the mapping between H.323 messages
and the fields and subfields of address-switches

For H.323, theorigin address corresponds to the alias addressesin the sourceAddress field of the
Setup-UUIE user-user information element, and to the Q.931 [21] information element “Calling party num-
ber.” If both fields are present, or if multiple aliases addresses forsourceAddress are present,which one
has priority is a matter of local server policy; the serverSHOULD use the same resolution as it would use for
routing decisions in this case. Similarly, thedestination address corresponds to the alias addressesof the
destinationAddress field, and to the Q.931 information element “Called party number.”

Theoriginal-destination address corresponds to the “Redirecting number”Q.931 information element,
if it is present; otherwise it is the same as thedestination address.

The mapping of H.323 addresses into subfields depends on the type of the alias address. An additional
subfield type,alias-type, is defined for H.323 servers, corresponding to the type of the address. Possible val-
ues aredialedDigits, h323-ID, url-ID, transportID, email-ID, partyNumber, mobileUIM, andQ.931IE.

Lennox/Schulzrinne Expires April, 2001 [Page 36]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

If future versions of the H.323 specification define additional types of alias addresses, those namesMAY

also be used.
In versions of H.323 prior to version 4,dialedDigits was known ase164. The two namesSHOULD be

treated as synonyms.
The value of theaddress-type subfield for H.323 messages is “h323” unless the alias type isurl-ID and

the URL scheme is something other than h323; in this case the address-type is the URL scheme, as specified
in Section 5.1.1 for SIP.

An H.323-aware CPL serverSHOULD map the address subfields from the primary alias used for routing.
It MAY also map subfields from other aliases, if subfields in the primary address are not present.

The following mappings are used for H.323 alias types:

dialedDigits, partyNumber, mobileUIM, and Q.931IE: thetel anduser subfields are the string of digits,
as is the “entire-address” form. Thehost andport subfields are not present.

url-ID: the same mappings are used as for SIP, in Section 5.1.1.

h323-ID: theuser field is the string of characters, as is the “entire-address” form. All other subfields are
not present.

email-ID: theuser andhost subfields are set to the corresponding parts of the e-mail address. Theport
andtel subfields are not present. The “entire-address” form corresponds to the entire e-mail address.

transportID: if the TransportAddress is of type “ipAddress,” “ipSourceRoute,” or “ip6Address,” thehost
subfield is set to the “ip” element of the sequence, translated into the standard IPv4 or IPv6 textual rep-
resentation, and theport subfield is set to the “port” element of the sequence represented in decimal.
The tel anduser fields are not present. The “entire-address” form is not defined. The representation
and mapping of transport addresses is not defined for non-IP addresses.

H.323 version 4 [22] and the Internet-Draftdraft-levin-iptel-h323-url-scheme-00 [23]
define a “h323” URI scheme. This appendix defines a mapping for these URIs onto the CPLaddress-
switch subfields, as given in section 5.1. Neither of these documents has yet been formally published in a
final form, so this appendix is non-normative.

For h323 URIs, the theuser, host, andport subfields are set to the corresponding parts of the H.323
URL. Thetel subfield is not present. The “entire-address” form corresponds to the entire URI.

This mappingMAY be used both for h323 URIs in an h323url-ID address alias, and for h323 URIs in
SIP messages.

B.2 Usage ofstring-switch with H.323

For H.323, thestring-switch node (see Section 5.2) is used as follows. The fieldlanguage corresponds to
the H.323 UUIElanguage, translated to the format specified for that field. The fielddisplay corresponds
to the Q.931 information element of the same name, copied verbatim. The fieldssubject, organization,
anduser-agent are not used and are never present.

Thedisplay IE is conventionally used for Caller-ID purposes, so arguably it should be mapped to thedisplay
subfield of anaddress-match with the fieldoriginator. However, since a) it is a message-level information element,
not an address-level one, and b) the Q.931 specification [21] says only that “[t]he purpose of the Display information
element is to supply display information that may be displayed by the user,” it seems to be more appropriate to allow
it to be matched in astring-switch instead.

Lennox/Schulzrinne Expires April, 2001 [Page 37]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

B.3 Usage ofpriority-switch with H.323

All H.323 messages are considered to have prioritynormal for the purpose of a priority switch (see Sec-
tion 5.4).

B.4 Usage oflocation with H.323

Locations in explicit location nodes (Section 6.1) are specified as URLs. Therefore, all locations added in
this manner are interpreted as being of alias typeurl-ID in H.323.

Specifications of other H.323 address alias types will require a CPL extension (see Section 12).

B.5 Usage oflookup with H.323

For location lookup nodes (Section 6.2), theregistration lookup source corresponds to the locations regis-
tered with the server usingRAS messages.

As H.323 currently has no counterpart of SIP caller preferences and callee capabilities, theuse and
ignore parameters of thelookup node are ignored.

B.6 Usage ofremove-location with H.323

For location removal nodes (Section 6.3), only literal URLs can be removed. No URL patterns are defined.
As H.323 currently has no counterpart of SIP caller preferences and callee capabilities, theparam and

value parameters of theremove-location node are ignored.

C The XML DTD for CPL

This section includes a full DTD describing the XML syntax of the CPL. Every script submitted to a CPL
serverSHOULD comply with this DTD. However, CPL serversMAY allow minor variations from it, partic-
ularly in the ordering of output branches of nodes. Note that compliance with this DTD is not a sufficient
condition for correctness of a CPL script, as many of the conditions described above are not expressible in
DTD syntax.

<?xml version="1.0" encoding="US-ASCII" ?>

<!--
Draft DTD for CPL, corresponding to
draft-ietf-iptel-cpl-01.

-->

<!-- Nodes. -->
<!-- Switch nodes -->
<!ENTITY % Switch ’address-switch|string-switch|time-switch|

priority-switch’ >

<!-- Location nodes -->
<!ENTITY % Location ’location|lookup|remove-location’ >

Lennox/Schulzrinne Expires April, 2001 [Page 38]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<!-- Signalling action nodes -->
<!ENTITY % SignallingAction ’proxy|redirect|reject’ >

<!-- Other actions -->
<!ENTITY % OtherAction ’mail|log’ >

<!-- Links to subactions -->
<!ENTITY % Sub ’sub’ >

<!-- Nodes are one of the above four categories, or a subaction.
This entity (macro) describes the contents of an output.
Note that a node can be empty, implying default action. -->

<!ENTITY % Node ’(%Location;|%Switch;|%SignallingAction;|
%OtherAction;|%Sub;)?’ >

<!-- Switches: choices a CPL script can make. -->

<!-- All switches can have an ’otherwise’ output. -->
<!ELEMENT otherwise (%Node;) >

<!-- All switches can have a ’not-present’ output. -->
<!ELEMENT not-present (%Node;) >

<!-- Address-switch makes choices based on addresses. -->
<!ELEMENT address-switch ((address|not-present)+, otherwise?) >
<!-- <not-present> must appear at most once -->
<!ATTLIST address-switch

field CDATA #REQUIRED
subfield CDATA #IMPLIED

>

<!ELEMENT address (%Node;) >

<!ATTLIST address
is CDATA #IMPLIED
contains CDATA #IMPLIED
subdomain-of CDATA #IMPLIED

> <!-- Exactly one of these three attributes must appear -->

<!-- String-switch makes choices based on strings. -->

<!ELEMENT string-switch ((string|not-present)+, otherwise?) >

Lennox/Schulzrinne Expires April, 2001 [Page 39]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<!-- <not-present> must appear at most once -->
<!ATTLIST string-switch

field CDATA #REQUIRED
>

<!ELEMENT string (%Node;) >
<!ATTLIST string

is CDATA #IMPLIED
contains CDATA #IMPLIED

> <!-- Exactly one of these two attributes must appear -->

<!-- Time-switch makes choices based on the current time. -->

<!ELEMENT time-switch ((time|not-present)+, otherwise?) >
<!ATTLIST time-switch

tzid CDATA #IMPLIED
tzurl CDATA #IMPLIED

>

<!ELEMENT time (%Node;) >

<!-- Exactly one of the two attributes "dtend" and "duration"
must occur. -->

<!-- The value of "freq" is (daily|weekly|monthly|yearly). It is
case-insensitive, so it is not given as a DTD switch. -->

<!-- None of the attributes following freq are meaningful unless freq
appears. -->

<!-- The value of "wkst" is (MO|TU|WE|TH|FR|SA|SU). It is
case-insensitive, so it is not given as a DTD switch. -->

<!ATTLIST time
dtstart CDATA #REQUIRED
dtend CDATA #IMPLIED
duration CDATA #IMPLIED
freq CDATA #IMPLIED
until CDATA #IMPLIED
interval CDATA "1"
byday CDATA #IMPLIED
bymonthday CDATA #IMPLIED
byyearday CDATA #IMPLIED
byweekno CDATA #IMPLIED
bymonth CDATA #IMPLIED
wkst CDATA "MO"

>

Lennox/Schulzrinne Expires April, 2001 [Page 40]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

<!-- Priority-switch makes choices based on message priority. -->

<!ELEMENT priority-switch ((priority|not-present)+, otherwise?) >
<!-- <not-present> must appear at most once -->

<!ENTITY % PriorityVal ’(emergency|urgent|normal|non-urgent)’ >

<!ELEMENT priority (%Node;) >

<!-- Exactly one of these three attributes must appear -->
<!ATTLIST priority

less %PriorityVal; #IMPLIED
greater %PriorityVal; #IMPLIED
equal CDATA #IMPLIED

>

<!-- Locations: ways to specify the location a subsequent action
(proxy, redirect) will attempt to contact. -->

<!ENTITY % Clear ’clear (yes|no) "no"’ >

<!ELEMENT location (%Node;) >
<!ATTLIST location

url CDATA #REQUIRED
priority CDATA #IMPLIED
%Clear;

>

<!ELEMENT lookup (success,notfound?,failure?) >
<!ATTLIST lookup

source CDATA #REQUIRED
timeout CDATA "30"
use CDATA #IMPLIED
ignore CDATA #IMPLIED
%Clear;

>

<!ELEMENT success (%Node;) >
<!ELEMENT notfound (%Node;) >
<!ELEMENT failure (%Node;) >

<!ELEMENT remove-location (%Node;) >
<!ATTLIST remove-location

param CDATA #IMPLIED

Lennox/Schulzrinne Expires April, 2001 [Page 41]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

value CDATA #IMPLIED
location CDATA #IMPLIED

>

<!-- Signalling Actions: call-signalling actions the script can
take. -->

<!ELEMENT proxy (busy?,noanswer?,redirection?,failure?,default?) >

<!-- The default value of timeout is "20" if the <noanswer> output
exists. -->

<!ATTLIST proxy
timeout CDATA #IMPLIED
recurse (yes|no) "yes"
ordering CDATA "parallel"

>

<!ELEMENT busy (%Node;) >
<!ELEMENT noanswer (%Node;) >
<!ELEMENT redirection (%Node;) >
<!-- "failure" repeats from lookup, above. -->
<!ELEMENT default (%Node;) >

<!ELEMENT redirect EMPTY >
<!ATTLIST redirect

permanent (yes|no) "no"
>

<!-- Statuses we can return -->

<!ELEMENT reject EMPTY >
<!-- The value of "status" is (busy|notfound|reject|error), or a SIP

4xx-6xx status. -->
<!ATTLIST reject

status CDATA #REQUIRED
reason CDATA #IMPLIED

>

<!-- Non-signalling actions: actions that don’t affect the call -->

<!ELEMENT mail (%Node;) >
<!ATTLIST mail

url CDATA #REQUIRED

Lennox/Schulzrinne Expires April, 2001 [Page 42]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

>

<!ELEMENT log (%Node;) >
<!ATTLIST log

name CDATA #IMPLIED
comment CDATA #IMPLIED

>

<!-- Calls to subactions. -->

<!ELEMENT sub EMPTY >
<!ATTLIST sub

ref IDREF #REQUIRED
>

<!-- Ancillary data -->

<!ENTITY % Ancillary ’ancillary?’ >

<!ELEMENT ancillary EMPTY >

<!-- Subactions -->

<!ENTITY % Subactions ’subaction*’ >

<!ELEMENT subaction (%Node;)>
<!ATTLIST subaction

id ID #REQUIRED
>

<!-- Top-level actions -->

<!ENTITY % TopLevelActions ’outgoing?,incoming?’ >

<!ELEMENT outgoing (%Node;)>

<!ELEMENT incoming (%Node;)>

<!-- The top-level element of the script. -->

<!ELEMENT cpl (%Ancillary;,%Subactions;,%TopLevelActions;) >

Lennox/Schulzrinne Expires April, 2001 [Page 43]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

D Changes from earlier versions

D.1 Changes from draft -02

The changebars in the Postscript and PDF versions of this document indicate significant changes from this
version.

• Reduced time-switches from the full iCal recurrence to an iCal subset. Added an appendix giving an
algorithm to resolve time-switches.

• Added the extension mechanism.

• Made explicit how each node is dependent on protocol handling. Separated out protocol-specific
information — for SIP in subsections of the main text, for H.323 in a non-normative appendix.

• Clarified some address mapping rules for H.323.

• Corrected the name of the “Redirecting number” in Q.931.

• Clarified that address matching on thepassword subfield is case-sensitive.

• Added a recommendation that TZID labels follow the usage of the Olson database.

• Added thepriority parameter tolocation nodes.

• Added thedefault output to theproxy node.

• Made the meaning of theproxy node’s outputs explicit.

• Added suggested content for the e-mail generated bymail nodes.

• Pointed out that “&” must be escaped in XML (this is relevant formailto URIs).

• Pointed out that log names are logical names, and should not be interpreted as verbatim filenames.

• Added some examples.

• Clarified some wording.

• Fixed some typographical errors.

D.2 Changes from draft -01

• Completely re-wrote changes to time switches: they are now based on iCal rather than on crontab.

• Timezone references are now defined within time switches rather than in the ancillary section. The
ancillary section is now empty, but still defined for future use. To facilitate this, an explicitancillary
tag was added.

Lennox/Schulzrinne Expires April, 2001 [Page 44]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

• Added XML document type identifiers (the public identifier and the namespace), and MIME registra-
tion information.

• Clarified that thenot-present output can appear anywhere in a switch.

• Re-wrote H.323 address mappings. Added thealias-type subfield for H.323 addresses.

• Added thelanguage anddisplay string switch fields.

• Clarified why uselessnot-present outputs can appear in time and priority switches.

• Added theclear parameter tolocation andlookup nodes. (It had been in the DTD previously, but not
in the text.)

• Weakened support for non-validating scripts fromSHOULD to MAY , to allow the use of validating
XML parsers.

• Addedredirection output ofproxy nodes.

• Clarified some aspects of how proxy nodes handle the location set.

• Addedpermanent parameter ofredirect nodes.

• Add example script for outgoing call screening (from Kenny Hom)

• Updated example scripts to use the public identifier.

• Add omitted tag to example script for call forward busy/no answer

• Clarified in introduction that this document mainly deals with servers.

• Updated reference to RFC 2824 now that it has been published.

• Added explanatory text to the introduction to types of nodes.

• Numerous minor clarifications and wording changes.

• Fixed copy-and-paste errors, typos.

D.3 Changes from draft -00

• Added high-level structure; script doesn’t just start at a first action.

• Added a section giving a high-level explanation of the location model.

• Added informal syntax specifications for each tag so people don’t have to try to understand a DTD to
figure out the syntax.

• Added subactions, replacing the oldlink tags. Links were far too reminiscent of gotos for everyone’s
taste.

• Added ancillary information section, and timezone support.

Lennox/Schulzrinne Expires April, 2001 [Page 45]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

• Added not-present switch output.

• Added address switches.

• Made case-insensitive string matching locale-independent.

• Added priority switch.

• Deleted “Other switches” section. None seem to be needed.

• Unifiedurl andsource parameters oflookup.

• Added caller prefs tolookup.

• Added location filtering.

• Eliminated “clear” parameter of location setting. Instead,proxy “eats” locations it has used.

• Addedrecurse andordering parameters toproxy.

• Added default value oftimeout for proxy.

• Renamedresponse to reject.

• Changednotify to mail, and simplified it.

• Simplifiedlog, eliminating itsfailure output.

• Added description of default actions at various times during script processing.

• Updated examples for these changes.

• Updated DTD to reflect new syntax.

E Authors’ Addresses

Jonathan Lennox
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
electronic mail:lennox@cs.columbia.edu

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue, MC 0401
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

Lennox/Schulzrinne Expires April, 2001 [Page 46]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

References

[1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Request
for Comments 2543, Internet Engineering Task Force, Mar. 1999.

[2] International Telecommunication Union, “Packet based multimedia communication systems,” Rec-
ommendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Feb.
1998.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible markup language (XML) 1.0,” W3C
Recommendation REC-xml-19980210, World Wide Web Consortium (W3C), Feb. 1998. Available at
http://www.w3.org/TR/REC-xml.

[4] J. Lennox and H. Schulzrinne, “Call processing language framework and requirements,” Request for
Comments 2824, Internet Engineering Task Force, May 2000.

[5] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

[6] D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.0 specification,” W3C Recommenda-
tion REC-html40-19980424, World Wide Web Consortium (W3C), Apr. 1998. Available at
http://www.w3.org/TR/REC-html40/.

[7] ISO (International Organization for Standardization), “Information processing — text and office sys-
tems — standard generalized markup language (SGML),” ISO Standard ISO 8879:1986(E), Interna-
tional Organization for Standardization, Geneva, Switzerland, Oct. 1986.

[8] M. Murata, S. S. Laurent, and D. Kohn, “XML media types,” Internet Draft, Internet Engineering Task
Force, Aug. 2000. Work in progress.

[9] N. Freed, J. Klensin, and J. Postel, “Multipurpose internet mail extensions (MIME) part four: Regis-
tration procedures,” Request for Comments 2048, Internet Engineering Task Force, Nov. 1996.

[10] H. Alvestrand, “Tags for the identification of languages,” Request for Comments 1766, Internet Engi-
neering Task Force, Mar. 1995.

[11] M. Davis and M. Drst, “Unicode normalization forms,” Unicode Technical Report 15, Unicode Con-
sortium, Nov. 1999. Revision 18.0. Available at http://www.unicode.org/unicode/reports/tr15/.

[12] M. Davis, “Case mapping,” Unicode Technical Report 21, Unicode Consortium, Nov. 1999. Revision
3.0. Available at http://www.unicode.org/unicode/reports/tr21/.

[13] F. Dawson and D. Stenerson, “Internet calendaring and scheduling core object specification (icalen-
dar),” Request for Comments 2445, Internet Engineering Task Force, Nov. 1998.

[14] P. Eggert, “Sources for time zone and daylight saving time data.” Available at
http://www.twinsun.com/tz/tz-link.htm.

[15] ISO (International Organization for Standardization), “Data elements and interchange formats — in-
formation interchange — representation of dates and times,” ISO Standard ISO 8601:1988(E), Inter-
national Organization for Standardization, Geneva, Switzerland, June 1986.

Lennox/Schulzrinne Expires April, 2001 [Page 47]

INTERNET-DRAFT draft-ietf-iptel-cpl-03.ps October 25, 2000

[16] H. Schulzrinne and J. Rosenberg, “SIP caller preferences and callee capabilities,” Internet Draft, Inter-
net Engineering Task Force, July 2000. Work in progress.

[17] S. DeRose, E. Maler, D. Orchard, and B. Trafford, “XML linking language (XLink),” Work-
ing Draft WD-xlink-20000221, World Wide Web Consortium (W3C), Feb. 2000. Available at
http://www.w3.org/TR/xlink/.

[18] T. Bray, D. Hollander, and A. Layman, “Namespaces in XML,” W3C Recommendation
REC-xml-names-19900114, World Wide Web Consortium (W3C), Jan. 1999. Available at
http://www.w3.org/TR/REC-xml-names/.

[19] T. Showalter, “Sieve: A mail filtering language,” Internet Draft, Internet Engineering Task Force, Aug.
2000. Work in progress.

[20] D. C. Fallside, “XML schema part 0: Primer,” Working Draft WD-xmlschema-0-20000225, World
Wide Web Consortium (W3C), Feb. 2000. Available at http://www.w3.org/TR/xmlschema-0/.

[21] International Telecommunication Union, “Digital subscriber signalling system no. 1 (dss 1) - isdn
user-network interface layer 3 specification for basic call control,” Recommendation Q.931, Telecom-
munication Standardization Sector of ITU, Geneva, Switzerland, Mar. 1993.

[22] International Telecommunication Union, “Packet based multimedia communication systems,” Recom-
mendation H.323 Draft v4, Telecommunication Standardization Sector of ITU, Geneva, Switzerland,
July 2000. To be published November 2000.

[23] O. Levin, “H.323 URL scheme definition,” Internet Draft, Internet Engineering Task Force, Aug. 2000.
Work in progress.

Full Copyright Statement

Copyright (c) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Lennox/Schulzrinne Expires April, 2001 [Page 48]

