
Call Processing Language 1'
&

$
%

Call Processing Language

Jonathan Lennox
Bell Laboratories / Columbia University

lennox@bell-labs.com

IETF IPtel Working Group
August 24, 1998

Jonathan Lennox



Call Processing Language 2'
&

$
%

Architecture

• CPL scripts everywhere

– Network servers

– End systems

• Transaction-based scripts: persist from initial request to final
response

• Script transport separate from script design

Remove close coupling with SIPRegister message (though that
could still transport scripts).

Jonathan Lennox



Call Processing Language 3'
&

$
%

Feature interactions — 1

A feature interaction is a condition when having several features specified
creates a conflict between the two.

• Feature-to-feature
In traditional telephony, several features in a single server can specify
conflicting behavior for a given situation.

– CPL behavior based on conditions (“call arrives while line is
busy”), not on named features (“call waiting” vs. “call forward on
busy”).

– Interaction is thus not a problem in a CPL environment.

Jonathan Lennox



Call Processing Language 4'
&

$
%

Feature interactions — 2

• Script-to-script in a single server
If several scripts specify the behavior for a call, it can be unclear
which one to follow.

– In a CPL environment, a user specifies only a single script at a
time.

– Administrative scripts run after user scripts, intercepting proxy or
redirect decisions.

• Server-to-server
Several separate servers can implement features which conflict.

– Some interactions are the signaling protocol’s responsibility:
Forwarding loops

– Some are unavoidable:
Outgoing call screening (serverA) vs. call forwarding (serverB)

Jonathan Lennox



Call Processing Language 5'
&

$
%

Signalling server⇐⇒ language environment interface

• Independent of implementation language

• Possibly specific to signalling protocol

• For SIP, could be similar to CGI-bin

• For single request/response (redirect server), carries over easily from
CGI

• For multiple requests/responses in a transaction, must be more
complex — event-driven.

• Open: How to handle this case?

Jonathan Lennox



Call Processing Language 6'
&

$
%

User-created language

• What end systems send to servers

• An actual language, as motivated by the draft

• Idea: XML-based

– Service Creation Environments in IN use decision trees.
Thus, tree structure is sufficient to describe services.

– XML is an established syntax with freely available parsers.

– It is easy to parse and write for both humans and computers.

Jonathan Lennox



Call Processing Language 7'
&

$
%

XML-based language: example
approximate syntax only:

<call>
<proxy dest="sip:lennox@phone.cs.columbia.edu" timeout="8s">

<busy>
<redirect dest="sip:lennox@voicemail.cs.columbia.edu"/>

</busy>
<timeout>

<condition from="hgs@*cs.columbia.edu">
<match> <gateway dest="phone:+19175551212"/> </match>
<nomatch>

<redirect dest="sip:lennox@voicemail.cs.columbia.edu"/>
</nomatch>

</condition>
</timeout>

</proxy>
</call>

Jonathan Lennox



Call Processing Language 8'
&

$
%

Open issues: features

• Choosing among multiple responses

How long do we wait for all targets to respond?

• Granularity of primitives

– High-level features: Queueing, call distribution
combine a number of actions:
∗ inter-transaction notification
∗ global state
∗ provisional responses
∗ complex timers

– Should these be primitive features, or should they be creatable?

Jonathan Lennox



Call Processing Language 9'
&

$
%

Open issues: design

• How “Call”-specific should this be?

• “Communications Processing Language”?

• A language could apply to:

– fax

– e-mail

– presence

Is this a good idea?

Jonathan Lennox


