
One Server Per City: Using TCP for Very Large
SIP Servers

Kumiko Ono and Henning Schulzrinne

Dept. of Computer Science
Columbia University, NY 10027, USA,

{kumiko, hgs}@cs.columbia.edu

Abstract. The transport protocol for SIP can be chosen based on the
requirements of services and network conditions. How does the choice
of TCP affect the scalability and performance compared to UDP? We
experimentally analyze the impact of using TCP as a transport protocol
for a SIP server. We first investigate scalability of a TCP echo server,
then compare performance of a SIP registrar server for two TCP connec-
tion lifetimes: transaction and persistent. Our results show that a Linux
machine can establish 400,000+ TCP connections and maintaining con-
nections does not affect the transaction response time. This is applicable
to other servers with very large TCP connection counts. Additionally, the
transaction response times using the two TCP connection lifetimes and
UDP show no significant difference at 2,500 registration requests/second
in our SIP server implementation. However, sustainable request rate is
lower for TCP than for UDP, since using TCP requires more message
processing, which causes longer delays at the thread queue for the server
implementing a thread-pool model. Finally, we suggest how to reduce
the impact of TCP for a scalable SIP server especially under overload
control.

Key words. SIP TCP Server Scalability Measurement

1 Introduction

The Session Initiation Protocol (SIP) [1] is used for Internet telephony signaling,
i.e., establishing and tearing down sessions. The SIP is a request-response pro-
tocol, similar to HTTP, but can work over any transport protocol such as UDP,
TCP or SCTP (Stream Control Transmission Protocol) [2]. If SIP messages are
sent over connection-less transport protocol, UDP, the SIP server does not have
to maintain connection state, and a single socket can be shared to communicate
with all the users. UDP seems a better choice to achieve a scalable SIP server
in congestion-free networks.

However, TCP is preferred to UDP even in congestion-free networks, since it
addresses issues, such as the SIP message size exceeding the MTU (Maximum
Transfer Unit), firewall and NAT traversal. Due to its reliable nature, TCP



imposes additional processing cost on the SIP server, i.e., the server has to
maintain a TCP socket for each connection. Typically, to facilitate inbound calls
to the user phone behind a NAT or firewall, the user phone maintains a persistent
TCP connection with the SIP server. It has generally been perceived as difficult
for a SIP server to maintain 250,000+ active TCP connections and to keep up
with the corresponding number of user registrations and call requests, in order
to compete a high-capacity central office, Lucent’s 5E-XCTM[3], a high-capacity
5ESS.

Our goal is to measure the impact of TCP on SIP server scalability and
performance, and to suggest techniques to maintain a large number of active
TCP connections, such as 300,000, on a single server. The remainder of this
article is organized as follows. We introduce requirements for SIP servers in
Section 3. Then, we show the scalability and performance measurements of an
echo server in Section 4 and those of a SIP server in Section 5. We also analyze the
reason of the performance differences between TCP and UDP using component
tests in Section 6. We conclude with suggestions for reducing the impact of TCP
on SIP server in Section 7.

2 Related Work

Since both a SIP server and an HTTP server can use TCP, they face common
problems in handling a large number of connections. Kegel [4] aggregates several
tips and limits on I/O and event delivery to support more than 10,000 clients
for a scalable HTTP server. Libenzi [5] developed the epoll() system call and
shows that it enables an HTTP server to sustain a high throughput with active
27,000 connections. We built our SIP server on these tips to increase an upper
limit of sockets and to enable the server to wait for events on a larger number
of connections using the epoll() system call. However, we have to consider the
differences between a SIP server and an HTTP server as explained in Section 3.

For SIP server scalability, Shemyak and Vehmanen [6] showed that a SIP
server can maintain 100,000 inactive TCP connections, emphasizing the effect of
using the epoll() system call. However, we need to establish the limit for the
number of concurrent connections and clarify the bottleneck.

For a scalable SIP server using UDP, Singh and Schulzrinne [7] compared the
performance for different software architectures: event-based, thread-pool, and
process-pool. They suggested that the process-pool model has the best perfor-
mance in terms of response time. Additionally, they proposed a two stage archi-
tecture, where servers at the first stage dispatch messages to multiple servers at
the second stage in order to improve concurrency and reliability. For a highly
concurrent server, Welsh et al. [8] proposed a staged event-driven architecture.
Each stage contains a thread-pool to drive the stage execution. They showed
decoupling load management from service logic increases concurrency with the
measurement using 1,024 clients. We discuss the impact of the transport protocol
on SIP server scalability, not the impact of the software architecture here.



3 Requirements for a SIP Server

3.1 TCP Connection Lifetime

Although SIP is similar to HTTP, it differs from HTTP in TCP connection
lifetime. For example, a SIP proxy server in transaction-stateful mode needs
to wait for the response from the User Agent Server (UAS). After ringing, it
might take more than 30 seconds for the UAS to answer it. If the server runs in
dialog-stateful mode, it needs to wait for the dialog between users to end. Thus,
the TCP connection lifetime depends on human response time, and would be
much longer than that for HTTP/1.0 [9], but similar to that for HTTP/1.1 [10].
While HTTP/1.0 [9] opens and closes a TCP connection to fetch each embedded
object, HTTP/1.1 supports persistent connections across multiple objects by
default in order to improve server performance by avoiding unnecessary TCP
connection opens and closes, by reducing the impact of TCP slow-start, and
by allowing pipelining requests and responses [11]. Typical HTTP clients and
servers close inactive TCP connections when the session timeouts. For example,
Mozilla FirefoxTMsets the session timeout to 300 seconds by default.

However, a SIP UA behind a NAT needs to maintain even an inactive TCP
connection in order to wait for incoming calls [12]. In this case, the TCP connec-
tion lifetime for SIP would be much longer even than HTTP/1.1. Therefore, the
number of sustainable TCP connections and sustainable request rate are crucial
factor for the scalability of an outbound SIP server.

3.2 Traffic Model

We assume a target traffic model where a single server accommodates 300,000
subscribers, which is similar scalability to that of Lucent’s 5E-XCTM, 256,000
subscribers. Each user quotes their location every 3,600 seconds as defined by
default in RFC 3261 [1]. The average call duration is 180 seconds. The traffic
is 0.1 erlangs. Thus, the target throughput for registrations is 300,000 BHCA
(Busy Hour Call Attempt), which corresponds to 83 requests per second. The
target throughput for calls is 600,000 BHCA (= 300,000 * 0.1 * (3,600 / 180)),
which corresponds to 167 requests/second. If four mid-call requests, PRACK,
ACK, UPDATE and BYE, are also counted as requests, the rate rises to 833
requests/second.

4 Basic TCP Measurements Using an Echo Server

Prior to the measurement for a SIP server, we measured the scalability and per-
formance of an echo server in order to clarify the threshold and bottlenecks in
terms of creating and maintaining a large number of concurrent TCP connec-
tions. We expected these basic measurements to make it easier to estimate the
scalability of a SIP server using TCP.



4.1 Measurement Metrics

First, to establish the limit for the number of concurrent TCP connections on a
single server, we measured the number of sustainable TCP connections, memory
usage and CPU utilization by the epoll() system call. The echo server accepts
several TCP connection requests and receives user messages depending on the
order of data delivery from multiple echo clients.

Second, we measured the impact of a large number of TCP connections from
two perspectives: of establishing and of maintaining active TCP connections.
When echo clients send 512 byte messages to the echo server over separate TCP
connections. In other words, TCP does not bundle multiple messages into a
single packet when sending out.

4.2 Measurement Environment

The server under test (SUT) is an echo server using a single-process and single-
thread which runs on a dedicated host with Pentium IV 3 GHz 32-bit dual-core
CPU and 4 GB of memory. The SUT runs Linux 2.6.16 configured with the
default virtual memory (VM) split, 1G/3G, where the kernel space is 1 GB
and the user space 3 GB. We also configured the VM split to 2G/2G for the
measurement of the number of sustainable connections only.

For the echo clients, we used ten hosts with Pentium IV 3 GHz 32-bit CPU
and 1 GB of memory running Redhat Linux 2.6.9. These hosts communicated
over a 100 Mb/s Ethernet connection at light load. The round trip time (RTT)
measured by the ping command was roughly 0.1 ms.

We configured the SUT and clients to allow a large number of concurrent
connections. The upper limit of file descriptors was increased to 1,000,000 at the
SUT and to 60,000 at every client. The ephemeral local port range at the clients
was expanded to 10,000-65,535, so that each client can establish approximately
55,000 (= 65535 - 1000) concurrent connections.

4.3 Results from Basic TCP Measurement

The Number of Sustainable TCP Connections We measured the number
of sustainable TCP connections at three request sending rates, 200, 2,500 and
14,800 requests/second for the echo server. The echo server accepts connection
requests from echo clients, exchanges 512 byte messages over each connection,
and maintain all the connections. Figure 1 indicates that the echo server can
sustain the same number of connections at any request rate of them: approx-
imately 420,000 connections with the default VM split configuration, 1G/3G,
and 520,000 connections with the 2G/2G VM split configuration. Figure 1 also
shows the overall memory usage and memory usage for TCP socket buffers for
the echo server.

The overall memory usage increases linearly at any request rate and the
amounts of memory used are approximately 1.0 GB with the 1G/3G VM split
configuration, and 1.2 GB with the 2G/2G VM split configuration. However,



memory usage for TCP socket buffers is less than 20 MB at any request rate
of them for both VM split configuration. We can deduce that the bottleneck
is the amount of memory for TCP connections, which is allocated 2.3 KB per
connection as long as the connection remains open, not the amount of socket
buffer memory, which is dynamically allocated depending on the request rate.

Fig. 1. Memory usage as a function of number of TCP connections at echo server

To get a detailed picture of the memory usage for TCP connections, we
monitored the usage of the slab cache, where the Linux kernel configured with a
2G/2G VM split allocates TCP socket data structures including socket buffers
at 14,800 requests/second rate.

Figure 2 shows that the slab cache usage for approximately 520,000 TCP
connections is 1.2 GB including the data structures for the epoll() system call:
eventpoll epi and evenpoll pwq. Figure 2 also indicates that the slab cache
usage dynamically allocated for the socket buffer heads, i.e., skbuff head cache,
and user data, i.e., size-512, is only 12 MB. This result agrees with the result
in Figure 1.

Therefore, we have determined that a TCP connection requires 2.3 KB of
the slab cache and the bottleneck of sustainable concurrent connections is the
amount of allocatable kernel memory for the slab cache, since this slab cache
excluding for the socket buffer heads and user data is statically allocated as long
as the TCP connection remains open.



Fig. 2. Slab cache usage for 520,000 TCP connections for echo server

For exchanging TCP control messages and user data, extra amount of the slab
cache for socket buffers is required, depending on the request rate and the size of
user data. If a target traffic model requires more than 500,000 connections, we
recommend to have more than 2 GB of kernel memory, since we have experienced
that the server hung without any error message when adding concurrent TCP
connections because of memory exhaustion.

In later versions of Linux, e.g., Linux 2.6.20, the system produces an error,
“out of memory”, when it tries to allocates kernel memory for the TCP
socket data structures.

To increase kernel memory, installing more physical memory for a 32-bit
kernel does not help since the kernel process can only handle 4 GB of memory
including user space. The only way to increase kernel space for a 32-bit kernel
is to modify the memory split to 3G/1G, where kernel space is 3 GB. Another
way is to switch to a 64-bit kernel. Once kernel can support more than 4 GB of
physical memory for a 64-bit kernel, the bottleneck would move to other factors,
such as the number of file descriptors, which is currently 1024*1024.

The Cost of Establishing TCP Connections Figure 3 compares the re-
sponse time and peak CPU time across different connection lifetimes for TCP
and to UDP at two request rates, 2,500 and 14,800 requests/second. Transaction-
based TCP opens a TCP connection before sending a user data, i.e., a 512 byte



message in ANSI text, and closing the TCP connection after receiving the echoed
message. Persistent TCP has two scenarios: with open, where the echo server
opens and maintains TCP connections, and without open, where the echo server
reuses existing connections.

Comparing the results between the two persistent TCP scenarios indicates
the cost of establishing a new TCP connection, which contains a RTT. This costs
0.2 ms of the response time in our local network. Since the RTT delay strongly
depends on the network condition, the difference of the response times would
be larger in a wide area network. Establishing a new TCP connection also costs
15 percent of CPU time only at high request rate, not at low request rate. We
deduce that this difference is caused by the relationship between the required
processing rate and the capacity of the CPU cycle. The SUT can process the
requests at 2,500 requests/second rate, under the capacity of the CPU, but not
at 14,800 requests/second rate. However, even at high request rate, these CPU
cost is not so significant, since the maximum CPU time of our server running
on a dual-core CPU is 200 percent.

Comparing the results between transaction-based and persistent TCP with
open indicates the cost of closing a TCP connection. This costs a negligible
amount of the response time and 14 percent of CPU time at high request rate.

Thus, the cost of establishing TCP connections is not significant at low re-
quest rate, 2,500 requests/second, which is significantly above the requirement.
Furthermore, up to a request rate of 14,800 requests/second, the amount of ker-
nel memory, rather than CPU cycles, limits the scalability of the echo server, as
we have determined in Section 4.3.

The Cost of Maintaining TCP Connections Figure 4 shows the response
time consisting of the TCP handshake and message exchange as a function of
the number of concurrent TCP connections for the echo server. The echo server
establishes new TCP connections at 14,800 connections/second and leaves them.
The “handshake” data points show the elapsed time for the TCP three-way hand-
shake to establish a new connection, and the “send-recv” data points show the
interval between sending and receiving an echoed message after the handshake.
The “total” data points shows the sum of them.

Regardless of the number of maintaining TCP connections, the response time
remains constant around at 0.3 ms for ‘send-recv”, which matches the results
of persistent TCP in Figure 3, and at 0.4-0.5 ms for “total”, of which average
matches the results of persistent TCP with open. Thus, maintaining TCP con-
nections affects neither the performance of establishing new TCP connections
nor of exchanging user data.

5 SIP Server Measurements

From the results of the basic TCP measurements, we have determined that TCP
impacts mainly on kernel memory. Although each TCP connection consumes 2.3
KB of kernel memory, establishing and maintaining 300,000 TCP connections



Fig. 3. Transaction response times in left axis and CPU utilization in right axis for
echo server

Fig. 4. Response times as a function of number of TCP connections for echo server



themselves does not significantly affect the performance. Compared to the echo
server, a SIP server requires no additional kernel memory. Thus, the TCP impact
on kernel memory is the same for a SIP server. Therefore, we can focus on
measuring the performance for a SIP server.

Although RFC 3261[1] does not strictly define that a SIP server and UAs
support persistent TCP connections, we can assume that a SIP server supports
persistent TCP connections, but SIP UA behaviors may vary. Thus, we need to
clarify how TCP connection handling affects throughput on a SIP server and data
transfer latency, i.e., the sustainable request rate and the transaction response
time. We measured them for two cases of TCP connection lifetime: transaction
and persistent. These cases of TCP connection lifetime differ in how many SIP
messages share a connection and how often TCP connections are established and
closed.

Transaction-based TCP: UAs create new TCP connections for each transac-
tion, e.g., REGISTER-200 OK, BYE-200 OK, INVITE-200 OK, ACK, BYE-200
OK, UPDATE-200 OK. For the average call or dialog, four TCP connections
are established and closed. The maximum transaction duration with the
default configuration in [1] is 32 seconds.

Persistent TCP: UAs and SIP servers keep TCP connections created when
sending REGISTER requests, and reuse them to send INVITE requests or to
update the registration. The default registration interval is 3,600 seconds.

5.1 Measurement Environment

The SUT is our SIP server, sipd [13], running on the same host used for the
echo server in Section 4.2. The sipd SIP server implements a single process and
a thread-pool model, where a fixed number of threads is spawned on startup, is
pooled, and handles tasks upon requests. If more tasks are requested than the
number of threads, the tasks wait in a queue. The SIP server has the registrar
and proxy functions. User information including registered locations is stored in
a MySQL DBMS running on a different server on the same local network. For
SIP UAs, we used a SIP UA emulator, part of sipstone test suite [14], running
on the same hosts used for the echo clients in Section 4.2. Figure 5 shows these
entities and message exchanges. We applied a scenario for a registration test,
i.e., REGISTER-200 OK test, not a call test, i.e., INVITE-200 OK test, here. The
registration test is similar to the basic measurement using echo server except
parsing messages and SIP operation, while the call test is more complicated
especially in terms of the number of SIP messages and transactions.

5.2 Registration Test Scenario: REGISTER-200 OK Test

For the registration test, 30,000 UACs send REGISTER requests at various re-
quest rate and receive the 200 OK response from the SIP server.

We measured the transaction response time of REGISTER-200 OK for two
connection lifetimes: transaction in Figure 6 and persistent in Figure 7. Under



Fig. 5. Message exchanges for SIP server measurement

Fig. 6. Transaction-based TCP mes-
sage exchanges for REGISTER-200 OK
test

Fig. 7. Persistent TCP message ex-
changes for REGISTER-200 OK test



persistent TCP, we measured the response time in two cases: initial registration
that requires TCP connection establishment, which is corresponding to persis-
tent TCP with open for the basic TCP measurement, and subsequent registration
that reuses the existing TCP connection.

5.3 Results from REGISTER-200 OK Test

Figure 8 compares the transaction response times at various request sending
rates at 100% success rate. The sustainable request rate for transaction-based
TCP is 2,900 requests/second, that for persistent TCP with open is 3,300 re-
quests/second, that for persistent TCP is 4,100 requests/second, and that for
UDP is 5,300 requests/second. Below 1,600 requests/second, the gaps in their
response times remain constant, but above that, the gaps enlarge exponentially.
This exponential increase of the response time conforms to Little’s theorem.
Since sipd has a M/D/c queue for handling tasks, we can deduce the increase
of the response time is caused by waiting tasks’ exceeding the number of pooled
threads (= c) at these request rates.

To investigate these gaps more closely, we compare the response time and
CPU utilization at 2,500 requests/second sending rate with those of the basic
TCP measurements in Figure 3, as shown in Figure 9. Since the number of mes-
sages and transactions are same, this comparison indicates the cost of handling
SIP requests: message parsing and SIP operations or the difference of the soft-
ware model. The cost of handling SIP requests in CPU time is 15-18 percent
for all cases, and the cost in the transaction response time is 0.4-1.2 ms. These
cost gaps among three TCP cases and UDP increase more in the transaction
response time than those in CPU time. For example, the difference in the trans-
action response time between the two persistent TCP cases, indicating the cost
of establishing a TCP connections, is 0.4 ms, which is 0.2 ms in the basic TCP
measurement. Thus, we determined that this increased cost of establishing TCP
connections were caused by the software model of the SIP server. The bottleneck
of sustainable request rate is the thread queue, where the number and lifetime
of threads cause queuing delay of threads in the thread-pool model. Section 6
shows the result of component tests that focus on threads in sipd to investigate
this reason.

Figures 10 and 11 show that the SIP server starts to fail in handling SIP
requests far before exhausting system resources for persistent TCP and UDP.
Although we omit presenting the results of transaction-based TCP and persistent
TCP with open, their results are similar to that for persistent TCP except the
sustainable rate. For all cases, CPU utilization is still below 40 percent and usage
of physical memory in RSS and virtual memory in VSZ is below 200 MB and
below 800 MB, respectively. Clearly, the bottleneck is neither memory usage nor
CPU utilization.

When the success rate drops, the SIP server produces warning messages
saying that the overload control drops 83% of requests for persistent TCP and
10-28% of requests for UDP. Since sipd detects overload by monitoring the thread



Fig. 8. Transaction response times as a function of sending rate for REGISTER-200 OK
test for TCP and UDP

Fig. 9. Transaction response times in left axis and CPU utilization in right axis for
REGISTER-200 OK test at 2,500 requests/second



Fig. 10. Success rate, CPU utilization and memory usage for REGISTER-200 OK test:
persistent TCP

Fig. 11. Success rate, CPU utilization and memory usage for REGISTER-200 OK test:
UDP



queue of waiting tasks for available threads, we have determined the bottleneck
is the thread queue.

Furthermore, the success rate for persistent TCP steeply drops, while that
for UDP gradually decreases. The difference between persistent TCP and UDP
in droping the success rate implies that the overload control works ruthlessly
for TCP, while it works gracefully for UDP. The overload control at sipd sets
threshold of tasks in the thread queue and drops tasks to handle new requests
excluding BYE requests, which have fewer subsequent SIP messages. To inves-
tigate the difference between TCP and UDP, Section 6 discusses the details of
the overload control mechanism.

6 Component Tests

From the results of the SIP measurement, we have determined that the major
cause of the difference in the sustainable request rate between TCP and UDP is
message processing in a thread-pool model, rather than socket handling. Also,
we have determined the overload control for the SIP server works worse for TCP
than for UDP.

Since TCP is a connection-oriented protocol, the SIP server needs to handle
control messages for the connections, such as TCP open and close requests. This
requires more messages to be handled. Also, since TCP transfers byte-stream
data, the SIP server needs to find the end of the message by parsing. This
requires longer thread lifetime that causes lower throughput. Furthermore, this
makes overload control harder, since it disables sorting messages by parsing the
first line of the message before parsing the whole message. To confirm these
analysis, we performed component tests to focus on message processing.

6.1 Message Processing Test

We performed the REGISTER-200 OK tests as a white-box test, i.e., measur-
ing the called times and the elapsed time of the functions involved in message
processing. To avoid the influence of queuing, we set the load low to 10 re-
quests/second, and ran the test for 10 seconds.

Figure 12 compares the number of function calls and new threads required for
sipd to process a REGISTER message. The base thread, not a new thread, pro-
cesses sockets, e.g., calling the accept() system call to create a new connection.
For TCP, a new thread reads buffer and parses a message. Transaction-based
TCP requires most function calls for processing sockets, and most threads for
reading buffers, since it receives TCP-SYN and FIN. Although receiving TCP-
SYN does not require to read buffer, FIN require to read a zero-sized buffer.
Persistent TCP with open requires the second most function calls since it re-
ceives TCP-SYN. For UDP, on the other hand, the base thread reads buffer and
parses the first line to sort messages for the overload control, then a new thread
parses a message again for SIP operations. This makes the overall elapsed time



for UDP slightly longer than that for persistent TCP as seen in Figure 13, al-
though persistent TCP and UDP require the same number of function calls and
threads.

However, the elapsed time for reading and sorting messages for the overload
control for UDP is one forth of that for persistent TCP, since sorting message
for UDP limits the number of lines to be parsed to one. Furthermore, the elapse
time for parsing message by a new thread is slightly shorter for UDP than for
persistent TCP, since reading buffer has already been processed by the base
thread for UDP. Therefore, we can determine that these two differences cause
the better sustainable rate for UDP than for persistent TCP in the registration
test, although these differences in the thread lifetime is much smaller that the
elapsed time of SIP operation, which dominate in the elapsed time. The cost
of sorting message for the overload control makes the SIP server performance
significantly worse for TCP at high loads.

Fig. 12. Number of function calls in left axis and threads in right axis for reading and
parsing a REGISTER message



Fig. 13. Elapsed times for reading and parsing a REGISTER message

7 Suggestions for Reducing the Impact of TCP on a SIP
Server

Under our target traffic model, we can conclude that the impact of TCP on the
scalability of a SIP server is relatively small, since it only includes the setup delay
for the TCP three-way handshake and 690 MB of kernel memory for 300,000
concurrent TCP connections. However, as HTTP/1.1 defines persistent TCP to
improve the HTTP server performance, persistent TCP is also recommended to
avoid unnecessary the setup delay for a SIP server.

Under heavy loads, however, persistent TCP is not efficient enough to com-
pete with the sustainable rate for UDP, since a SIP server falls to overload
condition earlier than using UDP. We suggest some approaches to reduce the
impact under heavy load.

7.1 Accelerating Parsing for Overload Control

We first suggest that the SIP server sort messages by parsing the first-line of a
buffered message without determining the exact message boundary. As found in
Section 6, the sorting message for UDP, which is by parsing the first line of the
message is much lighter than that for TCP. The speeding up of sorting messages
can make it easy to process the overload control for the SIP server.



Although this sorting is accurate not for all messages, it works mostly. The
messages with a higher priority for the overload control, i.e., responses and BYE
request, are relatively short in size. Thus, the message is unlikely to be sent par-
tially. As a result, the size of receiving buffer to be read by user applications is
usually large enough to buffer a SIP message at once. Thus, with a high possibil-
ity, the SIP server can parse the first line without determining the message size
by parsing the Content-Length header. Even if the SIP server cannot determine
the message type because of partial delivery or bundled delivery, the server can
simply drop such a message fragment under overload.

Another suggestion is that a function required for the overload control, such
as sorting messages, be processed by the base thread that does not need to wait
for an additional thread. This is only applicable in a thread-pool model.

Furthermore, the software architecture should handle many concurrent re-
quests efficiently. Rather than the thread-pool model like our SIP server, a small
set of multiple processes running a single thread each is more appropriate to
avoid causing large queuing delay and unnecessary context-switching.

8 Conclusion

We have shown measurement results to clarify the impact of TCP on SIP server
scalability and performance. Choosing TCP requires 2.3 KB of kernel memory
per TCP connection and additional CPU cycles mainly for the TCP handshake.
Establishing TCP connections causes a setup delay of 0.2 ms in our environ-
ment, while maintaining TCP connections only consumes kernel memory. Thus,
maintaining 300,000 TCP connections requires approximately 690 MB. These
results are applicable to other TCP servers.

The impact on the response time for our SIP server is not significant under
our target traffic model. However, under heavy loads, e.g., 2,900 requests/second
for the registration test, the major impact is on the transaction response time
and on the success rate. The response time exponentially increases around the
sustainable rate in our SIP server implementation. This increase is caused by
queuing delay in the thread pool model, when thread queues exceeds the maxi-
mum length. To avoid this, the software architecture should be selected to achieve
a large number of concurrent requests. Above the sustainable rate, the success
rate drops steeply by the overload control for our SIP server. From the results of
the component tests, we suggest to speed up message parsing to ease overload
control for a SIP server. By easing overload control, the SIP server could sustain
a much higher request throughput beyond our target traffic model.

References

1. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, IETF,
June 2002.



2. R. Stewart. Stream Control Transmission Protocol. RFC 4960, IETF, September
2007.

3. Lucent-Alcatel. Lucent Technologies new high-capacity switch acceler-
ates cost-effective migration to Internet Protocol networks (news release).
http://www.alcatel-lucent.com/, December 2002.

4. D. Kegel. The C10K problem. http://www.kegel.com/c10k.html (accessed in
January 2006).

5. D. Libenzi. Improving (network) I/O performance.
http://www.xmailserver.org/linux-patch es/nio-improve.html (accessed
in January, 2006).

6. K. Shemyak and K. Vehmanen. Scalability of TCP Servers, Handling Persistent
Connections. In Sixth International Conference on Networking (ICN’07), April
2007.

7. K. Singh and H. Schulzrinne. Failover and Load Sharing in SIP Telephony. In
International Symposium on Performance Evaluation of Computer and Telecom-
munication Systems (SPECTS), July 2005.

8. M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services. In the Eighteenth Symposium on Operating Systems
Principles (SOSP-18), October 2001.

9. T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945, IETF, May 1996.

10. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, IETF, June 1999.

11. H.F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. Lie, and C. Lilley.
Network Performance Effects of HTTP/1.1, CSS1, and PNG. In ACM SIGCOMM
’97, September 1997.

12. C. Jennings and R. Mahy. Managing Client Initiated Connections in
the Session Initiation Protocol(SIP). Internet-draft, IETF, November 2007.
http://www.ietf.org/internet-drafts/draft-ietf-sip-outbound-11.txt.

13. J. Lennox, H. Schulzrinne, and et al. Cinema:sipd.
http://www.cs.columbia.edu/irt/cinema/doc/sopd.html.

14. S. Narayanan, A Yu, T Kapoor, and H. Schulzrinne. Sipstone test suite.
http://www.cs.columbia.edu/IRT/cinema/sipstone.


