/R

R —

One Server Per City:
Using TCP for Very Large SIP
Servers

Kumiko Ono
Henning Schulzrinne
{kumiko, hgs}@cs.columbia.edu

CSal
ClJ

»—o Goal

Answer the following question:

How does using TCP affect the
scalability and performance of a SIP
server?

" Impact on the number of sustainable
connections

" Impact of establishing/maintaining
connections on data latency

" Impact on request throughput
CSaz
ClJ

“—9 Qutline

Motivation
Related work
Measurements on Linux

Measurement results
1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

Suggestions
CSE
ClJ

»—o Motivation

= A scalable SIP edge
server to support
300k users*

= Handling connections
seems costly.

= Qur question:

How does the choice of
TCP affect the
scalability of a SIP
server?

SIP proxy servers

SIP edge servers
(proxy + registrar)

Coa

CU * Lucent’s 5E-XC™, a high capacity 5ESS, supports 250,000 users

20F SCIVET. FIOAY alllu
/‘_\ registrar

Comparison with HTTP server

" Signaling (vs. data) bound
" No File I/O except scripts or logging

"= No caching; DB read and write
frequency are comparable

" Transactions and dialogs
= Stateful waiting for human responses

" Transport protocols
= UDP, TCP or SCTP

CSal
ClJ

»—9 Related work

= A scalable HTTP server

= |/O system to support 10K dients 1!

"= Use epoll ()21 to scale instead of select () or
poll ()

= We built on this work.

= An architecture for a highly concurrent
server
= Staged Event-Driven Architecture B!

= A scalable SIP server using UDP
* Process-pool architecture #

CSal
ClJ

/CK [Ref.] Comparison of system calls
»—® to walit events

= Upper limit on file descriptor (fd) set
size
= select(): 1,024
" poll (), epoll(): user can specify

= Polling/retrieving fd set

" select (), poll(): the same set both In

kernel and user space

= Events are set corresponding to the prepared fd
set.

" epoll():
= Different fd set in each by separate I/F
= Optimal retrieving fd set in user space depending

CS@ on APL

- Events are set always from the top of the 7

& Outline

Motivation
Related work
Measurements on Linux

Measurement results
1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

Suggestions
CSe
ClJ

»—» Measurement environment

Server:

Pentium IV, 3GHz (dual core),] System

4GB memor . .
Linux 2.6.23 configuration

" |ncreased the number
of file descriptors per
shell

= 1,000,000 at server
= 60,000 at clients

" |ncreased the number
of file descriptors per

Clients: 8 host system

ients: 8 hosts !

Pentium IV, 3GHz. 1,000,000 at server
1GB memory = Expanded the

CS Redhat Linux 2.6.9 ephemeral port range

= [10000:65535] at

CU clients ?

—o Measurements in two steps

= Using an echo server

= Number of sustainable connections.

" Impact of establishing/maintaining
connection on the setup and
transaction response time

= Using a SIP server
= Sustainable request rate

CSal
ClJ

10

CSal
ClJ

Measurement tools

= Number of sockets/connections
= /proc/net/sockstat
= Memory usage
= /proc/meminfo
= /proc/slabinfo
= /proc/net/sockstat for TCP socket buffers
= free command for the system
= top command for RSS and VMZ per process

= CPU usage

" top command

= Setup and transaction times
= timestamps added at the client program
" tcpdump program

11

& Outline

Motivation
Related work
Measurements on Linux

Measurement results
Number of sustainable connections
Setup time and transaction time
Sustainable request rate

Suggestions
CSa
ClJ

12

1400

1200 ¢

1000 r

800

rmemory usage (MB)

400 r

200 r

CCHO Selvel (Measuleinierni,
Number of sustainable connections

for TCP

memory/connections

' total mem at 200 req/sec '
total mem at 2,500 req/sec
total mem at 14,800 reg/sec ——
socket buffers at 200 reg/sec
socket buffers at 2,500 reg/sec ¥
socket buffers at 14,800 reqg/sec

600 r

of TCP connections (1,008

1G/3G

high

' Upper limit
= 419,000 connections
with 1G/3G split

= 520,000 connections
with 2G/2G split

= Ends by out-of-
memory

-> The bottleneck is
kernel memory for
TCP sockets, not for
socket buffers.

2G/2G split 13

(MB)

age

mory us

A Echo server measurement:
»—@ Slab cache usage for TCP

= Static allocation: 2.3 KB slab cache per TCP
connection

* Dynamic allocation: only 12MB under 14,800

r t / r t size-b12
eques S/SecC. rate skkbuff head cache
1200 F eventpoll_epl Emmmm |
eventpoll pwg -
filp
1000 dentry cache ===
: i soclk inode_ cache
memory/connections N\ \ TP sock —
1400 . . ‘ . . m | - |
total mem at 200 req/sec =
total mem at 2,500 req/sec —_— BOO L
1200 - total mem at 14,800 regf/sec —+—) Q
socket buffers at 200 reg/sec o
socket buffers at 2,500 reg/sec * 1]
1000 | socket buffers at 14,800 reg/sec] g
2 600 |
high 5
800] o
600 | 400 +
400 +
200
200 +
0 sl e e e e 0 C]
o] 200 300 400

of TCP connections (1,000}

26&:/2(3 splitSlab cache usage for 520k TCP connections

/CK Summary: Number of sustainable
»—® connections

= 419,000 connections w/default VM
split

= 2.3 KB of kernel
memory/connection

= Bottleneck
= Kernel memory space

= More physical does not help for a 32-
bit kernel. Switch to a 64-bit kernel.

CSal
ClJ

15

& Outline

Motivation
Related work
Measurements on Linux

Measurement results
Number of sustainable connections
Setup time and transaction time
Sustainable request rate

Suggestions
CSa
ClJ

16

/CK Echo server measurement:
»—@ Setup and transaction times

= Objectives:

" Impact of establishing a connection
= Setup delay
= Additional CPU time
" Impact of maintaining a huge
number of connections
= Memory footprint in kernel space
= Setup and transaction delay?

CSal
ClJ

17

Tl Y w1 ¥V =i i T B ww Wil Wi ililwi il

/CK scenarios: Setup and transaction
»—D times

" Test sequences
" Transaction-based
= Persistent w/ TCP-open
= Persistent (reuse connection)

= Traffic conditions
= 512 byte message

= Sending request rate
= 2,500 requests/second
= 14,800 requests/second

= Server configuration
CS® = No delay option
ClJ

18

-l il wsil ¥V =i i T B ww Wil Wi ililwi il

A Impact of establishing TCP
connections

= CPU time:

R —

CSal
ClJ

15% more under high loads, while no difference under
mid loads

= Response time

Setup delay of 0.2 ms. in our environment
Similar time for Persistent TCP to that for UDP

1 100
response time at 2,500 reqfsec ———
response time at 14,800 regfsec ——— | g0
CPU at 2,500 req/sec +
= 08 CPU at 14,800 reg/sec X | 80
=
@ 4 70
£
o 06 { 60
- 9
o {50 =
7] -
@ X) 5
C 0.4 - co-] 1 40
=
@ X 1 30
7]}
G
5 0.2 1 20
x
X4 10
+ + + +
O I I I I O
transaction persistent persistent LDP
based TCP TCP w/open TCP 19

A Echo server measurement: Impact
»—@ of maintaining TCP connections

" Remains constant independently ofthe number
of connections

response times/connections

1 ————
total +
handshale ¥
send-recy *
0.8 F
2
:; 0.6 ¢ .
E i) ,
% + $ s++, +1 ++ . ++++ E— ++¢ o+ +++ P
+ + + + + :t: 4+ I x
S o UL TR £ L R et
*
in ” #
ud * % Ty K R L, S * ¥
= RUEE * o e w¥ *y w,* O * L LA
0.2 e g 4
¥ §><><>< % ;gxx§é§ KMo, g Xgé Syl %x §§X§§ §§§§§g 3
R3000 on0ngt AKX TS KRR %

qm) D...|...|...|...|...|...|...|...|...
CgU 0 50 100 150 200 250 300 350 400 450

of TCP connections (1,000) 20

U“llllll“l,l

/CK Impact on setup and transaction
»—D times

= Impact of establishing a connection
= Setup delay

= 0.2 ms in our measurement

= Additional CPU time

= No cost at low request rate
"= 15% at high request rate

*= Impact of maintaining a huge number of
connections
= Memory footprint n kernel space

= Setup and transaction delay
= No significant impact for TCP

C(S:%D = Persistent TCP has a similar response time to

LIDP 21

& Outline

Motivation
Related work
Measurements on Linux

Measurement results

Number of sustainable
connections/associations

Setup time and transaction time
Sustainable request rate

CSa Suggestions
ClJ

22

& Measurements in two steps

" Echo server for simplicity
" Number of sustainable connections

" Impact of establishing/maintaining
connection on the setup and
transaction response time

= SIP server
= Sustainable request rate

" (Impact of establishing/maintaining
connection on the setup and
transaction response time)

CSe
ClJ

23

/‘\ SIP server measurement:
»—» The environment

= SUT

= S|P server: sipd
" registrar and proxy
* Transaction stateful
* Thread-pool model

= the same host as the echo

server
= Clients e
" sipstone 500

= Registration:
= TCP connection lifetime
Transaction
Persistent w/open
Persistent

CS@ = 8 hosts of the echo clients
ClJ

24

L w el W i 1l T BWw Wil Wi ililwil s

/0\ Sustamable req. rate for
"—Oreqgistration

= The less number of messages delivered to
application, the more sustainable request rate.

= Better for UDP, although persistent TCP has the
same number of messages with UDP

response tlme/request rate

10 transaction-based TCP ——+—
persistent TCP w/open —s—
persistent TCP —s—
UDP —e=—
3]
5]

transaction response time (mMs)

‘ i l O j A j j j i
CS r— 0] 1000 TZOOO 3000 4000 5000 6000

': U sending rate {requests/second) 25

A What is the bottleneck of
sustainable request rate ?

= No bottleneck in CPU time and memory usage

= Graceful failure by the overload control for
UDP, not for TCP

R —

Success rate, CPU time and
memory usage: persistent TCP

100

g0
70

30
20
10

success rate or CPU usage (%)

0

90

60 |
50 |
40 |

1 10
1 S0
1 80
1 70
1 60
1 50
1 40
1 30
1 20
1 10

0

O 1000 2000 3000 4000 5000 6000 7000 8000

requests/second

success rate or CPU usage (%)

100

90
80 r

70

60
50

40
30
20
10

0

Success rate, CPU time and
memory usage: UDP

success rate
CPU —+—
RS5
V52

1 1000
1 S00
1 800
1 700
1 600
1 500
1 400
1 300
1 200
1 100

0

O 1000 2000 3000 4000 5000 6000 7000 8000

requests/second

RS5 and WSZ (MB)

Wl YUY AR Wl wi ililleSw v aSwil =@ Wi Ulv“l

/0\ Overload control in thread-pool
"—2 model

= QOverload = Sorting messages
detection by the Is easier for UDP
number of waiting than TCP
tasks for thread = Message-oriented
allocation Requests protocol enables to

parse only the first

= Sorting and ! ok
favoring specific JEJ\ _ Byté—stream
MES5ages 2 protocol requires
" Response over to parse Content-
requests @ @ @ @ Length header to
= BYE requests find the first line.

CSal
ClJ

Fixed number of threads

27

/0\ Component test: Message
»— processing test

" Longer elapsed time for readln%and parsing
REGISTER message using TCP than that for UDP

1
processing socket (and reading for UDPF) Emmms
parsing msg (and reading for TCP) s
SIP operation m—
08 L sorting msg for overload control /#thread &=====3 |
W
£ o065}]
a
E
o
0]
£ 04 .
18]
W
0.2 ¢ .

0
C(S:Gé? transaction persistent persistent UDP

‘based TCP TCP w/open TCP 28

/2\ Suggestions

= Accelerate parsing message for
sorting
" By reading the first-line of buffered

message without determining the
exact message boundary

* Not 100% accurate, but works mostly at
edge server

= Perform overload control at the
base thread in thread-pool model

= No need to wait for another thread

CSd ™ Use persistent connections as
ClJ HTTP/1.1 29

«—® Conclusions

" [mpact of using TCP on a SIP server
= Scalable well

= Memory footprint
= 2.3 KB/connection in kernel memory

= Setup delay
= Better to use persistent connections

" Parsing messages
* Need to accelerate for overload control

CSal
ClJ

30

CSal
ClJ

References

1] D. Kegel. The C10K problem.
Nttp://www.kegel.com/c10k.html.

2] D. Libenzi. Improving (network) 1/0
performance. http:/www.xmailserver.org/linux-
patches/nio-improve.html.

[3] M.Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for Well- Conditioned, Scalable
Internet Services. In the Elghteenth Symposium
on Operating Systems Principles (SOSP-18),
October 2001.

[4] K. Singh and H. Schulzrinne. Failover and Load
Sharing in SIP Telephony. In International
Symposium on Performance Evaluation of
Computer and Telecommunication Systems
(SPECTS), July 2005.

31

/R

R —

CSal
ClJ

Thank you!
Any gquestions?

mailto: kumiko@cs.columbia.edu

32

