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»—o Goal

Answer the following question:

How does using TCP affect the
scalability and performance of a SIP
server?

" Impact on the number of sustainable
connections

" Impact of establishing/maintaining
connections on data latency

" Impact on request throughput
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»—o Motivation

= A scalable SIP edge
server to support
300k users*

= Handling connections
seems costly.

= Qur question:

How does the choice of
TCP affect the
scalability of a SIP
server?

SIP proxy servers

SIP edge servers
(proxy + registrar)

Coa

CU * Lucent’s 5E-XC™, a high capacity 5ESS, supports 250,000 users
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Comparison with HTTP server

" Signaling (vs. data) bound
" No File I/O except scripts or logging

"= No caching; DB read and write
frequency are comparable

" Transactions and dialogs
= Stateful waiting for human responses

" Transport protocols
= UDP, TCP or SCTP
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»—9 Related work

= A scalable HTTP server

= |/O system to support 10K dients 1!

"= Use epoll ()21 to scale instead of select () or
poll ()

= We built on this work.

= An architecture for a highly concurrent
server
= Staged Event-Driven Architecture B!

= A scalable SIP server using UDP
* Process-pool architecture #
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/CK [Ref.] Comparison of system calls
»—® to walit events

= Upper limit on file descriptor (fd) set
size
= select(): 1,024
" poll (), epoll(): user can specify

= Polling/retrieving fd set

" select (), poll(): the same set both In

kernel and user space

= Events are set corresponding to the prepared fd
set.

" epoll():
= Different fd set in each by separate I/F
= Optimal retrieving fd set in user space depending

CS@ on APL

- Events are set always from the top of the 7
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»—» Measurement environment

Server:

Pentium IV, 3GHz (dual core), ] System

4GB memor . .
Linux 2.6.23 configuration

" |ncreased the number
of file descriptors per
shell

= 1,000,000 at server
= 60,000 at clients

" |ncreased the number
of file descriptors per

Clients: 8 host system

ients: 8 hosts !

Pentium IV, 3GHz. 1,000,000 at server
1GB memory = Expanded the

CS Redhat Linux 2.6.9 ephemeral port range

= [10000:65535] at

CU clients ?



—o Measurements in two steps

= Using an echo server

= Number of sustainable connections.

" Impact of establishing/maintaining
connection on the setup and
transaction response time

= Using a SIP server
= Sustainable request rate
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Measurement tools

= Number of sockets/connections
= /proc/net/sockstat
= Memory usage
= /proc/meminfo
= /proc/slabinfo
= /proc/net/sockstat for TCP socket buffers
= free command for the system
= top command for RSS and VMZ per process

= CPU usage

" top command

= Setup and transaction times
= timestamps added at the client program
" tcpdump program

11
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= 419,000 connections
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= 520,000 connections
with 2G/2G split

= Ends by out-of-
memory

-> The bottleneck is
kernel memory for
TCP sockets, not for
socket buffers.

2G/2G split 13
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A Echo server measurement:
»—@ Slab cache usage for TCP

= Static allocation: 2.3 KB slab cache per TCP
connection

* Dynamic allocation: only 12MB under 14,800
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/CK Summary: Number of sustainable
»—® connections

= 419,000 connections w/default VM
split

= 2.3 KB of kernel
memory/connection

= Bottleneck
= Kernel memory space

= More physical does not help for a 32-
bit kernel. Switch to a 64-bit kernel.

CSal
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/CK Echo server measurement:
»—@ Setup and transaction times

= Objectives:

" Impact of establishing a connection
= Setup delay
= Additional CPU time
" Impact of maintaining a huge
number of connections
= Memory footprint in kernel space
= Setup and transaction delay?

CSal
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/CK scenarios: Setup and transaction
»—D times

" Test sequences
" Transaction-based
= Persistent w/ TCP-open
= Persistent (reuse connection)

= Traffic conditions
= 512 byte message

= Sending request rate
= 2,500 requests/second
= 14,800 requests/second

= Server configuration
CS® = No delay option
ClJ
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A Impact of establishing TCP
connections

= CPU time:

R —

CSal
ClJ

15% more under high loads, while no difference under
mid loads

= Response time

Setup delay of 0.2 ms. in our environment
Similar time for Persistent TCP to that for UDP
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A Echo server measurement: Impact
»—@ of maintaining TCP connections

" Remains constant independently ofthe number
of connections

response times/connections
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/CK Impact on setup and transaction
»—D times

= Impact of establishing a connection
= Setup delay

= 0.2 ms in our measurement

= Additional CPU time

= No cost at low request rate
"= 15% at high request rate

*= Impact of maintaining a huge number of
connections
= Memory footprint n kernel space

= Setup and transaction delay
= No significant impact for TCP

C(S:%D = Persistent TCP has a similar response time to

LIDP 21
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Motivation
Related work
Measurements on Linux

Measurement results

Number of sustainable
connections/associations

Setup time and transaction time
Sustainable request rate
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& Measurements in two steps

" Echo server for simplicity
" Number of sustainable connections

" Impact of establishing/maintaining
connection on the setup and
transaction response time

= SIP server
= Sustainable request rate

" (Impact of establishing/maintaining
connection on the setup and
transaction response time)

CSe
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/‘\ SIP server measurement:
»—» The environment

= SUT

= S|P server: sipd
" registrar and proxy
* Transaction stateful
* Thread-pool model

= the same host as the echo

server
= Clients e
" sipstone 500

= Registration:
= TCP connection lifetime
Transaction
Persistent w/open
Persistent

CS@ = 8 hosts of the echo clients
ClJ

24



L w el W i 1l T BWw Wil Wi ililwil s

/0\ Sustamable req. rate for
"—Oreqgistration

= The less number of messages delivered to
application, the more sustainable request rate.

= Better for UDP, although persistent TCP has the
same number of messages with UDP

response tlme/request rate

10 transaction-based TCP ——+—
persistent TCP w/open —s—
persistent TCP —s—
UDP —e=—
3]
5]

transaction response time (mMs)

‘ i l O j A j j j i
CS r— 0] 1000 TZOOO 3000 4000 5000 6000

': U sending rate {requests/second) 25



A What is the bottleneck of
sustainable request rate ?

= No bottleneck in CPU time and memory usage

= Graceful failure by the overload control for
UDP, not for TCP

R —

Success rate, CPU time and
memory usage: persistent TCP
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/0\ Overload control in thread-pool
"—2 model

= QOverload = Sorting messages
detection by the Is easier for UDP
number of waiting than TCP
tasks for thread = Message-oriented
allocation Requests protocol enables to

parse only the first

= Sorting and ! ok
favoring specific JEJ\ _ Byté—stream
MES5ages 2 protocol requires
" Response over to parse Content-
requests @ @ @ @ Length header to
= BYE requests find the first line.

CSal
ClJ

Fixed number of threads
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/0\ Component test: Message
»— processing test

" Longer elapsed time for readln%and parsing
REGISTER message using TCP than that for UDP

1
processing socket (and reading for UDPF) Emmms
parsing msg (and reading for TCP) s
SIP operation  m—
08 L sorting msg for overload control /#thread &=====3 |
W
£ o065} ]
a
E
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0]
£ 04 .
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0.2 ¢ .

0
C(S:Gé? transaction persistent persistent UDP

‘based TCP  TCP w/open TCP 28



/2\ Suggestions

= Accelerate parsing message for
sorting
" By reading the first-line of buffered

message without determining the
exact message boundary

* Not 100% accurate, but works mostly at
edge server

= Perform overload control at the
base thread in thread-pool model

= No need to wait for another thread

CSd ™ Use persistent connections as
ClJ HTTP/1.1 29



«—® Conclusions

" [mpact of using TCP on a SIP server
= Scalable well

= Memory footprint
= 2.3 KB/connection in kernel memory

= Setup delay
= Better to use persistent connections

" Parsing messages
* Need to accelerate for overload control
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Thank you!
Any gquestions?

mailto: kumiko@cs.columbia.edu
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