
One Server Per City: One Server Per City:
Using TCP for Very Large SIP Using TCP for Very Large SIP
ServersServers

Kumiko Ono
Henning Schulzrinne

{kumiko, hgs}@cs.columbia.edu

2

GoalGoal
Answer the following question:

How does using TCP affect the
scalability and performance of a SIP
server?
 Impact on the number of sustainable

connections
 Impact of establishing/maintaining

connections on data latency
 Impact on request throughput

3

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

• Suggestions

4

MotivationMotivation
 A scalable SIP edge

server to support
300k users*
 Handling connections

seems costly.
 Our question:

How does the choice of
TCP affect the
scalability of a SIP
server?

SIP proxy servers

SIP user clients

SIP edge servers
 (proxy + registrar)

* Lucent’s 5E-XCTM, a high capacity 5ESS, supports 250,000 users

5

SIP server: Proxy and SIP server: Proxy and
registrarregistrar
Comparison with HTTP serverComparison with HTTP server

 Signaling (vs. data) bound
 No File I/O except scripts or logging
 No caching; DB read and write

frequency are comparable
 Transactions and dialogs

 Stateful waiting for human responses
 Transport protocols

 UDP, TCP or SCTP

6

Related workRelated work

 A scalable HTTP server
 I/O system to support 10K clients [1]

 Use epoll()[2] to scale instead of select() or
poll()

 We built on this work.
 An architecture for a highly concurrent

server
 Staged Event-Driven Architecture [3]

 A scalable SIP server using UDP
 Process-pool architecture [4]

7

[Ref.] Comparison of system calls [Ref.] Comparison of system calls
to wait eventsto wait events

 Upper limit on file descriptor (fd) set
size
 select(): 1,024
 poll(), epoll(): user can specify

 Polling/retrieving fd set
 select(), poll(): the same set both in

kernel and user space
 Events are set corresponding to the prepared fd

set.
 epoll():

 Different fd set in each by separate I/F
 Optimal retrieving fd set in user space depending

on APL
 Events are set always from the top of the

retrieving fd set.

8

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

• Suggestions

9

Measurement environmentMeasurement environment
 System

configuration
 Increased the number

of file descriptors per
shell

 1,000,000 at server
 60,000 at clients

 Increased the number
of file descriptors per
system

 1,000,000 at server
 Expanded the

ephemeral port range
 [10000:65535] at

clients

Server:
Pentium IV, 3GHz (dual core),
4GB memory
Linux 2.6.23

55,00
0
/host

Clients: 8 hosts
Pentium IV, 3GHz,
1GB memory
Redhat Linux 2.6.9

10

Measurements in two stepsMeasurements in two steps

 Using an echo server
 Number of sustainable connections.
 Impact of establishing/maintaining

connection on the setup and
transaction response time

 Using a SIP server
 Sustainable request rate

11

Measurement toolsMeasurement tools
 Number of sockets/connections

 /proc/net/sockstat
 Memory usage

 /proc/meminfo
 /proc/slabinfo
 /proc/net/sockstat for TCP socket buffers
 free command for the system
 top command for RSS and VMZ per process

 CPU usage
 top command

 Setup and transaction times
 timestamps added at the client program
 tcpdump program

12

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable connections
• Setup time and transaction time
• Sustainable request rate

• Suggestions

13

Echo server measurement:Echo server measurement:
Number of sustainable connections Number of sustainable connections
for TCPfor TCP

 Upper limit
 419,000 connections

with 1G/3G split
 520,000 connections

with 2G/2G split
 Ends by out-of-

memory
-> The bottleneck is

kernel memory for
TCP sockets, not for
socket buffers.

memory/connections

1G/3G 2G/2G split

14

Echo server measurement:Echo server measurement:
Slab cache usage for TCPSlab cache usage for TCP

memory/connections

Slab cache usage for 520k TCP connections

 Static allocation: 2.3 KB slab cache per TCP
connection

 Dynamic allocation: only 12MB under 14,800
requests/sec. rate

2G/2G split

15

Summary: Number of sustainable Summary: Number of sustainable
connectionsconnections

 419,000 connections w/default VM
split

 2.3 KB of kernel
memory/connection

 Bottleneck
 Kernel memory space
 More physical does not help for a 32-

bit kernel. Switch to a 64-bit kernel.

16

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable connections
• Setup time and transaction time
• Sustainable request rate

• Suggestions

17

Echo server measurement:Echo server measurement:
Setup and transaction timesSetup and transaction times
 Objectives:

 Impact of establishing a connection
 Setup delay
 Additional CPU time

 Impact of maintaining a huge
number of connections

 Memory footprint in kernel space
 Setup and transaction delay?

18

Echo server measurement Echo server measurement
scenarios: Setup and transaction scenarios: Setup and transaction
timestimes

 Test sequences
 Transaction-based
 Persistent w/ TCP-open
 Persistent (reuse connection)

 Traffic conditions
 512 byte message
 Sending request rate

 2,500 requests/second
 14,800 requests/second

 Server configuration
 No delay option

19

Echo server measurement: Echo server measurement:
Impact of establishing TCP Impact of establishing TCP
connectionsconnections

 CPU time:
 15% more under high loads, while no difference under

mid loads
 Response time

 Setup delay of 0.2 ms. in our environment
 Similar time for Persistent TCP to that for UDP

20

Echo server measurement: Impact Echo server measurement: Impact
of maintaining TCP connectionsof maintaining TCP connections

 Remains constant independently of the number
of connections

response times/connections

21

Summary: Summary:
Impact on setup and transaction Impact on setup and transaction
timestimes

 Impact of establishing a connection
 Setup delay

 0.2 ms in our measurement
 Additional CPU time

 No cost at low request rate
 15% at high request rate

 Impact of maintaining a huge number of
connections
 Memory footprint in kernel space
 Setup and transaction delay

 No significant impact for TCP
 Persistent TCP has a similar response time to

UDP.

22

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable
connections/associations

• Setup time and transaction time
• Sustainable request rate

• Suggestions

23

Measurements in two stepsMeasurements in two steps

 Echo server for simplicity
 Number of sustainable connections
 Impact of establishing/maintaining

connection on the setup and
transaction response time

 SIP server
 Sustainable request rate
 (Impact of establishing/maintaining

connection on the setup and
transaction response time)

24

SIP server measurement: SIP server measurement:
The environmentThe environment
 SUT

 SIP server: sipd
 registrar and proxy
 Transaction stateful
 Thread-pool model

 the same host as the echo
server

 Clients
 sipstone
 Registration:

 TCP connection lifetime
 Transaction
 Persistent w/open
 Persistent

 8 hosts of the echo clients

sipd

SQL
database

REGISTER

200

25

SIP server measurement: SIP server measurement:
Sustainable req. rate for Sustainable req. rate for
registrationregistration

 The less number of messages delivered to
application, the more sustainable request rate.
 Better for UDP, although persistent TCP has the

same number of messages with UDP
response time/request rate

26

What is the bottleneck of What is the bottleneck of
sustainable request rate ?sustainable request rate ?
 No bottleneck in CPU time and memory usage
 Graceful failure by the overload control for

UDP, not for TCP

Success rate, CPU time and
memory usage: persistent TCP

Success rate, CPU time and
memory usage: UDP

27

Software architecture of sipd: Software architecture of sipd:
Overload control in thread-pool Overload control in thread-pool
modelmodel

 Overload
detection by the
number of waiting
tasks for thread
allocation

 Sorting and
favoring specific
messages
 Response over

requests
 BYE requests

 Sorting messages
is easier for UDP
than TCP
 Message-oriented

protocol enables to
parse only the first
line.

 Byte-stream
protocol requires
to parse Content-
Length header to
find the first line.

Incoming
Requests
R1-4

Fixed number of threads

28

Component test: Message Component test: Message
processing testprocessing test
 Longer elapsed time for reading and parsing

REGISTER message using TCP than that for UDP

29

SuggestionsSuggestions

 Accelerate parsing message for
sorting
 By reading the first-line of buffered

message without determining the
exact message boundary

 Not 100% accurate, but works mostly at
edge server

 Perform overload control at the
base thread in thread-pool model
 No need to wait for another thread

 Use persistent connections as
HTTP/1.1

30

ConclusionsConclusions

 Impact of using TCP on a SIP server
 Scalable well
 Memory footprint

 2.3 KB/connection in kernel memory
 Setup delay

 Better to use persistent connections
 Parsing messages

 Need to accelerate for overload control

31

ReferencesReferences
[1] D. Kegel. The C10K problem.

http://www.kegel.com/c10k.html.
[2] D. Libenzi. Improving (network) I/O

performance. http://www.xmailserver.org/linux-
patches/nio-improve.html.

[3] M.Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable
Internet Services. In the Eighteenth Symposium
on Operating Systems Principles (SOSP-18),
October 2001.

[4] K. Singh and H. Schulzrinne. Failover and Load
Sharing in SIP Telephony. In International
Symposium on Performance Evaluation of
Computer and Telecommunication Systems
(SPECTS), July 2005.

32

Thank you!
Any questions?

mailto: kumiko@cs.columbia.edu

