
One Server Per City: One Server Per City:
Using TCP for Very Large SIP Using TCP for Very Large SIP
ServersServers

Kumiko Ono
Henning Schulzrinne

{kumiko, hgs}@cs.columbia.edu

2

GoalGoal
Answer the following question:

How does using TCP affect the
scalability and performance of a SIP
server?
 Impact on the number of sustainable

connections
 Impact of establishing/maintaining

connections on data latency
 Impact on request throughput

3

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

• Suggestions

4

MotivationMotivation
 A scalable SIP edge

server to support
300k users*
 Handling connections

seems costly.
 Our question:

How does the choice of
TCP affect the
scalability of a SIP
server?

SIP proxy servers

SIP user clients

SIP edge servers
 (proxy + registrar)

* Lucent’s 5E-XCTM, a high capacity 5ESS, supports 250,000 users

5

SIP server: Proxy and SIP server: Proxy and
registrarregistrar
Comparison with HTTP serverComparison with HTTP server

 Signaling (vs. data) bound
 No File I/O except scripts or logging
 No caching; DB read and write

frequency are comparable
 Transactions and dialogs

 Stateful waiting for human responses
 Transport protocols

 UDP, TCP or SCTP

6

Related workRelated work

 A scalable HTTP server
 I/O system to support 10K clients [1]

 Use epoll()[2] to scale instead of select() or
poll()

 We built on this work.
 An architecture for a highly concurrent

server
 Staged Event-Driven Architecture [3]

 A scalable SIP server using UDP
 Process-pool architecture [4]

7

[Ref.] Comparison of system calls [Ref.] Comparison of system calls
to wait eventsto wait events

 Upper limit on file descriptor (fd) set
size
 select(): 1,024
 poll(), epoll(): user can specify

 Polling/retrieving fd set
 select(), poll(): the same set both in

kernel and user space
 Events are set corresponding to the prepared fd

set.
 epoll():

 Different fd set in each by separate I/F
 Optimal retrieving fd set in user space depending

on APL
 Events are set always from the top of the

retrieving fd set.

8

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

• Suggestions

9

Measurement environmentMeasurement environment
 System

configuration
 Increased the number

of file descriptors per
shell

 1,000,000 at server
 60,000 at clients

 Increased the number
of file descriptors per
system

 1,000,000 at server
 Expanded the

ephemeral port range
 [10000:65535] at

clients

Server:
Pentium IV, 3GHz (dual core),
4GB memory
Linux 2.6.23

55,00
0
/host

Clients: 8 hosts
Pentium IV, 3GHz,
1GB memory
Redhat Linux 2.6.9

10

Measurements in two stepsMeasurements in two steps

 Using an echo server
 Number of sustainable connections.
 Impact of establishing/maintaining

connection on the setup and
transaction response time

 Using a SIP server
 Sustainable request rate

11

Measurement toolsMeasurement tools
 Number of sockets/connections

 /proc/net/sockstat
 Memory usage

 /proc/meminfo
 /proc/slabinfo
 /proc/net/sockstat for TCP socket buffers
 free command for the system
 top command for RSS and VMZ per process

 CPU usage
 top command

 Setup and transaction times
 timestamps added at the client program
 tcpdump program

12

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable connections
• Setup time and transaction time
• Sustainable request rate

• Suggestions

13

Echo server measurement:Echo server measurement:
Number of sustainable connections Number of sustainable connections
for TCPfor TCP

 Upper limit
 419,000 connections

with 1G/3G split
 520,000 connections

with 2G/2G split
 Ends by out-of-

memory
-> The bottleneck is

kernel memory for
TCP sockets, not for
socket buffers.

memory/connections

1G/3G 2G/2G split

14

Echo server measurement:Echo server measurement:
Slab cache usage for TCPSlab cache usage for TCP

memory/connections

Slab cache usage for 520k TCP connections

 Static allocation: 2.3 KB slab cache per TCP
connection

 Dynamic allocation: only 12MB under 14,800
requests/sec. rate

2G/2G split

15

Summary: Number of sustainable Summary: Number of sustainable
connectionsconnections

 419,000 connections w/default VM
split

 2.3 KB of kernel
memory/connection

 Bottleneck
 Kernel memory space
 More physical does not help for a 32-

bit kernel. Switch to a 64-bit kernel.

16

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable connections
• Setup time and transaction time
• Sustainable request rate

• Suggestions

17

Echo server measurement:Echo server measurement:
Setup and transaction timesSetup and transaction times
 Objectives:

 Impact of establishing a connection
 Setup delay
 Additional CPU time

 Impact of maintaining a huge
number of connections

 Memory footprint in kernel space
 Setup and transaction delay?

18

Echo server measurement Echo server measurement
scenarios: Setup and transaction scenarios: Setup and transaction
timestimes

 Test sequences
 Transaction-based
 Persistent w/ TCP-open
 Persistent (reuse connection)

 Traffic conditions
 512 byte message
 Sending request rate

 2,500 requests/second
 14,800 requests/second

 Server configuration
 No delay option

19

Echo server measurement: Echo server measurement:
Impact of establishing TCP Impact of establishing TCP
connectionsconnections

 CPU time:
 15% more under high loads, while no difference under

mid loads
 Response time

 Setup delay of 0.2 ms. in our environment
 Similar time for Persistent TCP to that for UDP

20

Echo server measurement: Impact Echo server measurement: Impact
of maintaining TCP connectionsof maintaining TCP connections

 Remains constant independently of the number
of connections

response times/connections

21

Summary: Summary:
Impact on setup and transaction Impact on setup and transaction
timestimes

 Impact of establishing a connection
 Setup delay

 0.2 ms in our measurement
 Additional CPU time

 No cost at low request rate
 15% at high request rate

 Impact of maintaining a huge number of
connections
 Memory footprint in kernel space
 Setup and transaction delay

 No significant impact for TCP
 Persistent TCP has a similar response time to

UDP.

22

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable
connections/associations

• Setup time and transaction time
• Sustainable request rate

• Suggestions

23

Measurements in two stepsMeasurements in two steps

 Echo server for simplicity
 Number of sustainable connections
 Impact of establishing/maintaining

connection on the setup and
transaction response time

 SIP server
 Sustainable request rate
 (Impact of establishing/maintaining

connection on the setup and
transaction response time)

24

SIP server measurement: SIP server measurement:
The environmentThe environment
 SUT

 SIP server: sipd
 registrar and proxy
 Transaction stateful
 Thread-pool model

 the same host as the echo
server

 Clients
 sipstone
 Registration:

 TCP connection lifetime
 Transaction
 Persistent w/open
 Persistent

 8 hosts of the echo clients

sipd

SQL
database

REGISTER

200

25

SIP server measurement: SIP server measurement:
Sustainable req. rate for Sustainable req. rate for
registrationregistration

 The less number of messages delivered to
application, the more sustainable request rate.
 Better for UDP, although persistent TCP has the

same number of messages with UDP
response time/request rate

26

What is the bottleneck of What is the bottleneck of
sustainable request rate ?sustainable request rate ?
 No bottleneck in CPU time and memory usage
 Graceful failure by the overload control for

UDP, not for TCP

Success rate, CPU time and
memory usage: persistent TCP

Success rate, CPU time and
memory usage: UDP

27

Software architecture of sipd: Software architecture of sipd:
Overload control in thread-pool Overload control in thread-pool
modelmodel

 Overload
detection by the
number of waiting
tasks for thread
allocation

 Sorting and
favoring specific
messages
 Response over

requests
 BYE requests

 Sorting messages
is easier for UDP
than TCP
 Message-oriented

protocol enables to
parse only the first
line.

 Byte-stream
protocol requires
to parse Content-
Length header to
find the first line.

Incoming
Requests
R1-4

Fixed number of threads

28

Component test: Message Component test: Message
processing testprocessing test
 Longer elapsed time for reading and parsing

REGISTER message using TCP than that for UDP

29

SuggestionsSuggestions

 Accelerate parsing message for
sorting
 By reading the first-line of buffered

message without determining the
exact message boundary

 Not 100% accurate, but works mostly at
edge server

 Perform overload control at the
base thread in thread-pool model
 No need to wait for another thread

 Use persistent connections as
HTTP/1.1

30

ConclusionsConclusions

 Impact of using TCP on a SIP server
 Scalable well
 Memory footprint

 2.3 KB/connection in kernel memory
 Setup delay

 Better to use persistent connections
 Parsing messages

 Need to accelerate for overload control

31

ReferencesReferences
[1] D. Kegel. The C10K problem.

http://www.kegel.com/c10k.html.
[2] D. Libenzi. Improving (network) I/O

performance. http://www.xmailserver.org/linux-
patches/nio-improve.html.

[3] M.Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable
Internet Services. In the Eighteenth Symposium
on Operating Systems Principles (SOSP-18),
October 2001.

[4] K. Singh and H. Schulzrinne. Failover and Load
Sharing in SIP Telephony. In International
Symposium on Performance Evaluation of
Computer and Telecommunication Systems
(SPECTS), July 2005.

32

Thank you!
Any questions?

mailto: kumiko@cs.columbia.edu

