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GoalGoal
Answer the following question:

How does using TCP affect the 
scalability and performance of a SIP 
server?
 Impact on the number of sustainable 

connections
 Impact of establishing/maintaining 

connections on data latency
 Impact on request throughput
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OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

• Suggestions
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MotivationMotivation
 A scalable SIP edge 

server to support 
300k users*
 Handling connections 

seems costly.
 Our question: 

How does the choice of 
TCP affect the 
scalability of a SIP 
server?

SIP proxy servers

SIP user clients

SIP edge servers
  (proxy + registrar)

* Lucent’s 5E-XCTM, a high capacity 5ESS, supports 250,000 users
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SIP server: Proxy and SIP server: Proxy and 
registrarregistrar
Comparison with HTTP serverComparison with HTTP server

 Signaling (vs. data) bound
 No File I/O except scripts or logging
 No caching; DB read and write 

frequency are comparable
 Transactions and dialogs

 Stateful waiting for human responses
 Transport protocols

 UDP, TCP or SCTP
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Related workRelated work

 A scalable HTTP server
 I/O system to support 10K clients [1]

 Use epoll()[2] to scale instead of select() or 
poll()

 We built on this work.
 An architecture for a highly concurrent 

server
 Staged Event-Driven Architecture [3]

 A scalable SIP server using UDP 
 Process-pool architecture [4]
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[Ref.] Comparison of system calls [Ref.] Comparison of system calls 
to wait eventsto wait events

 Upper limit on file descriptor (fd) set 
size
 select(): 1,024
 poll(), epoll(): user can specify

 Polling/retrieving fd set
 select(), poll(): the same set both in 

kernel and user space
 Events are set corresponding to the prepared fd 

set.
 epoll(): 

 Different fd set in each by separate I/F
 Optimal retrieving fd set in user space depending 

on APL
 Events are set always from the top of the 

retrieving fd set.
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OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

1. Number of sustainable connections
2. Setup time and transaction time
3. Sustainable request rate

• Suggestions
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Measurement environmentMeasurement environment
 System 

configuration
 Increased the number 

of file descriptors per 
shell

 1,000,000 at server
 60,000 at clients

 Increased the number 
of file descriptors per 
system

 1,000,000 at server
 Expanded the 

ephemeral port range
 [10000:65535] at 

clients

Server:
Pentium IV, 3GHz (dual core), 
4GB memory
Linux 2.6.23

55,00
0 
/host

Clients: 8 hosts
Pentium IV, 3GHz, 
1GB memory
Redhat Linux 2.6.9
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Measurements in two stepsMeasurements in two steps

 Using an echo server
 Number of sustainable connections.
 Impact of establishing/maintaining 

connection on the setup and 
transaction response time

 Using a SIP server 
 Sustainable request rate
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Measurement toolsMeasurement tools
 Number of sockets/connections

 /proc/net/sockstat
 Memory usage

 /proc/meminfo
 /proc/slabinfo
 /proc/net/sockstat  for TCP socket buffers
 free command for the system
 top command for RSS and VMZ per process

 CPU usage
 top command

 Setup and transaction times
 timestamps added at the client program
 tcpdump program
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OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable connections
• Setup time and transaction time
• Sustainable request rate

• Suggestions
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Echo server measurement:Echo server measurement:
Number of sustainable connections Number of sustainable connections 
for TCPfor TCP

 Upper limit
 419,000 connections 

with 1G/3G split
 520,000 connections 

with 2G/2G split
 Ends by out-of-

memory
-> The bottleneck is 

kernel memory for 
TCP sockets, not for 
socket buffers.

memory/connections

1G/3G      2G/2G split
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Echo server measurement:Echo server measurement:
Slab cache usage for TCPSlab cache usage for TCP

memory/connections

Slab cache usage for 520k TCP connections

 Static allocation:     2.3 KB slab cache per TCP 
connection

 Dynamic allocation: only 12MB under 14,800 
requests/sec. rate

2G/2G split
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Summary: Number of sustainable Summary: Number of sustainable 
connectionsconnections

 419,000 connections w/default VM 
split

 2.3 KB of kernel 
memory/connection

 Bottleneck
 Kernel memory space
 More physical does not help for a 32-

bit kernel. Switch to a 64-bit kernel.



16

OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable connections
• Setup time and transaction time
• Sustainable request rate

• Suggestions
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Echo server measurement:Echo server measurement:
Setup and transaction timesSetup and transaction times
 Objectives: 

 Impact of establishing a connection
 Setup delay
 Additional CPU time

 Impact of maintaining a huge 
number of connections

 Memory footprint in kernel space
 Setup and transaction delay?
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Echo server measurement Echo server measurement 
scenarios: Setup and transaction scenarios: Setup and transaction 
timestimes

 Test sequences
 Transaction-based
 Persistent w/ TCP-open
 Persistent (reuse connection) 

 Traffic conditions
 512 byte message
 Sending request rate

 2,500 requests/second
 14,800 requests/second

 Server configuration
 No delay option 
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Echo server measurement: Echo server measurement: 
Impact of establishing TCP Impact of establishing TCP 
connectionsconnections

 CPU time: 
 15% more under high loads, while no difference under 

mid loads
 Response time

 Setup delay of 0.2 ms. in our environment
 Similar time for Persistent TCP to that for UDP
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Echo server measurement: Impact Echo server measurement: Impact 
of maintaining TCP connectionsof maintaining TCP connections

 Remains constant independently of the number 
of connections

response times/connections
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Summary: Summary: 
Impact on setup and transaction Impact on setup and transaction 
timestimes

 Impact of establishing a connection
 Setup delay

 0.2 ms in our measurement
 Additional CPU time

 No cost at low request rate
 15% at high request rate

 Impact of maintaining a huge number of 
connections
 Memory footprint in kernel space
 Setup and transaction delay

 No significant impact for TCP
 Persistent TCP has a similar response time to 

UDP.
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OutlineOutline

• Motivation
• Related work
• Measurements on Linux
• Measurement results

• Number of sustainable 
connections/associations

• Setup time and transaction time
• Sustainable request rate

• Suggestions
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Measurements in two stepsMeasurements in two steps

 Echo server for simplicity
 Number of sustainable connections
 Impact of establishing/maintaining 

connection on the setup and 
transaction response time

 SIP server 
 Sustainable request rate
 (Impact of establishing/maintaining 

connection on the setup and 
transaction response time)
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SIP server measurement: SIP server measurement: 
The environmentThe environment
 SUT

 SIP server: sipd
 registrar and proxy
 Transaction stateful
 Thread-pool model

 the same host as the echo 
server

 Clients
 sipstone
 Registration: 

 TCP connection lifetime
 Transaction
 Persistent w/open
 Persistent 

 8 hosts of the echo clients

sipd

SQL
database

REGISTER

200
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SIP server measurement: SIP server measurement: 
Sustainable req. rate for Sustainable req. rate for 
registrationregistration

 The less number of messages delivered to 
application, the more sustainable request rate.
 Better for UDP, although persistent TCP has the 

same number of messages with UDP
response time/request rate
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What is the bottleneck of What is the bottleneck of 
sustainable request rate ?sustainable request rate ?
 No bottleneck in CPU time and memory usage
 Graceful failure by the overload control for 

UDP, not for TCP

Success rate, CPU time and 
memory usage: persistent TCP

Success rate, CPU time and 
memory usage: UDP
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Software architecture of sipd: Software architecture of sipd: 
Overload control in thread-pool Overload control in thread-pool 
modelmodel

 Overload 
detection by the 
number of waiting 
tasks for thread 
allocation 

 Sorting and 
favoring specific 
messages
 Response over 

requests
 BYE requests

 Sorting messages 
is easier for UDP 
than TCP
 Message-oriented 

protocol enables to 
parse only the first 
line.

 Byte-stream 
protocol requires 
to parse Content-
Length header to 
find the first line.

Incoming
Requests
R1-4

Fixed number of threads
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Component test: Message Component test: Message 
processing testprocessing test
 Longer elapsed time for reading and parsing 

REGISTER message using TCP than that for UDP
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SuggestionsSuggestions

 Accelerate parsing message for 
sorting
 By reading the first-line of buffered 

message without determining the 
exact message boundary

 Not 100% accurate, but works mostly at 
edge server

 Perform overload control at the 
base thread in thread-pool model
 No need to wait for another thread

 Use persistent connections as 
HTTP/1.1
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ConclusionsConclusions

 Impact of using TCP on a SIP server
 Scalable well
 Memory footprint 

 2.3 KB/connection in kernel memory
 Setup delay

 Better to use persistent connections
 Parsing messages

 Need to accelerate for overload control
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Thank you!
Any questions?

mailto: kumiko@cs.columbia.edu


