
9

Frequency Analysis and Sheared Filtering for Shadow Light
Fields of Complex Occluders

KEVIN EGAN
Columbia University
FLORIAN HECHT
University of California, Berkeley
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Monte Carlo ray tracing of soft shadows produced by area lighting and
intricate geometries, such as the shadows through plant leaves or arrays of
blockers, is a critical challenge. The final image often has relatively smooth
shadow patterns, since it integrates over the light source. However, Monte
Carlo rendering exhibits considerable noise even at high sample counts
because of the large variance of the integrand due to the intricate shadow
function. This article develops an efficient diffuse soft shadow technique for
mid to far occluders that relies on a new 4D cache and sheared reconstruction
filter. For this, we first derive a frequency analysis of shadows for planar
area lights and complex occluders. Our analysis subsumes convolution soft
shadows for parallel planes as a special case. It allows us to derive 4D
sheared filters that enable lower sampling rates for soft shadows. While
previous sheared-reconstruction techniques were able primarily to index
samples according to screen position, we need to perform reconstruction
at surface receiver points that integrate over vastly different shapes in the
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reconstruction domain. This is why we develop a new light-field-like 4D
data structure to store shadowing values and depth information. Any ray
tracing system that shoots shadow rays can easily incorporate our method
to greatly reduce sampling rates for diffuse soft shadows.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and
texture

General Terms: Algorithms

Additional Key Words and Phrases: Soft shadows, area lights, sampling,
frequency analysis, light fields, sheared reconstruction

ACM Reference Format:

Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency
analysis and sheared filtering for shadow light fields of complex occluders.
ACM Trans. Graph. 30, 2, Article 9 (April 2011), 13 pages.
DOI = 10.1145/1944846.1944849
http://doi.acm.org/10.1145/1944846.1944849

1. INTRODUCTION

Many algorithms have been used to generate soft shadows cast by
area lights, but Monte Carlo sampling is the method of choice for
production rendering due to its simplicity and widespread use for
offline rendering. Unfortunately, when computing shadows from
intricate geometry (see Figure 1), the (binary) visibility function on
the light source is complex and high frequency. While the integral
of this function can still be relatively smooth, the Monte Carlo point
samples (shadow rays) have high variance and considerable noise
persists even for large sample counts (Figure 1), requiring the use of
a prohibitive number of shadow rays. This is frustrating because the
resulting shadows can be smooth and simple, despite the complex
and costly calculation that went into them.

We propose to efficiently sample and filter the 4D shadow light
field from a complex occluder, thanks to a new analysis of shadow
sampling and reconstruction. We introduce a new 4D shadow light
field cache that allows for integration and reuse across pixels. The
sampling of our method is driven by a frequency analysis at the
visible receivers, and a new sheared filter allows neighboring re-
ceiver points to share data and reduce sample count. Our specific
contributions include the following.
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a) our method
1.0 rays per pixel 64 rays per pixel

f ) monte carlo
2048 rays per pixel

e) our method
1.0 rays per pixel

on average

c) monte carlo
64 rays per pixel

g) Adaptive Wavelet
Rendering

64 rays per pixel

d) monte carlo
320 rays per pixel

equal time

Monte Carlo
shadow blend

Fig. 1. (a) Our method casting 1 shadow ray per pixel. Our wide filter gives an average effective sampling rate of 1350 samples for every pixel that is partially
occluded. We use brute-force Monte Carlo ray tracing for self-shadowing and near-field occlusion, and then blend into our results for mid- and far-field
occlusion, as shown in the inset. (b) Monte Carlo stratified sampling with 64 samples has large amounts of noise due to the complex geometry, also shown in
the insets in (c). (d) Even with 320 samples the shadow still has visible noise. (e) Our method using 1 ray per pixel. By sharing samples between neighboring
receiver points, we obtain an effective sampling rate of 1350 samples per pixel. (f) Ground truth, generated using 2048 shadow rays per pixel. (g) Comparison
to Adaptive Wavelet Rendering with 64 samples per pixel. Visible artifacts can be seen due to the high variance of the shadow samples. (blue box) Our method
exhibits some overblurring in the area highlighted with the blue box. See Section 7 and Figure 15 for more details.

Frequency Analysis of Shadow Signal. We first show that
only a narrow wedge of the Fourier spectrum usually has significant
amplitude if the depth range of the blockers is limited. Complex
occluders with a bounded depth range are common in cases like
dense foliage or irregular arrays of blockers. Our analysis subsumes
and extends convolution soft shadows in parallel planes [Soler and
Sillion 1998].

Sheared Filters for Shadows. We introduce a new reconstruc-
tion filter that is sheared in the receiver-light domain, and enables
very sparse sampling since visibility samples can be shared among
adjacent pixels. We generalize previous work on sheared filters in
other contexts [Chai et al. 2000; Egan et al. 2009] to irregular re-
construction problems; the depths of the receiver points may vary,
which in turn causes the bundle of rays that we integrate over to
have different shapes. We first design the sheared filter in the native
coordinate system of the receiver point, and then transform to a
parameterization that is agnostic to the receiver point.

Practical Algorithm. An overview of our method can be seen
in Figure 2. We first sparsely sample the occlusion light field by
shooting a small number of shadow rays. We then store all ray
samples in a ray database. Finally, at each receiver pixel, we use our
frequency analysis to calculate the best filter shape for the receiver,
and filter over the samples in our ray database. Our analysis shows
that we can often use a wide filter across the shadow light field,
effectively reusing rays cast from nearby receiver points.

2. PREVIOUS WORK

As a full review of shadow algorithms is beyond the scope of this
article, we focus on approaches that produce accurate soft shadows.
Readers are encouraged to read a survey of approximate real-time
soft shadow techniques [Hasenfratz et al. 2003], as well as a com-
parison of more recent methods [Johnson et al. 2009].

Frequency Analysis and Reconstruction Methods. Often
high-dimensional signals have long narrow spectra in the Fourier
domain. In these cases adaptive sampling of the spectra can be
used [Soler et al. 2009], as well as sheared filters that compactly
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point cloud
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Ray Database
Construction

Shadow
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System Overview

y
v

Fig. 2. A flow chart showing the architecture and data flow in our system.
(Shadow Sampling) Sparsely sample the light field using shadow rays and
write out each ray result to disk. (Database Creation) Read in the ray samples
and create a ray database. (Shadow Reconstruction) Query the ray database
and use sheared filters to reconstruct the shadow.

capture the spectra in the Fourier domain and allow the use of sparser
sampling rates [Shinya 1993; Chai et al. 2000; Zwicker et al. 2007;
Egan et al. 2009]. The shape of shadow spectra has been studied in
the Fourier domain [Durand et al. 2005; Ramamoorthi et al. 2005;
Lanman et al. 2008]. We extend these analyses by showing that
the frequency spectrum for practical scenes is most often a wedge
based on the minimum and maximum depth of the occluder. We
also draw attention to extreme cases where this assumption does
not hold (Section 7). The use of first-order gradients to aid in recon-
struction has been studied [Ramamoorthi et al. 2007], and several
new techniques for reconstructing general signals have also been
developed [Hachisuka et al. 2008; Overbeck et al. 2009]. We use a
sheared filter and extend previous work to solve the more general
problem where the pixel integrands are not aligned to a regular grid.
In Section 6 we compare to Adaptive Wavelet Rendering [Over-
beck et al. 2009], the state-of-the-art in contrast-based adaptive
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reconstruction, and show that for low sample counts our sheared
filter produces more accurate results.

Sheared Filters. Our work is perhaps closest to the sheared
filters developed for other problems like light fields [Chai et al.
2000] and motion blur [Egan et al. 2009]. Our theoretical analysis
relates to these approaches, but we focus on shadows and show
how our analysis reduces to convolution soft shadows in the special
case of parallel planes [Soler and Sillion 1998]. Moreover, previous
methods assume a regular grid of cameras or that all pixels integrate
over the same shutter interval. In contrast, we are integrating over
a fixed plane (the light), but our sampling and filtering happen at
points that are at many different depths. Thus, we must solve a more
general irregular reconstruction problem. We therefore introduce an
additional step, going from the actual receiver to a shadow light field
that is independent of receiver depth.

Ray Traced Shadows. Brute-force ray tracing computes cor-
rect answers but is expensive [Cook et al. 1984]. Photon mapping
shoots shadow photons as an optimization to classify areas that
are unoccluded, occluded, or partially occluded from direct light-
ing [Jensen and Christensen 1995]. Our method focuses on areas
with partial occlusion, whereas most photon mapping implemen-
tations fall back to Monte Carlo sampling in these areas rather
than directly visualizing the shadow photon map. Multidimensional
lightcuts uses a hierarchical tree graph for receiver points and point
light sources, makes cuts through the receiver and light graphs at
each pixel, and shoots shadow rays for all pairs of nodes along the
graph cuts [Walter et al. 2006]. Our work is complementary to both
photon mapping and multidimensional light cuts, since our sheared
filter can be incorporated to select a large set of appropriate shadow
rays to share for a given receiver point, further reducing shadow ray
casts. Coherence across occluders and receivers has been used [Bala
et al. 1999; Hart et al. 1999; Agrawala et al. 2000; Ben-Artzi et al.
2006], as well as separating near- and far-field occlusion [Arikan
et al. 2005]. Blurring sharp ray traced results in image space can also
be used to approximate soft shadows and blurry reflections [Robison
and Shirley 2009]. Other methods have prefiltered partial occlusion
at kd-tree cells, but darkening can occur when locally prefiltered
nodes are composited together [Lacewell et al. 2008]. Our sys-
tem enables sparser sampling than previous methods because we
share samples and exploit coherence in the full 4D shadow light
field.

Light Fields and Precomputed Radiance Transfer. Many
previous methods have used light fields for rendering [Gortler et al.
1996; Levoy and Hanrahan 1996; Isaksen et al. 2000; Chen et al.
2002; van der Linden 2003; Stewart et al. 2003]. The shape of
occlusion light fields has been studied [Durand 1999], as well as
how to capture occlusion light fields [Lanman et al. 2008]. These
methods usually use image-based rendering where data is captured
by photographs taken in a regular grid, whereas we sparsely sam-
ple only the areas of the light field that are used by the receivers
of the image. Precomputed radiance transfer methods can also be
used for relighting problems involving complex shadows [Ng et al.
2003; Zhou et al. 2005; Sun and Ramamoorthi 2009], but most
methods require dense sampling of an object or scene, and its light
transport.

Shadow Maps. There are a variety of area light source methods
that use shadow maps [Yang et al. 2009], or a statistical descrip-
tion of occlusion [Annen et al. 2008]. The main drawback to using

light (y)

occluders

current
receiver (x)

d2min

d

d v

v

1
y

rays are parameterized
by a plane 1 unit

from the light source

d2max y

x

(c) visibility function f 
in (x, y) space

(b) ray parameterization

slope based
on occluder depth

light

y

Fig. 3. A simple illustration in flatland. (a) Note that we handle many
occluders in a range of depths [d2 min, d2 max], and that d1 is the distance
to the current receiver, but we do not assume all receivers are coplanar.
The vertical line at the left side of the light serves as the origin of spatial
coordinates for all planes. (b) We parameterize rays based on the ray origin
and directional offset at a plane 1 unit away. (c) Occlusion in (x, y) space
has coherent diagonal bands where occluders block the light source.

shadow maps is that most area light source techniques either have a
fixed resolution for the shadow map that can miss geometric detail,
or they process occluders independently and use approximate meth-
ods to composite the result [Johnson et al. 2009]. One exception to
this rule is the Sample Based Visibility method that uses alias-free
shadow maps and conservative triangle rasterization [Sintorn et al.
2008]. The generation of soft shadow textures by Soler and Sillion
[1998] shows that for parallel plane occluder-receiver pairs the re-
sulting shadow is a convolution between the light source and the
planar occluder, leading to a multiplication of light and occluder
spectra in the frequency domain. We show that our analysis of
nonplanar occluders and receivers generalizes their approach (Sec-
tion 3.2). Furthermore, our implementation samples across a 4D
ray database and can handle receiver surfaces that smoothly vary
from close to far away from the light source. In comparison, their
method captures 2D information from a single point on the light
source and can have discontinuities in areas that transition from one
soft shadow texture to another.

Object-Based Methods for Shadows. Storing silhouette
edges allows for efficient sampling of the light source [Laine et al.
2005]. Penumbra wedges [Assarsson and Akenine-Möller 2003]
and beam tracing can also be used [Overbeck et al. 2007]. These
methods process triangle edges, which becomes a bottleneck for
highly tessellated scenes or scenes with spiky geometry.

3. SHADOW SIGNAL AND LIGHT FIELD

We start our analysis of the shadow signal and light field with a
simple scene in flatland, where the distance from the planar light to
the current receiver point is d1, and the occluding geometry is con-
tained within a depth range of [d2 min, d2 max] measured from the light
(see Figure 3(a)). In our implementation, this analysis is applied to
the local extent of a single pixel, allowing our algorithm to use a
different value of d1 per pixel and handle nonplanar receiver sur-
faces. Parts of our analysis will examine frequencies of the receiver,
and for these problems it is most natural to use a two-plane (x, y)
parameterization, where y is the absolute distance along the planar
light source, and x is the absolute distance along the plane parallel
to the light source with distance d1 (the receiver plane). However,
because we want to share rays across many receivers, we store ray
samples in a receiver-independent (v, y) parameterization, where y
is still a distance along the light source, and v is measured as an
offset from y at a plane one unit from the light (similar to Durand
et al. [2005]; see Figure 3(b)).
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Fig. 4. We design our filter in the Fourier domain, later reinterpreting these steps in the primal domain to obtain the filter used in our implementation. Based
on Equation 3, the frequency content for the occluder in (v, y) space will be (a) a line for occluders with a constant depth, and (b) a wedge for occluders with a
range of depths. (c) We scale and shear this picture to (d) the frequency space of the receiver, (�x,�y ). Based on Equation 5, our filter must cover the overlap
between the occluder spectrum and the light spectrum (e).

Our analysis in flatland is easy to extend to 3D where the light
field has four dimensions (v1, v2, y1, y2). If we use orthogonal basis
vectors to parameterize the area light source, the (v1, y1) subspace
is linearly independent of the (v2, y2) subspace. Because of this,
most of the computations can be broken down into two separate 2D
problems.

We consider a single planar occluder parallel to the light source
at distance d2 away from the light source. The occluder is defined
by its transparency function g() in this plane, where g() takes a
1D spatial parameter in flatland. Because a ray (v, y) intersects
the occluder at spatial coordinate (d2v + y), the visibility function
f (v, y) is defined by

f (v, y) = g(d2v + y), (1)

where a value of one is fully visible and a value of zero is fully
occluded. We will extend this to occluders with a range of depths
later. As seen in Figure 3(c), each occluder creates a diagonally
shaped band in the x-y pixel-light space, and all bands are multiplied
together to get the final visibility function. Our method efficiently
exploits the coherence of these diagonal bands across the light field.

For shadow calculations we use the shadow light field f (v, y) in
conjunction with a single receiver point. The receiver is parameter-
ized by a plane at a distance d1 from the light, and an offset x along
the plane. Note that we do not assume that all points are coplanar;
we allow d1 to vary with x. The incoming irradiance, with shadow
h(x), is

h(x) = r(x)
∫

f

(
x − y

d1
, y

)
l(y) dy, (2)

where l(y) is the intensity of the light source, and r(x) captures
the geometric form factor from the receiver point to the area light
(separating the form factor from the visibility is a common ap-
proximation [Soler and Sillion 1998]). Since r(x) is independent
of shadows, we will omit it from later derivations. In our current
implementation we consider diffuse BRDFs, and the reflected color
will simply be the surface color multiplied by h(x) (see Section 7
for a discussion of more general BRDFs). Note that in many ap-
plications, BRDFs are split into a diffuse component and a glossy
component, with shadowing applied to the diffuse component and a
different reflection technique employed for the glossy component.

3.1 Fourier Analysis

A Fourier analysis enables the design of a filter that is customized to
the frequency content of shadows. Capital letters like F , G, and H
denote Fourier transforms. Figure 4 shows the process of mapping a
given occluder spectrum into the receiver’s local parameterization.

We first use the Fourier transform to compute the frequency
spectrum of visibility F(f (v, y)). Appendix A provides a detailed
algebraic derivation—that also follows directly from Eq. (1) and the
Fourier linear transformation theorem [Bracewell et al. 1993],

F (�v, �y) = G(�y)δ(�v − d2�y), (3)

where δ(·) is a delta function. For a constant depth, Eq. (3) shows
that the occluder spectrum lies along a line with slope 1/d2, as
seen in Figure 4(a). For practical scenes with a range of depths,
the occluder spectrum has a wedge shape, shown in Figure 4(b),
with slopes bounded by [1/d2 min, 1/d2 max] [Chai et al. 2000]. The
approximated bandlimit for the occluder function g() is �max

g , and
it bounds the F (�v, �y) spectrum along �y (Figure 4(b)).

Our next step is to consider the frequency spectrum of the shadow
light field on the receiver, rather than in its canonical parameteri-
zation. This transformation is shown in Figure 4(c), and involves
both a scale and a shear. Formally, we compute F[f ( x−y

d1
, y)] from

Eq. (2), using the Fourier linear transformation theorem or the de-
tailed derivation in Appendix A,

F
[
f

(
x − y

d1
, y

)]
= d1 F (d1�x, �y + �x), (4)

where we now use x and �x along the receiver rather than v and �v .
Note the scaling d1�x in the first argument. The further the receiver
point is from the light (large d1), the more compressed the frequency
spectrum (shadows are smoother). On the other hand, for a receiver
point close to the light (small d1), the frequency spectrum is less
compressed, with high-frequency effects near contact shadows.

We now take the Fourier transform of h(x) to find shadow fre-
quencies on the receiver. We use the fact that the integral in Eq. (2)
can be seen as convolving the product of f and l with a constant
function of 1 to derive Eq. (5). It follows that in the Fourier domain
we only need the constant (zero frequency) of (F ⊗ L), where ⊗
represents a convolution.

H (�x) = d1

∫
F (d1�x, �y + �x)L(−�y) d�y (5)

The calculation of H (�x) is done by integrating over the product
of the light frequencies L and the occlusion function F . In other
words, to compute the shadow frequencies for H , we need to find
all places where the nonzero amplitudes of L and F overlap, as
shown in Figure 4(e).

3.2 Relation to Parallel Plane Convolution

The preceding results generalize the seminal parallel plane convo-
lution result of Soler and Sillion [1998]. In particular, if d1 and
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d2 are fixed, we simply substitute Eq. (3) into Eq. (4), so that the
frequencies of the shadow light field are reparameterized for �x at
the receiver.

F
[
f

(
x − y

d1
, y

)]
= d1G(�y + �x)δ(d1�x − d2(�y + �x))

(6)

=
(

d1

d2

)
G

(
d1

d2
�x

)
δ

((
d1

d2
− 1

)
�x − �y

)
(7)

In the last line, we bring the d2 factor outside of the delta function
and then use the delta function to set �y = (d1/d2 −1)�x . Note that
this implies that the occluder spectrum in the receiver coordinate
space will have Fourier slope d1/d2 −1. In our case, the spectrum is
not simply a line, but a wedge with slopes ranging from d1/d2 min −1
to d1/d2 max − 1, as shown in Figure 4(d).

If we now substitute Eq. (7) in Eq. (5), the integral involves a
delta function, and will therefore simply result in the integrand, in
particular L(−�y), being evaluated at �y = (d1/d2 − 1)�x ,

H (�x) =
(

d1

d2

)
G

(
d1

d2
�x

)
L

([
1 − d1

d2

]
�x

)
, (8)

which is a simple multiplication in the frequency domain, and hence
a (suitably reparameterized) convolution in the spatial domain.1

Our method generalizes this approach by keeping all needed
frequencies of F for a range of depths (thus considering a frequency
wedge for F rather than a simple line), and therefore allowing the
receiver and blockers to be general (they need not be restricted to
parallel planes). Note also that Figure 4(e) therefore involves an
integration against the full wedge; when this wedge reduces to a
line, the integration becomes a simple multiplication in frequency
space, or a primal-space convolution as in Soler and Sillion [1998].

4. SHEARED FILTER

In this section, we present a new sheared filter that operates over
shadow light fields. In the Fourier domain, we design our sheared
filter to be as compact as possible to enable the tight packing of
replicas in the Fourier domain and sparse sampling in the primal
domain. Our filter must cover the overlap of the light L and occluder
F spectra to reconstruct the shadow signal H accurately. In Sec-
tion 5, we will use the shape of the sheared filter in the primal domain
to enable sparse sampling across our 4D ray database. We begin by
calculating the width and shear of the sheared filter in the Fourier
domain. We then examine how to apply transformations to convert
a simple axis-aligned filter into a sheared filter in the Fourier and
primal domains. Because shadow receivers integrate over irregular
domains in the light field, our final step is to transform the primal
filter from the (x, y) parameterization to the receiver-independent
(v, y) parameterization used for our ray database.

Simple and Sheared Filter Shapes. We first look at a simple
filter in Fourier space that covers all displayable frequencies, as
shown in Figure 5(a). This simple filter is axis aligned in (�x, �y)
space and captures all frequencies within �x ∈ [−�max

pix ,�max
pix ] and

�y ∈ [−�max
y , �max

y ], where �max
y is the bandlimit of the light

1Our notation differs slightly from Soler and Sillion [1998], with their d1

corresponding to our d1 − d2, and their α corresponding to our (d1/d2) − 1.
We also use x for receiver and y for light source, instead of vice versa.
Finally, they integrate over a 2D light source, causing the outside factor in
their convolution equation to be squared.

(a) simple filter  in (Ωx, Ωy)

2Ωy
max 

2Ωpix max

Ωy
max / (d1/d2min  - 1)

Ωy
max / (d1/d2max  - 1)

2Ωy
max 

Ωx

(b) sheared filter  in (Ωx, Ωy)

d1/d2min  - 1
slope

d1/d2max  - 1

max

slope

Fig. 5. (a) A simple filter that captures all displayable frequencies in
(�x, �y ). The bandlimits for display are the pixel bandlimit �max

pix and
the light bandlimit �max

y . (b) Our new sheared filter compactly covers the
same nonzero frequencies that the simple filter does, but its compact shape
enables much sparser sampling rates.

intensity function l(y), and �max
pix is the maximum frequency in x

that can be displayed in the output image. In the pixel domain
the �max

pix bandlimit is easy to define as 0.5 wavelengths per pixel.
By measuring the projected x distance that a given pixel subtends,
we can simply set �max

pix to 0.5 wavelengths per subtended x pixel
distance.

Our sheared filter, shown in Figure 5(b), has the same spectral
extent along �y as the simple filter, but our filter is scaled and
sheared to compactly bound the nonzero frequencies. Based on the
distances from the �x = 0 axis, as shown in Figure 5(b), we can
see that the width of our filter in the Fourier domain is simply the
difference of these two offsets �max

y ((d1/d2 max −1)−1 − (d1/d2 min −
1)−1). Similarly, the shear is the ratio between the height of the filter
and the average of the offsets 1

2 ((d1/d2 max−1)−1+(d1/d2 min−1)−1).

Transformation to Sheared Filter in Primal Domain. As
with many previous analyses, the key insights come from Fourier
theory, but our practical implementation operates directly on primal
domain samples, and does not need explicit Fourier transforms. Now
that we know the exact dimensions and slope of the sheared filter
in the Fourier domain, we can derive the transformations necessary
to convert a simple filter into a sheared filter in the Fourier domain.
Knowing the Fourier domain transformations then makes it easy to
compute the corresponding primal domain transformations.

In the Fourier domain, the first step is to scale along �x by the
sheared filter width divided by the simple filter width. Fourier theory
dictates that for the primal domain we need to scale along x by the
inverse amount.

primalScale = 2�max
pix

�max
y

[(
d1

d2 max
− 1

)−1

−
(

d1

d2 min
− 1

)−1
]−1

(9)

The next step in the Fourier domain is to shear in �y per unit �x .
In this case, Fourier theory tells us that we need to shear by the
negated amount in y per unit x.

primalShear = − 1

2

[(
d1

d2 max
− 1

)−1

+
(

d1

d2 min
− 1

)−1
]

(10)

The original shape of the simple filter in the primal domain is axis
aligned, integrating over the projected x pixel distance and the light
source y extent, as shown in Figure 6(a). Using the transformations
of Eqs. (9) and (10), this simple filter is transformed into a sheared
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Fig. 6. The occlusion signal f and the simple and sheared filters in the
primal (x, y) and (v, y) domains. (a) The simple filter is axis aligned in
(x, y). (b) We create the sheared filter shape by taking the simple filter in
(a) and applying the transformations in Eqs. (9) and (10). (c) The simple
filter transformed to (v, y) using Eqs. (11) and (12). (d) The sheared filter
transformed to (v, y) using Eqs. (11) and (12). The d2avg slope of the filter is
between d2 min and d2 max. Our ray database stores samples in (v, y) so this
is the final shape of our filter in flatland. For our practical implementation
in 3D there are two additional dimensions (v2, y2) that form an orthogonal
subspace and independently undergo the same transformations.
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Fig. 7. Numerical verification of our Fourier theory. (a) A set of occluders
with random orientations and positions. (b) Graph of the occlusion function
f (x, y) for this scene. (c) We take the Fourier transform of f (x, y) to get
F (�x, �y ). (d) Our method captures frequencies inside the footprint of the
sheared filter. All frequencies outside the filter are set to zero. (e) A graph of
the original signal f (x, y) and the corresponding bandlimited signal from
(d). Each point x integrates over the light y to obtain the final visibility.

filter, as shown in Figure 6(b). Note that the shearing seeks to align
the filter with the diagonal bands from occluders.

Stage 1:
Sparse Sampling

Stage 3: Compute Filter Shape (per-pixel)
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Ray Database and

Apply Filter
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Fig. 8. Individual steps of the algorithm illustrated using the scene from
Figure 13. Stage 1 traces rays and writes samples to disk. Stage 2 converts
the 3D information to the (v1, v2, y1, y2) 4D parameterization, along with
distances d1 and d2. Stage 3 computes the shape of the filter using d1,
d2 min, d2 max. Stage 4 uses the filter to average together multiple samples
and compute the shadow signal.

Sheared Filter in (v, y). In our implementation we store all
samples in (v, y) space, so the last step is to transform the primal
filter from (x, y) to to (v, y), as shown in Figures 6(c) and 6(d). We
know that (v, y) = ((x − y)/d1, y), and from this we can derive that
we first need to shear −1 units in x per unit y, then scale by 1/d1

in x.

vyShear = − 1 (11)

vyScale = 1

d1
(12)

Numerical Verification. We verify our frequency analysis by
plotting a complex scene in flatland, and examining the Fourier
transform, as shown in Figure 7. Our flatland scene is composed
of thin and round elements randomly placed in a depth range near
the light source, with x and y both ranging between 0 and 1 (Fig-
ure 7(a)). In Figure 7(b) we graph the occlusion function in (x, y),
using the object colors from Figure 7(a) as a means to visualize. We
then take the Fourier transform of the occlusion function, as shown
in Figure 7(c). Note that the Fourier spectrum has our predicted
wedge shape, and that amplitudes dissipate rapidly in areas farther
from the constant zero frequency. We then zero out all frequencies
that are outside of a sheared filter that covers a light bandlimit of
�max

y equal to 1
8 , as shown in Figure 7(d) (in this example 0.5% of

the energy lies outside of the filter). Using both the original Fourier
spectrum as well as the bandlimited spectrum, we convert back to
the primal domain and integrate with the light source to compute
the final receiver values (Figure 7(e)). This final graph of visibil-
ity shows that sheared filters can reconstruct shadow signals with
minimal loss of fidelity, despite the high-frequency nature of the
original signal.

5. ALGORITHM

Our rendering system provides a practical way to sample occlusion
in the scene, produce a ray database of all samples, and reconstruct
the shadows based on the previous analysis. We use a very sparse
sampling, often 1 shadow ray per pixel, and a suitably wide sheared
reconstruction filter at each pixel. An overview of the algorithm is
depicted in Figure 2 and detailed steps are shown in Figure 8.
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Shadow Sampling. The first stage is to sparsely sample occlu-
sion in the 4D light field (Stage 1 in Figure 8). To generate samples
we trace a small number of shadow rays from each pixel that con-
tains a receiver surface. Our sampling is driven by the receivers
that are visible in the actual image, unlike most other light field
techniques that sample uniformly and densely in the 4D space of
rays. Our implementation uses a simple programmable shader that
traces rays from the receiver to the light source, and for each sample
writes the receiver point, ray direction, and the occluder distance d2

to a file (if the ray is unoccluded we set d2 to −1).
In principle, we could compute sampling rates at each pixel,

directly from the Fourier analysis, as described in Appendix B. In
practice however, we have found that areas that receive soft shadows
need very sparse sample counts, on the order of 1 to 8 samples per
pixel. We have developed a program to do adaptive sampling, but
the quality of the final image is usually easier to control by simply
setting a uniformly low sample density.

When we shade a receiver point that lies inside the shadow light
field’s [d2 min, d2 max] depth bounds, our theory can no longer provide
tight bounds on the spectrum, and we cannot safely apply a shear or
scale to the primal filter (this can happen with self-shadowing and
other cases of near-field occlusion). In this case we simply revert
back to using stratified Monte Carlo sampling.

Ray Database Construction. The second stage reads sam-
ples from disk, computes the 4D parameterization of each ray, and
stores the sample into a 4D ray database (Stage 2 in Figure 8). Our
current implementation uses a simple 2D grid as an acceleration
structure, indexing across direction parameters v1 and v2. We have
experimented with a 4D grid and other bounding volumes, but have
found so far that they delivered little speedup when queried with the
highly anisotropic shapes and varied orientations of sheared filters
generated by a practical scene. The depth range of the light field,
[d2 min, d2 max], is also calculated at this stage.

The memory requirements for our method are small, consisting
only of loading the ray database into memory. Each sample in the ray
database consists of (v1, v2, y1, y2) 32-bit floating point coordinates,
with an additional distance d2, that stores the distance to the closest
occluder or indicates an unoccluded ray. For the scene in Figure 1
the final ray database was 17MB.

Shadow Reconstruction. To reconstruct shadows, another ren-
dering pass uses a programmable shader that accesses the ray
database. For each receiver point, the shader computes the shape
of the appropriate sheared filter, queries the ray database with the
filter shape, and weights all samples inside the filter’s 4D footprint
(Stage 3 in Figure 8).

The first step is to compute d1, d2 min, and d2 max for the current
receiver as shown in Figure 8(a)–(c) (see Optimizations that follows
for more details). The next step is to compute the shape of the
sheared filter. Although the shape of a sheared filter in 4D may
be hard to visualize, it is simple to compute: We require that the
planar area light is parameterized with orthogonal basis vectors,
guaranteeing that (v1, y1) and (v2, y2) span orthogonal 2D subspaces
of the 4D light field. Consequently, we treat the sheared filter as the
product of two 2D sheared filters in (v1, y1) and (v2, y2). For each
2D subspace, we first determine the basis vectors that define the
light and pixel filter extent of a simple filter in (x, y) (Figure 6(a)).
We then transform the basis vectors using Eqs. (9)–(12) such that
the basis vectors now represent the centerline and “shear axis” of
the sheared filter in (v, y) (Figure 6(d)). The range of primalScale
values (see Eq. (9)) is shown in Figure 8(d), as well as the total
number of samples inside the filter in Figure 8(e).

b) Photon mappinga) Adaptive Wavelet Rendering
32 samples per pixel

d) Adaptive Wavelet
Rendering g) Ground truthf ) Our method

c) Our method
4 samples per pixel

e) Photon mapping

Fig. 9. (a) Adaptive Wavelet Rendering with 32 samples per pixel. (b)
Direct visualization of photon map to compute soft shadows with 32 photons
per pixel (photon map requires 1.8GB of memory). The soft shadows near
the top of the image still have a fair amount of noise. (c) Our method
using 4 samples per pixel. (d) Adaptive Wavelet Rendering computes a soft
image, but the shape of the soft shadow is slightly off in this case. (e) Direct
visualization of the photon map has converged in this area, but other areas
have noise. (f) Our method accurately reconstructs the soft shadow signal.
(g) Ground truth using 2048 rays with Monte Carlo.

The next step is to determine where the filter is centered. Focusing
on the (v1, y1) dimensions, and given the positioning of the receiver
point and the light in 3D space, we can compute a v1 value (ray
direction) for any given y1 value (light position). It is convenient to
compute v1 for y1 = 0 since this is always defined to be one edge of
the light in our implementation. Similary we compute v2 for y2 = 0,
completely anchoring the centerline of our 4D sheared filter.

We have now defined the placement and shape of our filter. We
now process every sample in every grid cell that lies inside the filter’s
v1 and v2 extents. We then calculate the sample’s coordinates relative
to the transformed light extent and pixel extent basis vectors. These
coordinates can then be interpreted in the original (x, y) space,
where one coordinate determines the pixel filter response and the
other determines the light intensity (Stage 4 in Figure 8).

Optimizations. Computation of the depth bounds d2 min and
d2 max can often be done by simply evaluating the global range
of d2 occluder values contained in the ray database (this was done
for Figure 1). For more complicated scenes with many interact-
ing occluders and receivers, it becomes necessary to compute d2 min

and d2 max per receiver (this was done for Figures 12 and 13). To
compute d2 min and d2 max per receiver, we precompute a 3D hierar-
chical sphere tree with all occluder positions to supplement the ray
database. For each receiver we cull out points that are outside of the
receiver-light frustum, and then compute the [d2 min, d2 max] bounds
on the remaining points. This computation is inexpensive relative to
filtering, but it can at times lead to discontinuities in d2 min or d2 max

across receiver points.

6. RESULTS

We demonstrate our results with five scenes, which showcase a
variety of challenging situations in Figures 1, 9, 11, 12, and 13.
We also show comparisons and timings with respect to stratified
Monte Carlo sampling, the current method of choice, as well as
optimizations like photon mapping and the recent development of
Adaptive Wavelet Rendering [Overbeck et al. 2009].
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Fig. 10. Analysis of different quality levels for different sample counts.
The first and second rows show a closeup from the scene in Figure 9. As
the quality increases to four samples we can see in the error plot that we are
converging. The third row shows a new closeup from the scene in Figure 1,
near the upper part of the shadow. We see here the spotting artifacts that can
occur in areas of undersampling.

All examples were run using Pixar’s Renderman Pro Server 15.0
on a dual quad-core Xeon 2.33 GHz processor with 4GB of memory.
Due to our modular plug-in architecture, our code trivially runs in
parallel for any number of threads. All scenes in this paper use a
planar area light with a circular Gaussian falloff that captures two
standard deviations within the light radius.

6.1 Canonical “Grid” Scene

We start with the canonical scene in Figure 9, which shows grid oc-
cluders with shadows that smoothly go from sharp to wide. The very
regular and smooth growth of the penumbra makes small artifacts
easier to spot, but our method produces high-quality results.

Figure 9 also compares to alternative rendering approaches, like
photon mapping [Jensen and Christensen 1995] (Figures 9(b) and
9(e) use similar parameters to those in our method). We see that
direct visualization of the photon map has converged in some ar-
eas, while other areas still have a fair amount of noise, even when
using 32 photons per pixel. In addition, storing the 33M photons
takes 1.8GB of memory in Renderman’s implementation. For these
reasons, the photon map is usually used for caustic or global illu-
mination effects, and rarely visualized directly for soft shadows.

Therefore, in the remainder of the article, we focus on com-
paring to stratified Monte Carlo sampling, and to the state-of-the-
art adaptive reconstruction method, Adaptive Wavelet Rendering
(AWR) [Overbeck et al. 2009]. The AWR comparisons in Figure 9
(and 1) directly use the original AWR software, with the same scene
setup and light source location and falloff as our method. We see in
Figure 9 that our method better captures the widening blur of some
areas of the shadow signal. Adaptive Wavelet Rendering with 32
samples per pixel has not converged due to the high variance of the
shadow signal.

We analyze the effect of increasing sample counts in our method
in the first two rows of Figure 10 (we will analyze the bottom row in

Section 6.2). We first note that even when using only one sample or
shadow ray per pixel, our method is quite accurate, with the maxi-
mum pixel error less than 6%. We are able to use such low sample
counts because our sheared reconstruction filter effectively shares
samples between many neighboring pixels. However, some difficult
regions can be noisy, and these rapidly become more accurate with
a moderate increase in sample count. Indeed, 4 samples per pixel
reduces error almost to 0 everywhere in the image.

6.2 Detailed Occluding Geometry

In Figure 1, we show a detailed model (1.3M triangles) with many
complex sillhouettes and thin features casting a shadow on a flat
receiver. Our method works well in this case because it can handle
complex occluders, and the scene has predominantly mid- and far-
field occlusion, which lets our method use vastly fewer samples than
other algorithms. For this scene we traced 1 ray per pixel during
the initial sampling phase and created a ray database with 637,000
samples. In this scene we used Monte Carlo ray tracing with 4 rays
for self-shadowing within the occluder and 64 rays for near-field
occlusion on the receiver (a higher number of rays were necessary
because of the extremely thin features of the occluder). We used
the Monte Carlo solution for receiver positions with d1 ≤ d2 max,
and did a smooth blend between the Monte Carlo solution and our
solution up to a user-specified distance of (1.1)d2 max (as shown in
the Figure 1(a) inset).

Figure 11 shows another difficult example with two complex tree
occluders, this time shadowing a curved receiver. The tree trunk and
branches are modeled with subdivision surfaces. In Figures 11(a)–
(d), a medium-sized light source is used, and ray tracing shadows
is fairly coherent. In Figures 11(e)–(h) a larger light source is used,
causing incoherence among rays and a much more expensive cost
per ray. Our method is most beneficial when the cost per ray is high,
which can be seen in more detail in the timings section that follows.

Stratified Monte Carlo sampling is still usually the method of
choice for high-end rendering. However, for complex occluders in
scenes like Figures 1 and 11, stratification has minimal benefit,
since every shadow ray has very high variance; there is almost no
coherence across the occlusion signal. Therefore, stratified Monte
Carlo sampling requires a very large number of samples before the
variance of the shadow is not visually noticeable (approximately
2048 samples in our case). While Adaptive Wavelet Rendering in
Figure 1(g) is beginning to converge with 64 samples, the high
variance of the signal leads to some low amplitude aliasing in the
wavelet basis. In contrast, the third row of Figure 10 shows that
our method can get decent results even when using 0.25 samples
per pixel during the sparse sampling stage. In this case most of the
spotting artifacts are removed by going up to just 1 ray per pixel.

Timings. We report wall clock running times for Figures 1
and 11. For both images we measure the cost of rendering the
right half of the image, since the shadows are mostly concentrated
there (the costs on the left side of the image are dominated by scan
conversion of the occluding geometry, which is not relevant to our
or other algorithms). In our tests, we noticed that timing results can
be fairly nonlinear with the number of rays traced per pixel, which
we believe is primarily dependent on how ray trace queries interact
with Renderman’s geometry caching algorithm. We therefore report
numbers for canonical numbers of samples, which allow for equal
time and quality comparisons with stratified Monte Carlo.

In Figure 1(a), our method (with 1 ray per pixel) took 1 min 17
sec for the sparse sampling phase and 4 min 1 sec to reconstruct the
shadows using the ray database, for a total time of 5 min 18 sec. In
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a) Our Method, small light
1 ray per pixel

b) Monte Carlo
256 rays per pixel

c) Monte Carlo
2048 rays per pixel

d) Our Method
1 ray per pixel

e) Our Method, large light
1 ray per pixel

f ) Monte Carlo
256 rays per pixel

g) Monte Carlo
2048 rays per pixel

h) Our Method
1 ray per pixel

Fig. 11. Comparisons between our method and stratified Monte Carlo sampling. We show two scenes: a smaller area light in (a) through (d), and a larger area
light in (e) through (h). The timings show that as rays become more incoherent (in this case due to a larger light source), brute-force ray tracing becomes very
expensive. This is primarily due to the cost of updating the cached geometry for ray tracing. All timings are for rendering the right half of the image where
shadow computation dominates the overall time of execution (the one exception is our sparse sampling pass, which processes the entire image).

Figure 1(b), Monte Carlo sampling with 256 samples per pixel took
5 min 6 sec, and in Figure 1(e), Monte Carlo sampling with 2048
samples took 23 min 3 sec.

In Figure 11(a), our method (with 1 ray per pixel) took 5 min 25
sec for sparse sampling, 1 min 25 sec for reconstruction, and a total
of 6 min 50 sec. Monte Carlo with 256 samples in Figure 11(b) took
6 min 9 sec, and Monte Carlo with 2048 samples in Figure 11(c) took
16 min 19 sec. The wider area light source in Figure 11(e) produces
more significant speedups because of the incoherent shadow rays.
Our method took 6 min 32 sec for sparse sampling, 6 min 30 sec
for reconstruction, and 13 min 2 sec total. Monte Carlo with 256
samples in Figure 11(f) took 1 hr 15 min, and Monte Carlo with
2048 samples in Figure 11(g) took 3 hr 34 min, for a net speedup
for our method of more than an order of magnitude.

The AWR implementation uses an optimized packet ray tracer
and a more stripped down shading system for speed, making com-
parisons to our Renderman plug-in difficult. They report taking
34 sec to reconstruct their wavelet basis using 32 samples at im-
age resolutions of 1024 × 1024. In our test scenes it appears that
any noise in the wavelet basis is not visually noticeable after 256
samples. Because our method uses drastically fewer samples, our
method will be preferrable whenever ray tracing is expensive,
such as for highly tessellated models that may not fit into main
memory. Note that in our results we have shown significant per-
formance gains relative to the highly optimized Renderman ray
tracer.

In general we note that our system drastically reduces ray trac-
ing computation, making a trade for increased filter computation.
We have already shown that this is beneficial even for moderately
complex scenes. A commonly noted trend in production render-
ing is that when computational power increases, artists will im-
mediately increase the complexity of their scenes rather than en-
joy faster render times. As long as this trend continues, geometric
complexity for rendered scenes will increase, and our substitution
of ray casts for filter computation will become more and more
valuable.

6.3 Robustness: Complex Occluders and Receivers

Figure 12 shows a scene with many interacting occluders and re-
ceivers. In Figure 12(d), we show that the range of occluder depths
[d2 min, d2 max] computed at each pixel can vary by large amounts.
In Figure 12(e) we show the number of pixels contained in each
pixel’s custom reconstruction filter. Note that our method produces
smooth results because of the high number of samples processed by

a) Our method: 1 sample per pixel d) Occluder Z range

b) Our method: 1 sample c) Ground truth: 2048 samples

0 40 % d2max

0 8207

Fig. 12. Scene with a wide array of occluders and receivers, as well as a
curved ground surface with high frequency displacement.

each pixel. Finally, we show a scene with the foliage model from
Figure 1, as well as a complex displacement-mapped receiver sur-
face, and a number of other objects. This scene showcases a variety
of intricate shadowing effects, such as complex objects casting and
receving shadows. In both scenes we used 1 sample per pixel for the
sparse sampling stage. In Figure 13 we used 4 Monte Carlo sam-
ples per pixel to compute near-field occlusion, while in Figure 12
we did not use any Monte Carlo sampling. Figures 12 and 13 show
the robustness of our method for dealing with a range of complex
occluder and scene configurations.
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Our method:
1 sample

Our method:
1 sample

Ground truth:
2048 samples

Ground truth:
2048 samples

Fig. 13. Complex scene with multiple occluders and receivers.

6.4 Animation

We have focused on still images, but it is also interesting to examine
whether our method can produce stable animations. We show that
our method can indeed produce high-quality animations, but may
require a higher sampling rate to eliminate temporal aliasing.

In our supplementary video we animate the grids and trees scenes
(stills from the video are shown in Figure 14). In the grids animation,
the grids descend towards the ground plane, and we show that with
0.3 rays per pixel there are noticeable artifacts, but these artifacts go
away using 3.0 rays per pixel. We rotate both trees in the tree scene
(Figure 11(a)) to provide a stress test of many thin occluders moving
relative to each other. In this case with 3.0 rays per pixel, the still
images are often visually acceptable, but flickering can be seen as
the tree rotates during animation. Small amounts of undersampling
may cause medium to low frequency error relative to ground truth,
but these errors are often visually imperceptible for still images.
However, during animation these small errors can flicker, which is
much more noticeable. When we increase the sampling rate to 10.0
rays per pixel the animating shadows become more stable and the
flickering artifacts disappear. With 10.0 rays per pixel the sparse
sampling pass took 5 min 46 sec, 16 min 16 sec for reconstruction
(right half of 1k image), and a total of 22 min 2 sec.

Our supplementary video also compares our results to Monte
Carlo integration during animation. Even with 2048 samples per
pixel a small amount of noise is still visible in the animation us-
ing Monte Carlo. Our method with 10.0 rays per pixel delivers a
smoother result with no visual flickering.
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Fig. 14. Still frames from our supplementary video. The grids animate
relative to the ground plane (3.0 rays per pixel). The trees each rotate relative
to the ground plane (10.0 rays per pixel).

a) Our Method, 1 ray per pixel

Ωy
max = 1 wavelen / light diam

b) Ground Truth
2048 rays per pixel

c) Our Method, 10 rays per pixel

Ωy
max = 4 wavelen / light diam

Fig. 15. An inset from Figure 1 with contrast increased by 4×. With 1
ray per pixel and a low value for the �max

y light bandlimit our results are
overblurred. By increasing the number of samples to 10 rays per pixel and
increasing the �max

y light bandlimit our method can capture more shadow
frequencies. However, even with these higher-quality settings our method is
missing some detail.

7. ARTIFACTS AND CONVERGENCE

We discuss the limitations and possible artifacts that come from our
method. We first look at the artifacts that occur from undersampling
occlusion and how the light bandlimit �max

y affects rendering. We
also discuss how these two factors affect the convergence of our
method. We then look at how undersampling can also manifest
itself in the use of the occluder depth bounds dmin

2 and dmax
2 . Finally

we discuss two extreme cases where precise occluder configurations
break our assumptions.

Undersampling and Light Bandlimit. If the sparse sampling
pass does not adequately sample the occlusion signal, our results
will have mid to low frequency artifacts, as seen in Figure 10. Our
method can also overblur if we set the �max

y light bandlimit too low,
as seen in Figure 15. From Eq. (9) we can see that the higher the �max

y

light bandlimit is set, the smaller the scale of the reconstruction filter.
Using a smaller filter subsequently requires a higher sampling rate
to avoid spotty artifacts. If �max

y is set too low then the reconstruction
filter sizes will be large and overblurring may occur.

Undersampling can be more visually noticeable during animation
as it can lead to flickering artifacts. This is shown in the supplemen-
tary video and discussed in Section 6.4.

In Figure 16 we can see how the sampling rate and �max
y light

bandlimit interact with each other. As we increase �max
y we see more
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Fig. 16. An inset from Figure 13 rendered with different sampling rates and
�max

y light bandlimit. In general the best quality per cost is shown along the
diagonal from lower left to upper right (upper right being the highest quality
and the most expensive). The upper left image is inexpensive and noisy, and
the lower right image is expensive and overblurred. The red circle highlights
a ringing artifact that can occur when depth bounds change suddenly.

and more details in the shadow. If we use a large value for �max
y

but keep a low sampling rate, we can start to see noise (upper left
image in Figure 16). If �max

y is too low then the shadows will stay
blurry even as we increase samples (bottom row of Figure 16). For
low sampling rates it is best to keep �max

y lower (lower left image
in Figure 16), and for high-quality renders that use a high sampling
rate it is best to use a higher value of �max

y (upper right image in
Figure 16).

Depth Bounds dmin
2 and dmax

2 . When computing the dmin
2 and

dmax
2 depth bounds per receiver, sudden changes in these bounds can

sometimes get ringing artifacts (this can be seen in the bottom row of
Figure 16 and in Figure 17(ii)). This is due to one pixel using a filter
that is much wider than the neighboring pixel’s (blurring the dmin

2 and
dmax

2 bounds as is done in Egan et al. [2009] would help to alleviate
this problem). The depth bounds can also be inaccurate when nearby
occluder hit points are culled by the receiver-light frustum, which in
turn leads to improper filtering, as seen in Figure 17(i). We believe
that this is due to our current implementation using a receiver-light
frustum that converges to a point instead of properly covering the
entire extent of the receiver pixel.

General BRDFs. Our current implementation only handles dif-
fuse BRDFs. While other reflection techniques are often more ap-
propriate for glossy BRDFs, for future work we would like to extend
our method to handle any general BRDF. This can be achieved by
replacing the lighting response l(y) with the product of lighting and
the BRDF response of the current receiver point ρ(y). If we replace

a) Our Method
4 rays per pixel

b) Ground Truth
2048 rays per pixel

(i)

(ii)

Fig. 17. Our method with 4 samples produces results which are very close
to the ground truth (scene is an inset from Figure 12). But there are issues
which can produce subtle differences: (i) Shadow regions can be inaccurate
if the dmin

2 /dmax
2 calculation misses occluder samples. (ii) In this case the

dmin
2 /dmax

2 calculation is not smooth, which leads to jumps in the filter size.
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Fig. 18. Failure cases for our method. (a) A double slit configuration that
causes the visibility of the receiver to change roughly as a triangle wave.
(b) A funnel configuration that shadows all areas except for one small area
that transitions to full visibility. The slanted line segments of the funnel have
a wedge-shaped occlusion signal in (x, y). In both failure cases the precise
shapes of the occluders create regular patterns aligned along the y-axis,
creating sharp changes in visibility across the receiver x-axis. In the Fourier
domain there is significant energy in F (�x,�y ) that exists outside of the
modeled wedge.

L with (P ⊗ L) in our analysis, we see that for specular BRDFs
containing high frequency content we will have less savings, as it
becomes more and more difficult to share rays between receivers.
Any second-order terms from surface curvature should be minimal,
since our analysis is local to the receiver surface subtended by a
single pixel.

Theoretical Limitations. For all practical scenes that we have
tested, the shape of the occluder spectrum has been a good fit with
the wedge shape shown in Figure 4(b). However, there are extreme
cases that break the wedged-shaped spectrum assumption used by
our method and previous work [Chai et al. 2000; Egan et al. 2009].
We depict the first case in Figure 18(a). Using an array of planar
occluders with length and separation proportional to the distance to
the receiving plane, the final shadow is roughly a triangle wave (the
signal will be an exact triangle wave for infinitely wide area lights).
Using this setup, we can create arbitrarily high shadow frequencies
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with no change in amplitude, for any two depths, by scaling the
length and gaps between occluders closer and closer to zero.

It is also possible to create a funnel-shaped occluder that provides
compete visibility to an arbitrarily small area, which then quickly
fades to no visibility outside of the area, as shown in Figure 18(b).
By squeezing the funnel edges closer and closer together, we can
achieve a sharper and sharper “spike” in visibility. The visibility in
(x, y) space for both of these cases is also shown in Figure 18. Both
cases apply directly to previous work in light field rendering [Chai
et al. 2000], and both cases can be applied to motion blur by re-
placing the receiver plane with a camera that moves across different
x positions over time [Egan et al. 2009]. In most practical scenes
some high frequencies may exist due to correlation of occluders,
but the amplitude of these high frequencies will usually be very low
compared to the overall signal.

8. CONCLUSION AND FUTURE WORK

We have presented a new frequency analysis of complex occluders,
and a rendering algorithm that leverages sparsity in the Fourier
domain of the 4D light field. We have shown large speedups for a
range of complex occluders and scene configurations. Furthermore,
our results show that our method excels when dealing with very
soft shadows, which is precisely where other methods have the
most difficulty.

For future work, we would like to look at hierarchical integration
methods to speed up filtering. Prefiltering samples before filtering
is challenging because the sheared filters used to query the ray
database are thin (relative to the overall size of the database), and
sheared at many different angles.

Our method delivers the biggest performance gains for soft shad-
ows cast by mid to far occluders. However, we could extend our
current system to gracefully handle more general cases of self-
shadowing by subdividing occlusion data into multiple light fields.
This could provide a large improvement to our method’s perfor-
mance when occluders are visible at many different depths.

Looking forward, we expect that our generalization of sheared
filtering to irregular integrands, as well as the use of more sophisti-
cated filtering techniques, will spur further advances for rendering
and other areas.

APPENDIXES

Appendix A: Fourier Derivations

To derive Eq. (3) we have

F [f (v, y)] =
∫ ∫

g(d2v + y) exp(−i2π (v�v + y�y)) dv dy

(13)
u = d2v + y y = u − d2v dy = du

=
∫ ∫

g(u) exp(−i2π (v�v + (u − d2v)�y)) dv du

=
∫ ∫

g(u) exp(−i2π (v(�v − d2�y) + u�y)) dv du

=
∫ [∫

g(u) exp(−i2πu�y)du

]
× exp(−i2πv(�v − d2�y)) dv

= G(�y)
∫

exp(−i2πv(�v − d2�y)) dv

F [f (v, y)] =G(�y)δ(�v − d2�y). (14)

To derive Eq. (4) we have

F
[
f

(
x − y

d1
, y

)]
=

∫ ∫
f

(
x − y

d1
, y

)
× exp(−i2π (x�x + y�y))dx dy (15)

u = x − y

d1
x = ud1 + y dx = (d1) du

=
∫ ∫

f (u, y) exp(−i2π ((ud1 + y)�x + y�y))(d1) du dy

= d1

∫ ∫
f (u, y) exp(−i2π (ud1�x + y(�x + �y))) du dy

F
[
f

(
x − y

d1
, y

)]
= d1F (d1�x, �y + �x). (16)

Appendix B: Sampling Rates

Sampling in the primal domain creates replicas in the Fourier do-
main, and the sparser the sampling rate the closer together the
replicas are packed. We want to compute the lowest possible sam-
pling rate such that we prevent the replicas from overlapping the
footprint of our filter. The compact shape of our sheared filter al-
lows for much tighter packing of replicas, which allows for much
lower sampling rates, which in turn leads to faster render times. We
can use a derivation similar to Egan et al. [2009] to compute the
minimal sampling rates for our sheared filter shape.

�∗
x =�max

x + �max
y

(
d1

d2 max
− 1

)−1

(17)

�∗
y =�max

y

(
d1

d2 max
− 1

) [(
d1

d2 max
− 1

)−1

−
(

d1

d2 min
− 1

)−1
]

(18)

In the preceding equations, �∗
x and �∗

y are the required sampling
rates in the x and y dimensions, respectively. These values are
derived by measuring the distance between replicas along �x and
�y (the exact derivation is omitted for brevity). To compute the
number of samples requested by a receiver point we calculate the
4D product (�∗

x)2(�∗
y)2 and divide by the 4D volume of the sheared

filter in (x1, x2, y1, y2) (because the subspaces are orthogonal this
is simply the product of the filter areas in (x1, y1) and (x2, y2)). The
�max

x bandlimit is the extent of the occluder wedge along �x (see
Figure 5(a)). Looking at the shape of the original occluder spectrum,
F (�v, �y) (see Figure 4(b)), we find that the transformation from
(�x, �y) to (�v,�y) results in a �max

x being equal to �max
g

d2 max
d1

.
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