
A Simple Obfuscation Scheme for Pattern-Matching
with Wildcards

Allison Bishop] Lucas Kowalczyk\ Tal Malkin\ Valerio Pastro[

Mariana Raykova[Kevin Shi\

]: IEX
\: Columbia University

[: Yale University

August 23, 2018

August 23, 2018 1 / 19

Introduction

Obfuscation

August 23, 2018 2 / 19

Introduction

Obfuscation

Proprietary algorithm?

Cryptographic keys?

August 23, 2018 2 / 19

Introduction

Obfuscation

Proprietary algorithm?

Cryptographic keys?

August 23, 2018 2 / 19

Introduction

Obfuscation

August 23, 2018 2 / 19

Introduction

Virtual black-box obfuscation

August 23, 2018 3 / 19

Introduction

Virtual black-box obfuscation

Prior work

Impossible for general circuits [BGI+01]

Possible for limited function classes such as point functions
[LPS04, Wee05] or hyperplane membership [CRV10]

Most followup work has focused on weaker notions of obfuscation for
general circuits following the construction of [GGH+13]

August 23, 2018 3 / 19

Introduction

Virtual black-box obfuscation

Prior work

Impossible for general circuits [BGI+01]

Possible for limited function classes such as point functions
[LPS04, Wee05] or hyperplane membership [CRV10]

Most followup work has focused on weaker notions of obfuscation for
general circuits following the construction of [GGH+13]

Our work

Consider a nontrivial extension and useful to point functions

Construct distributional VBB from a simple assumption

August 23, 2018 3 / 19

Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

August 23, 2018 4 / 19

Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Example

σ = 01 ∗ ∗01

August 23, 2018 4 / 19

Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Example

σ = 01 ∗ ∗01

x = 010101, f (x) = 1

August 23, 2018 4 / 19

Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Example

σ = 01 ∗ ∗01

x = 010101, f (x) = 1

x = 011001, f (x) = 1

August 23, 2018 4 / 19

Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Example

σ = 01 ∗ ∗01

x = 010101, f (x) = 1

x = 011001, f (x) = 1

x = 110101, f (x) = 0

August 23, 2018 4 / 19

Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Applications

Non wildcard slots in σ represent a security flaw in code. Want to
check for the presence of this flaw without revealing it

σ matches a problematic input. Want to filter out these inputs
without making a user aware if he/she is otherwise unaffected

August 23, 2018 4 / 19

Introduction

Pattern matching with wildcards

Prior work

This function was previously studied by [BR13, BVWW16]

From multilinear maps and from entropic LWE

August 23, 2018 5 / 19

Introduction

Pattern matching with wildcards

Prior work

This function was previously studied by [BR13, BVWW16]

From multilinear maps and from entropic LWE

Our wok

Proof of security in the generic group model

Simple construction which relies only on elementary algebra to
describe and implement

August 23, 2018 5 / 19

Introduction

Distributional VBB for pattern matching with wildcards

Distributional VBB security

For every adversary A there exists a simulator S such that for every
distribution D ∈ Dn and every predicate P : Cn → {0, 1}:

| Pr
C←Dn,G,OG ,A

[AG(OG(fσ, 1
n)) = P(C)]− Pr

C←Dn,S
[SC (1n) = P(C)]|

= negl(n)

August 23, 2018 6 / 19

Introduction

Distributional VBB for pattern matching with wildcards

Distributional VBB security

For every adversary A there exists a simulator S such that for every
distribution D ∈ Dn and every predicate P : Cn → {0, 1}:

| Pr
C←Dn,G,OG ,A

[AG(OG(fσ, 1
n)) = P(C)]− Pr

C←Dn,S
[SC (1n) = P(C)]|

= negl(n)

O(fσ) where σ ∼ D
Sample a random pattern σ

Release obfuscation of fσ

August 23, 2018 6 / 19

Introduction

Distributional VBB for pattern matching with wildcards

Distributional VBB security

For every adversary A there exists a simulator S such that for every
distribution D ∈ Dn and every predicate P : Cn → {0, 1}:

| Pr
C←Dn,G,OG ,A

[AG(OG(fσ, 1
n)) = P(C)]− Pr

C←Dn,S
[SC (1n) = P(C)]|

= negl(n)

O(fσ) where σ ∼ D
Sample a random pattern σ

Release obfuscation of fσ

Simulator S

Build 0-function simulator E

Run A on E

August 23, 2018 6 / 19

Introduction

Generic group model

Setup

n × 2 table of 2n ”handles” in H, where hij corresponds to xi = j

x0 x1 x2 · · · xn−1
0 h00 h10 h20 · · · h(n−1)0
1 h01 h11 h21 · · · h(n−1)1

August 23, 2018 7 / 19

Introduction

Generic group model

Setup

n × 2 table of 2n ”handles” in H, where hij corresponds to xi = j

x0 x1 x2 · · · xn−1
0 h00 h10 h20 · · · h(n−1)0
1 h01 h11 h21 · · · h(n−1)1

Group oracle

Constructs a map Φ : G → H
Given h1, h2 ∈ ImΦ, compute Φ(Φ−1(h1),Φ−1(h2))

August 23, 2018 7 / 19

Introduction

Generic group model

Setup

n × 2 table of 2n ”handles” in H, where hij corresponds to xi = j

x0 x1 x2 · · · xn−1
0 h00 h10 h20 · · · h(n−1)0
1 h01 h11 h21 · · · h(n−1)1

Group oracle

Constructs a map Φ : G → H
Given h1, h2 ∈ ImΦ, compute Φ(Φ−1(h1),Φ−1(h2))

Proper evaluation

Choose h0x0 , · · · , h(n−1)xn−1
and do some math using group oracle

August 23, 2018 7 / 19

Construction

Proper evaluation

Handle symmetry

Given the pattern σ = 01∗, the following need to behave identically:

x=010 x0 x1 x2
0 h00 h10 h20

1 h01 h11 h21

x=011 x0 x1 x2
0 h00 h10 h20
1 h01 h11 h21

August 23, 2018 8 / 19

Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n

August 23, 2018 9 / 19

Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n

Handle distribution

σi 6= j : h̃ij is random in Zp

Example for σ = 01∗
x0 x1 x2

0 r
1 r

August 23, 2018 9 / 19

Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n

Handle distribution

σi 6= j : h̃ij is random in Zp

σi = j : h̃ij = p(2i + j)

Example for σ = 01∗
x0 x1 x2

0 p(0) r
1 r p(3)

August 23, 2018 9 / 19

Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n

Handle distribution

σi 6= j : h̃ij is random in Zp

σi = j : h̃ij = p(2i + j)

σi = ∗ : h̃ij = p(2i + j) ∀j

Example for σ = 01∗
x0 x1 x2

0 p(0) r p(4)
1 r p(3) p(5)

August 23, 2018 9 / 19

Construction

Function evaluation

Function evaluation

Pick the samples {h̃ixi}
n−1
i=0

Constructing interpolating polynomial p̂

Output 1 if p̂(0) = 0

August 23, 2018 10 / 19

Construction

Attacks in the clear

Error-correction for Reed-Solomon codes

Treat the table of 2n handles as 2n samples of a degree-n polynomial
with some number of errors e = n − w

Berlekamp-Welch algorithm can decode if w >
n

2

August 23, 2018 11 / 19

Construction

Attacks in the clear

Error-correction for Reed-Solomon codes

Treat the table of 2n handles as 2n samples of a degree-n polynomial
with some number of errors e = n − w

Berlekamp-Welch algorithm can decode if w >
n

2

Observations

Attacks require nonlinear computations over input-output pairs

Correct evaluation of p̂(0) only requires a linear computation

August 23, 2018 11 / 19

Construction

Construction (in the exponent)

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x] such that p(0) = 0

Fix a cyclic group G with generator g and prime order p

August 23, 2018 12 / 19

Construction

Construction (in the exponent)

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x] such that p(0) = 0

Fix a cyclic group G with generator g and prime order p

Handle distribution

σi 6= j : hij is random in G
σi = j : hij = gp(2i+j)

σi = ∗ : hij = gp(2i+j) ∀j

Example for σ = 01∗
x0 x1 x2

0 gp(0) r gp(4)

1 r gp(3) gp(5)

August 23, 2018 12 / 19

Construction

Polynomial interpolation in the exponent

Function evaluation

p(x) =
n−1∑
i=0

yibi (x): Lagrange interpolating polynomial over {(xi , yi)}

August 23, 2018 13 / 19

Construction

Polynomial interpolation in the exponent

Function evaluation

p(x) =
n−1∑
i=0

yibi (x): Lagrange interpolating polynomial over {(xi , yi)}

Compute Lagrange coefficients Ci := bi (0) =
∏

j 6=i
−2j−xj

2i−xi−xj+2j

August 23, 2018 13 / 19

Construction

Polynomial interpolation in the exponent

Function evaluation

p(x) =
n−1∑
i=0

yibi (x): Lagrange interpolating polynomial over {(xi , yi)}

Compute Lagrange coefficients Ci := bi (0) =
∏

j 6=i
−2j−xj

2i−xi−xj+2j

Compute
n−1∏
i=0

hCi
ixi

August 23, 2018 13 / 19

Construction

Polynomial interpolation in the exponent

Function evaluation

p(x) =
n−1∑
i=0

yibi (x): Lagrange interpolating polynomial over {(xi , yi)}

Compute Lagrange coefficients Ci := bi (0) =
∏

j 6=i
−2j−xj

2i−xi−xj+2j

Compute
n−1∏
i=0

hCi
ixi

Correctness

If each hixi = gp(2i+xi), then
n−1∏
i=0

hCi
ixi

= g
∑n

i=1 p(2i+xi)Ci = gp(0)

If any hixi is a random group element, then output is random

August 23, 2018 13 / 19

Construction

Generic group simulators

August 23, 2018 14 / 19

Construction

Generic group simulators

Internal group representation

S: G
Example element

gp(3)

August 23, 2018 14 / 19

Construction

Generic group simulators

Internal group representation

S: G
E: (Zp[c1, · · · , c2n],+)

Example element

gp(3)

c11

August 23, 2018 14 / 19

Construction

Generic group simulators

Internal group representation

S: G
E: (Zp[c1, · · · , c2n],+)

M: (Zp[a1, · · · , an,b1, · · · ,bn−w],+)

Example element

gp(3)

c11

3a1 + 9a2

August 23, 2018 14 / 19

Construction

Generic group simulators

Internal group representation

S: G
E: (Zp[c1, · · · , c2n],+)

M: (Zp[a1, · · · , an,b1, · · · ,bn−w],+)

Example element

gp(3)

c11

3a1 + 9a2

b1

August 23, 2018 14 / 19

Construction

Security game

Things to keep track of in generic group model

Correspondence between handles and internal group elements

When two different generic group simulators differ

August 23, 2018 15 / 19

Construction

Security game

Things to keep track of in generic group model

Correspondence between handles and internal group elements

When two different generic group simulators differ

Definition (Simultaneous oracle game)

An adversary is given access to a pair of oracles (GM ,G∗), where G∗ is GM
with probability 1/2 and GS with probability 1/2. In each round, the
adversary asks the same query to both oracles. The adversary wins the
game if he guesses correctly the identity of G∗.

August 23, 2018 15 / 19

Construction

Simultaneous oracle game between S and M

August 23, 2018 16 / 19

Construction

Simultaneous oracle game between S and M

Definition (Evaluation map in the exponent)

Given fixed values a1, · · · , an, b1, · · · , bn−w , we have the evaluation map

φ : Z[a1, · · · , an,b1, · · · ,bn−w] −→ G
F (a1, · · · , an,b1, · · · ,bn−w) 7−→ gF (a1,··· ,an,b1,··· ,bn−w)

August 23, 2018 16 / 19

Construction

Simultaneous oracle game between S and M

Definition (Evaluation map in the exponent)

Given fixed values a1, · · · , an, b1, · · · , bn−w , we have the evaluation map

φ : Z[a1, · · · , an,b1, · · · ,bn−w] −→ G
F (a1, · · · , an,b1, · · · ,bn−w) 7−→ gF (a1,··· ,an,b1,··· ,bn−w)

Notation

Ht
S ,Ht

M — the set of handles returned by the simulator up to round t

August 23, 2018 16 / 19

Construction

Simultaneous oracle game between S and M

Definition (Evaluation map in the exponent)

Given fixed values a1, · · · , an, b1, · · · , bn−w , we have the evaluation map

φ : Z[a1, · · · , an,b1, · · · ,bn−w] −→ G
F (a1, · · · , an,b1, · · · ,bn−w) 7−→ gF (a1,··· ,an,b1,··· ,bn−w)

Notation

Ht
S ,Ht

M — the set of handles returned by the simulator up to round t

Ψ : Ht
M → Ht

S — the adversary’s identification of handles returned
by each simulator when given the same query

August 23, 2018 16 / 19

Construction

Simultaneous oracle game between S and M

Definition (Evaluation map in the exponent)

Given fixed values a1, · · · , an, b1, · · · , bn−w , we have the evaluation map

φ : Z[a1, · · · , an,b1, · · · ,bn−w] −→ G
F (a1, · · · , an,b1, · · · ,bn−w) 7−→ gF (a1,··· ,an,b1,··· ,bn−w)

Notation

Ht
S ,Ht

M — the set of handles returned by the simulator up to round t

Ψ : Ht
M → Ht

S — the adversary’s identification of handles returned
by each simulator when given the same query

ΦM : Z[a,b]→ HM ,ΦS : G → HS — each simulator’s internal
mapping of group elements to handles

August 23, 2018 16 / 19

Construction

Inductive hypothesis

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M

satisfying the following:

August 23, 2018 17 / 19

Construction

Inductive hypothesis

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M

satisfying the following:

1 For each round i ≤ t and query answers hsi , h
m
i , either Ψ(hmi) = hsi or

both hsi 6∈ H
i−1
S and hmi 6∈ H

i−1
M

August 23, 2018 17 / 19

Construction

Inductive hypothesis

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M

satisfying the following:

1 For each round i ≤ t and query answers hsi , h
m
i , either Ψ(hmi) = hsi or

both hsi 6∈ H
i−1
S and hmi 6∈ H

i−1
M

2 For every hs ∈ Ht
S , ∃!f ∈ Zp[a,b] such that ΦS ◦ φ(f) = iS(hs) and

Ψ−1(hs) = ΦM(f)

Visualization of (2)

August 23, 2018 17 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

August 23, 2018 18 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

August 23, 2018 18 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

2 Simulator M returns hm and Simulator S returns hs

August 23, 2018 18 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

2 Simulator M returns hm and Simulator S returns hs

3 The inductive hypothesis holds for t + 1 unless hm 6∈ Ht
M but hs ∈ Ht

S

August 23, 2018 18 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

2 Simulator M returns hm and Simulator S returns hs

3 The inductive hypothesis holds for t + 1 unless hm 6∈ Ht
M but hs ∈ Ht

S

hm = ΦM(fm) for some fm. By the inductive hypothesis ∃! fs such
that ΦS ◦ φ(fs) = iS(hs)

August 23, 2018 18 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

2 Simulator M returns hm and Simulator S returns hs

3 The inductive hypothesis holds for t + 1 unless hm 6∈ Ht
M but hs ∈ Ht

S

hm = ΦM(fm) for some fm. By the inductive hypothesis ∃! fs such
that ΦS ◦ φ(fs) = iS(hs)

Failure event is fs − fm ∈ ker φ but fs − fm is nontrivial

August 23, 2018 18 / 19

Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

2 Simulator M returns hm and Simulator S returns hs

3 The inductive hypothesis holds for t + 1 unless hm 6∈ Ht
M but hs ∈ Ht

S

hm = ΦM(fm) for some fm. By the inductive hypothesis ∃! fs such
that ΦS ◦ φ(fs) = iS(hs)

Failure event is fs − fm ∈ ker φ but fs − fm is nontrivial

This is just a combinatorial probability calculation

August 23, 2018 18 / 19

Construction

Conclusion

August 23, 2018 19 / 19

Construction

Conclusion

We give obfuscation scheme for pattern matching with wildcards from
a simpler generic group assumption

August 23, 2018 19 / 19

Construction

Conclusion

We give obfuscation scheme for pattern matching with wildcards from
a simpler generic group assumption

The construction itself is simple to describe and implement in any
standard group library

August 23, 2018 19 / 19

Construction

Conclusion

We give obfuscation scheme for pattern matching with wildcards from
a simpler generic group assumption

The construction itself is simple to describe and implement in any
standard group library

We give a new framework for formalizing generic group proofs via the
simultaneous oracle game

August 23, 2018 19 / 19

Construction

Conclusion

We give obfuscation scheme for pattern matching with wildcards from
a simpler generic group assumption

The construction itself is simple to describe and implement in any
standard group library

We give a new framework for formalizing generic group proofs via the
simultaneous oracle game

Thanks for listening!

August 23, 2018 19 / 19

Construction

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs.
In Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August
19-23, 2001, Proceedings, pages 1–18, 2001.

Zvika Brakerski and Guy N. Rothblum.
Obfuscating conjunctions.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, pages 416–434, 2013.

Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel
Wichs.
Obfuscating conjunctions under entropic ring LWE.
In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, January 14-16,
2016, pages 147–156, 2016.

August 23, 2018 19 / 19

Construction

Ran Canetti, Guy N. Rothblum, and Mayank Varia.
Obfuscation of hyperplane membership.
In Theory of Cryptography, 7th Theory of Cryptography Conference,
TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings,
pages 72–89, 2010.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit
Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption
for all circuits.
In FOCS, 2013.

Ben Lynn, Manoj Prabhakaran, and Amit Sahai.
Positive results and techniques for obfuscation.
In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,
pages 20–39, 2004.

August 23, 2018 19 / 19

Construction

Hoeteck Wee.
On obfuscating point functions.
In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005, pages 523–532,
2005.

August 23, 2018 19 / 19

	Introduction
	Construction

