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Prior work

Impossible for general circuits [BGI+01]

Possible for limited function classes such as point functions
[LPS04, Wee05] or hyperplane membership [CRV10]

Most followup work has focused on weaker notions of obfuscation for
general circuits following the construction of [GGH+13]
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Prior work

Impossible for general circuits [BGI+01]

Possible for limited function classes such as point functions
[LPS04, Wee05] or hyperplane membership [CRV10]

Most followup work has focused on weaker notions of obfuscation for
general circuits following the construction of [GGH+13]

Our work

Consider a nontrivial extension and useful to point functions

Construct distributional VBB from a simple assumption
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Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n
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fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi
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w := number of ∗’s can be a constant fraction of n

Example

σ = 01 ∗ ∗01
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Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Example

σ = 01 ∗ ∗01

x = 010101, f (x) = 1

x = 011001, f (x) = 1

x = 110101, f (x) = 0
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Introduction

Pattern matching with wildcards

A pattern σ is an element σ ∈ {0, 1, ∗}n
fσ(x) = 1 if for every bit i , one of the following is true:

σi = xi

σi = ∗
w := number of ∗’s can be a constant fraction of n

Applications

Non wildcard slots in σ represent a security flaw in code. Want to
check for the presence of this flaw without revealing it

σ matches a problematic input. Want to filter out these inputs
without making a user aware if he/she is otherwise unaffected
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Introduction

Pattern matching with wildcards

Prior work

This function was previously studied by [BR13, BVWW16]

From multilinear maps and from entropic LWE

Our wok

Proof of security in the generic group model

Simple construction which relies only on elementary algebra to
describe and implement
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Distributional VBB for pattern matching with wildcards

Distributional VBB security

For every adversary A there exists a simulator S such that for every
distribution D ∈ Dn and every predicate P : Cn → {0, 1}:

| Pr
C←Dn,G,OG ,A

[AG(OG(fσ, 1
n)) = P(C )]− Pr

C←Dn,S
[SC (1n) = P(C )]|

= negl(n)
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Distributional VBB for pattern matching with wildcards

Distributional VBB security

For every adversary A there exists a simulator S such that for every
distribution D ∈ Dn and every predicate P : Cn → {0, 1}:

| Pr
C←Dn,G,OG ,A

[AG(OG(fσ, 1
n)) = P(C )]− Pr

C←Dn,S
[SC (1n) = P(C )]|

= negl(n)

O(fσ) where σ ∼ D
Sample a random pattern σ

Release obfuscation of fσ

Simulator S

Build 0-function simulator E

Run A on E
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Introduction

Generic group model

Setup

n × 2 table of 2n ”handles” in H, where hij corresponds to xi = j

x0 x1 x2 · · · xn−1
0 h00 h10 h20 · · · h(n−1)0
1 h01 h11 h21 · · · h(n−1)1
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Generic group model

Setup

n × 2 table of 2n ”handles” in H, where hij corresponds to xi = j

x0 x1 x2 · · · xn−1
0 h00 h10 h20 · · · h(n−1)0
1 h01 h11 h21 · · · h(n−1)1

Group oracle

Constructs a map Φ : G → H
Given h1, h2 ∈ ImΦ, compute Φ(Φ−1(h1),Φ−1(h2))

Proper evaluation

Choose h0x0 , · · · , h(n−1)xn−1
and do some math using group oracle
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Construction

Proper evaluation

Handle symmetry

Given the pattern σ = 01∗, the following need to behave identically:

x=010 x0 x1 x2
0 h00 h10 h20

1 h01 h11 h21

x=011 x0 x1 x2
0 h00 h10 h20
1 h01 h11 h21
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Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x ] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n
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σi 6= j : h̃ij is random in Zp

Example for σ = 01∗
x0 x1 x2

0 r
1 r

August 23, 2018 9 / 19



Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x ] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n

Handle distribution

σi 6= j : h̃ij is random in Zp

σi = j : h̃ij = p(2i + j)

Example for σ = 01∗
x0 x1 x2

0 p(0) r
1 r p(3)
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Construction

Polynomial interpolation

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x ] such that p(0) = 0

a1, · · · , an ∼ Zp and f (x) = a1x + · · ·+ anx
n

Handle distribution

σi 6= j : h̃ij is random in Zp

σi = j : h̃ij = p(2i + j)

σi = ∗ : h̃ij = p(2i + j) ∀j

Example for σ = 01∗
x0 x1 x2

0 p(0) r p(4)
1 r p(3) p(5)
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Function evaluation

Function evaluation

Pick the samples {h̃ixi}
n−1
i=0

Constructing interpolating polynomial p̂

Output 1 if p̂(0) = 0
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Construction

Attacks in the clear

Error-correction for Reed-Solomon codes

Treat the table of 2n handles as 2n samples of a degree-n polynomial
with some number of errors e = n − w

Berlekamp-Welch algorithm can decode if w >
n

2
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Construction

Attacks in the clear

Error-correction for Reed-Solomon codes

Treat the table of 2n handles as 2n samples of a degree-n polynomial
with some number of errors e = n − w

Berlekamp-Welch algorithm can decode if w >
n

2

Observations

Attacks require nonlinear computations over input-output pairs

Correct evaluation of p̂(0) only requires a linear computation
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Construction (in the exponent)

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x ] such that p(0) = 0

Fix a cyclic group G with generator g and prime order p
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Construction

Construction (in the exponent)

Setup

Sample and fix a degree-n polynomial p ∈ Zp[x ] such that p(0) = 0

Fix a cyclic group G with generator g and prime order p

Handle distribution

σi 6= j : hij is random in G
σi = j : hij = gp(2i+j)

σi = ∗ : hij = gp(2i+j) ∀j

Example for σ = 01∗
x0 x1 x2

0 gp(0) r gp(4)

1 r gp(3) gp(5)
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Polynomial interpolation in the exponent

Function evaluation

p(x) =
n−1∑
i=0

yibi (x): Lagrange interpolating polynomial over {(xi , yi )}
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Compute Lagrange coefficients Ci := bi (0) =
∏

j 6=i
−2j−xj

2i−xi−xj+2j
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Construction

Polynomial interpolation in the exponent

Function evaluation

p(x) =
n−1∑
i=0

yibi (x): Lagrange interpolating polynomial over {(xi , yi )}

Compute Lagrange coefficients Ci := bi (0) =
∏

j 6=i
−2j−xj

2i−xi−xj+2j

Compute
n−1∏
i=0

hCi
ixi

Correctness

If each hixi = gp(2i+xi ), then
n−1∏
i=0

hCi
ixi

= g
∑n

i=1 p(2i+xi )Ci = gp(0)

If any hixi is a random group element, then output is random
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Generic group simulators

Internal group representation

S: G
Example element

gp(3)
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Generic group simulators

Internal group representation

S: G
E: (Zp[c1, · · · , c2n],+)

Example element

gp(3)

c11

August 23, 2018 14 / 19



Construction

Generic group simulators

Internal group representation

S: G
E: (Zp[c1, · · · , c2n],+)

M: (Zp[a1, · · · , an,b1, · · · ,bn−w ],+)

Example element

gp(3)

c11

3a1 + 9a2
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Construction

Generic group simulators

Internal group representation

S: G
E: (Zp[c1, · · · , c2n],+)

M: (Zp[a1, · · · , an,b1, · · · ,bn−w ],+)

Example element

gp(3)

c11

3a1 + 9a2

b1
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Construction

Security game

Things to keep track of in generic group model

Correspondence between handles and internal group elements

When two different generic group simulators differ
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Construction

Security game

Things to keep track of in generic group model

Correspondence between handles and internal group elements

When two different generic group simulators differ

Definition (Simultaneous oracle game)

An adversary is given access to a pair of oracles (GM ,G∗), where G∗ is GM
with probability 1/2 and GS with probability 1/2. In each round, the
adversary asks the same query to both oracles. The adversary wins the
game if he guesses correctly the identity of G∗.
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Simultaneous oracle game between S and M
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Simultaneous oracle game between S and M

Definition (Evaluation map in the exponent)

Given fixed values a1, · · · , an, b1, · · · , bn−w , we have the evaluation map

φ : Z[a1, · · · , an,b1, · · · ,bn−w ] −→ G
F (a1, · · · , an,b1, · · · ,bn−w ) 7−→ gF (a1,··· ,an,b1,··· ,bn−w )
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Construction

Simultaneous oracle game between S and M

Definition (Evaluation map in the exponent)

Given fixed values a1, · · · , an, b1, · · · , bn−w , we have the evaluation map

φ : Z[a1, · · · , an,b1, · · · ,bn−w ] −→ G
F (a1, · · · , an,b1, · · · ,bn−w ) 7−→ gF (a1,··· ,an,b1,··· ,bn−w )

Notation

Ht
S ,Ht

M — the set of handles returned by the simulator up to round t

Ψ : Ht
M → Ht

S — the adversary’s identification of handles returned
by each simulator when given the same query

ΦM : Z[a,b]→ HM ,ΦS : G → HS — each simulator’s internal
mapping of group elements to handles
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Inductive hypothesis

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M

satisfying the following:
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Inductive hypothesis

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M

satisfying the following:

1 For each round i ≤ t and query answers hsi , h
m
i , either Ψ(hmi ) = hsi or

both hsi 6∈ H
i−1
S and hmi 6∈ H

i−1
M
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Construction

Inductive hypothesis

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M

satisfying the following:

1 For each round i ≤ t and query answers hsi , h
m
i , either Ψ(hmi ) = hsi or

both hsi 6∈ H
i−1
S and hmi 6∈ H

i−1
M

2 For every hs ∈ Ht
S , ∃!f ∈ Zp[a,b] such that ΦS ◦ φ(f ) = iS(hs) and

Ψ−1(hs) = ΦM(f )

Visualization of (2)
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The failure event

Given t rounds of simulation, on round t + 1:
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The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
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2 Simulator M returns hm and Simulator S returns hs

3 The inductive hypothesis holds for t + 1 unless hm 6∈ Ht
M but hs ∈ Ht

S

hm = ΦM(fm) for some fm. By the inductive hypothesis ∃! fs such
that ΦS ◦ φ(fs) = iS(hs)

Failure event is fs − fm ∈ ker φ but fs − fm is nontrivial

August 23, 2018 18 / 19



Construction

The failure event

Given t rounds of simulation, on round t + 1:

1 Adversary performs the query h1 · h2 to Simulator M and
Ψ(h1) ·Ψ(h2) to Simulator S

2 Simulator M returns hm and Simulator S returns hs

3 The inductive hypothesis holds for t + 1 unless hm 6∈ Ht
M but hs ∈ Ht

S

hm = ΦM(fm) for some fm. By the inductive hypothesis ∃! fs such
that ΦS ◦ φ(fs) = iS(hs)

Failure event is fs − fm ∈ ker φ but fs − fm is nontrivial

This is just a combinatorial probability calculation
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Construction

Conclusion

We give obfuscation scheme for pattern matching with wildcards from
a simpler generic group assumption

The construction itself is simple to describe and implement in any
standard group library

We give a new framework for formalizing generic group proofs via the
simultaneous oracle game

Thanks for listening!
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