Correspondence retrieval

Alexandr Andoni [†] Daniel Hsu [†] Kevin Shi[†] Xiaorui Sun[‡]

 † Columbia University, $^{\sharp}$ Simons Institute for the Theory of Computing

July 8th, 2017

Correspondence retrieval

- ▶ The universe has unknown vectors $x_1, \cdots, x_k \in \mathbb{R}^d$
- Sample measurement vectors w_1, \cdots, w_n
- For each w_i , observe the unordered set $\{w_i^T x_1, \cdots, w_i^T x_k\}$

Problem setup

Special case - phase retrieval (real-valued)

- The universe has a single unknown vector \overline{x}
- Sample measurement vectors w_1, \cdots, w_n
- For each w_i , observe $|w_i^T \overline{x}|$

This is obtained by setting k = 2 and $\overline{w} = \frac{1}{2}(x_1 - x_2)$

Related work

Mixture of linear regressions [YCS14] [YCS16]

- Universe has k hidden model parameters x_1, \cdots, x_k
- For each i = 1, · · · , n, sample multinomial random variable z_i and measurement vector w_i

• Observe response-covariate pairs $\{(y_i, w_i)\}_{i=1}^n$ such that

$$y_i = \sum_{j=1}^k \langle w_j, x_i \rangle \, \mathbb{1}(z_i = j)$$

Algorithms

- [YCS16] show an efficient inference algorithm with sample complexity $\tilde{O}(k^{10}d)$
- Uses tensor decomposition for mixture models and alternating minimization

Main result

Theorem

Assume the following conditions:

• $n \ge d+1$ • $w_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i = 1, \cdots, n$

• x_1, \dots, x_k are linearly dependent with condition number $\lambda(X)$ Then there is an efficient algorithm which solves the correspondence retrieval using n measurement vectors.

Introduces a nonstandard tool in this area - the LLL Lattice Basis Reduction algorithm.

Comparison with related work

Mixture of linear regressions

- Each sample vector w_i corresponds to k samples in the mixture model
- Previous result: $\tilde{O}(k^{10}d)$ samples
- Our result: k(d+1) samples

Real-valued phase retrieval

- Previous result: 2d 1 measurement vectors can recover all possible hidden x [BCE08]
- Our result: d + 1 measurement vectors suffice to recover any single hidden x with high probability

Main idea - reduction to Subset Sum

Subset sum Given integers $\{a_i\}_{i=1}^n$ and a target sum M, determine if there are $z_i \in \{0,1\}$ such that

$$\sum_{i=1}^{''} z_i a_i = M$$

Complexity

- Subset Sum is NP-hard in the worst case, but easy in the average case where the a_i's are uniformly distributed [LO85]
- ► We extend this to the case where ∑ⁿ_{i=1} z_ia_i just needs to satisfy anti-concentration inequalities at every point

Lattices

Definition (Lattice)

Given a collection of linearly independent vectors $b_1, \dots, b_m \in \mathbb{R}^d$, a lattice ΛB over the basis $B = \{b_1, \dots, b_m\}$ is the \mathbb{Z} -module of B as embedded in \mathbb{R}^d

$$\Lambda \mathbf{B} = \left\{ \sum_{i=1}^m z_i b_i \, : \, z_i \in \mathbb{Z} \right\}$$

Shortest vector problem

Given a lattice basis $\mathbf{B} \subset \mathbb{R}^d$, find the lattice vector $\mathbf{B}z \in \Lambda \mathbf{B}$ s.t.

$$z = \arg\min_{z \in \mathbb{Z} - \{\mathbf{0}\}} \|\mathbf{B}z\|_2^2$$

Shortest Vector Problem

Hardness of approximation

Shortest vector problem is NP-hard to approximate to within a constant factor.

LLL Lattice Basis Reduction[LLL82]

There is an efficient approximation algorithm for solving the Shortest Vector Problem.

- ► Approximation factor: 2^{*d*/2}
- Running time: $poly(d, log \lambda(B))$

- 1. Reduce the correspondence retrieval problem to the shortest vector problem in a lattice with basis *B*: $\arg \min_{z \in \mathbb{Z}^{dk+1}} ||Bz||_2$
- 2. Show that the coefficient vector z with 1's in the correct correspondences produces a lattice vector of norm $\sqrt{d+1}$
- 3. Show that for a fixed, incorrect z, with high probability $||Bz||_2 \ge 2^{(dk+1)/2}\sqrt{d+1}$ over the randomness of the w_i 's
- 4. Under appropriate scaling and a union bound argument, every incorrect z produces a lattice vector with norm at least $2^{(dk+1)/2}\sqrt{d+1}$

- 1. Reduce the correspondence retrieval problem to the shortest vector problem in a lattice with basis *B*: $\arg \min_{z \in \mathbb{Z}^{dk+1}} ||Bz||_2$
- 2. Show that the coefficient vector z with 1's in the correct correspondences produces a lattice vector of norm $\sqrt{d+1}$
- 3. Show that for a fixed, incorrect z, with high probability $||Bz||_2 \ge 2^{(dk+1)/2}\sqrt{d+1}$ over the randomness of the w_i 's
- 4. Under appropriate scaling and a union bound argument, every incorrect z produces a lattice vector with norm at least $2^{(dk+1)/2}\sqrt{d+1}$

- 1. Reduce the correspondence retrieval problem to the shortest vector problem in a lattice with basis *B*: $\arg \min_{z \in \mathbb{Z}^{dk+1}} ||Bz||_2$
- 2. Show that the coefficient vector z with 1's in the correct correspondences produces a lattice vector of norm $\sqrt{d+1}$
- 3. Show that for a fixed, incorrect z, with high probability $||Bz||_2 \ge 2^{(dk+1)/2}\sqrt{d+1}$ over the randomness of the w_i 's
- 4. Under appropriate scaling and a union bound argument, every incorrect z produces a lattice vector with norm at least $2^{(dk+1)/2}\sqrt{d+1}$

- 1. Reduce the correspondence retrieval problem to the shortest vector problem in a lattice with basis *B*: $\arg \min_{z \in \mathbb{Z}^{dk+1}} ||Bz||_2$
- 2. Show that the coefficient vector z with 1's in the correct correspondences produces a lattice vector of norm $\sqrt{d+1}$
- 3. Show that for a fixed, incorrect z, with high probability $||Bz||_2 \ge 2^{(dk+1)/2}\sqrt{d+1}$ over the randomness of the w_i 's
- 4. Under appropriate scaling and a union bound argument, every incorrect z produces a lattice vector with norm at least $2^{(dk+1)/2}\sqrt{d+1}$

Recap

- We defined a new observation model which is loosely inspired by mixture models and which also generalizes phase retrieval
- We show that this observation model admits exact inference with lower sample complexity than either of the above two models
- We describe an algorithm based on a completely different technique - the LLL basis reduction algorithm

Recap

- We defined a new observation model which is loosely inspired by mixture models and which also generalizes phase retrieval
- We show that this observation model admits exact inference with lower sample complexity than either of the above two models
- We describe an algorithm based on a completely different technique - the LLL basis reduction algorithm

Thanks for listening!