Linear regression without correspondence
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Problem definition

> Covariate vectors: 1, T3,..., T, € R?
> Responses: y1,Y2,...,Yn € R
> Model:

Yi = W Tzu)+ €, T E [N
> Unknown linear function: w € R¢
> Unknown permutation: ™ € S,

> Measurement errors: €1,€24...,&, € R
e.g., (g;)7_, iid from N(0, 0%))
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> Observe the entire emission spectrum at once

Strong NP-hardness

Definition 1 (Permuted Linear System).
Given X € Z”Xd, Y € Q", decide if there exists
a vector w € Q% and a permutation w € S,,
such that Xw = Y,

Proposition 1.Permuted Linear System is
strongly NP-complete by a reduction from
3-Partition.

Approximation guarantee for least-squares

Definition 2 (Least-squares recovery).
Given (zx;)"_, and (y;)"_, from R, find
n
. . : 2
(wmlev 7"-'mle) -— arg min Z (yz — wwﬂ‘(’&))
weR,TES, i1
Theorem 1. There is an algorithm that given any inputs

(i)™, (yi),, and e € (0,1), returns a

=1
(1 + €)-approximate solution to the least squares problem

in time (n/€)°®) + poly(n, d), where
k = dim(span(x;)?_,). ;

Approximation algorithm

This uses the following coreset result for linear systems:

Proposition 2 (Boutsidis, Drineas, Magdon-Ismail).
Given a matrix A € R™ ¥, there exists a weighted subset
of 4k rows determined by a matrix S € R**X™ sych that
for any b, every minimizer of the subsampled linear system

w’ € arg min ||S(Aw — b)||;

also satisfies
| Aw’ — b2 < c

forc = O(n/k). Morever, there exists an efficient
algorithm which returns a matrix S in time poly(n, k).

Algorithm 1 Approximation algorithm

input Covariate matrix X = [z1|xs| -« - |T,]T € R™X¥¥;

response vector ¥y = (Y1, Y2y« .. Yn) € R"™; approx-

imation parameter € € (0, 1).

Compute the matrix S € R"*™ from input matrix X .

Let BB be the set of all permutations of y

Let ¢ := 1+ 4(1 + /n/(4k))?.

for each b € B do

Compute W, € argmingg: ||[||0]S(Xw — b)7,

and let 7, := minpep, ||[||0] X @y — IT 5.

6: Construct a \/erb/c—net N, for the Euclidean ball of

radius 4/crp around wyp, so that for each v € R* with

1[||0]v — Wpy < /€Ty, there exists v/ € N such
that ||[||0]v — vy < (/erp/c

7. end for

8. return

AR O A

W € arg min min || Xw — IT"y||3
wEUpes Ny HEPn ;

and

II € argmin | X@ — IT"y||3
IHeP,

Polynomial time recovery in the random setting

Theorem 2.Fix any w € R? and ® € S,,, and assume
n > d. Suppose (xz;)*_, are drawn iid from N(0, I4),
and (y;)"_, satisfy

1 € [n].
There is an algorithm that, given inputs (x;)"_, and
(y:)2_,, returns ™ and w with high probability

a7y " . . — any ! :
Yo — W Lo, Yi — W Lxr(;),

Reduction to (random) subset sum

Given d + 1 measurements and one correspondence
Yo = w!xg, for orthogonal (x; o, can write:

d d
Yo = Z (w'xj) (z;20) = Z Yz-1(j) (€ ;o)
j=1 j=1
d d
= > > 1{w(i) = j} - yi (z]z0)
i=1 j=1 T

> {c; ;} and yo define a subset sum problem whose
solution recovers the underlying correspondence.

> In general (x;)}_, are close to orthogonal; use the
Moore-Penrose pseudoinverse.

> The one given correspondence can be brute-forced,
creating d 4 1 subset sum instances of which only one
has a solution

Solving random subset-sum instances

Proposition 3 (Lagarias and Odlyzko).

Random instances of subset sum are efficiently solvable
when the c¢; ;'s are independently and uniformly distributed
over a large enough subinterval of Z.

This relies on the following inequality which lower bounds
the closeness to the target sum of incorrect solutions.
Lemma 1.For any vector (z; ;) which is not the correct
correspondence,

1
Yo — Z <1,jCi,j 2 2po/y(d)”wH2
1,]

> We show this bound holds under other distributions
satisfying general anticoncentration bounds and even if
the ¢; ;'s are not independent

Reduction to shortest vector problem

Definition 3 (Shortest vector problem).
Given a lattice basis B C R¢, output a lattice vector

Bz € AB where
z = arg min ||Bz||;
zeZ—{0}
Lemma 2 (LLL Lattice Basis Reduction).
There is an efficient approximation algorithm for solving the

Shortest Vector Problem with
> Approximation factor: 29/2
> Running time: po/y(d, log )\(B))

Algorithm 2 Lattice algorithm for subset sum

input Source numbers {c;},.; C R; target sum t € R;
lattice parameter 3 > O.
1. Construct lattice basis B € RUZI+2)X(ZI+1) where

L7141

Bt —GBc; :1 €L

2. Run LLL Lattice Basis Reduction to find non-zero lattice
vector v of length at most 21Z1/2 . \;(B).

B =

c RUITIH2)X(ZI+1)

Information-theoretic lower bounds on SNR

Definition 4 (Random measurement setting).

Observe
Yi = W Tz(i) + €
where
> € R N (0, 0?) is the measurement noise
iid

> x; ~ N (0, I;) are the covariates

Definition 5 (SNR).

The signal-to-noise ratio for this model is ||w||5/0*

Theorem 3./n the random measurement setting, if for
some constant C

d
SNR < C - min , 1
log logn

then for every estimator W, there exists aw € R? such
that

5 (Il — wlla] > - |l

> Recall that standard linear regression satisfies the

bound [E [ | W,e — E] < Co+/d/n
> In the low SNR regime, more measurements makes the
oroblem more difficult
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