Problem definition

 \triangleright Covariate vectors: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$

- \triangleright Responses: $y_1, y_2, \ldots, y_n \in \mathbb{R}$
- ► **Model**:

$$y_i \ = \ ar{w}^{\scriptscriptstyle op} x_{ar{\pi}(i)} + arepsilon_i\,, \quad i\in [n]$$

- \triangleright Unknown linear function: $\bar{w} \in \mathbb{R}^d$
- \triangleright Unknown permutation: $\bar{\pi} \in S_n$
- \triangleright Measurement errors: $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \mathbb{R}$ e.g., $(arepsilon_i)_{i=1}^n$ iid from $\mathrm{N}(0,\sigma^2))$

Examples

Multi-view geometry

Unknown correspondence between keypoints

Observe the entire emission spectrum at once

Strong NP-hardness

Definition 1 (Permuted Linear System). Given $X \in \mathbb{Z}^{n imes d}, Y \in \mathbb{Q}^n$, decide if there exists a vector $w \in \mathbb{Q}^d$ and a permutation $\pi \in S_n$ such that $Xw=Y_\pi$ **Proposition 1.** Permuted Linear System is

strongly NP-complete by a reduction from 3-Partition.

Approximation guarantee for least-squares

also satisfies

- 7: end for
- 8: return

and

Linear regression without correspondence

Daniel Hsu[†], Kevin Shi[†], Xiaorui Sun[‡], [†]Columbia University, [‡]Simons Institute for the Theory of Computing

Definition 2 (Least-squares recovery). Given $(x_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from \mathbb{R} , find $(\hat{w}_{mle}, \hat{\pi}_{mle}) \coloneqq rgmin_{w \in \mathbb{R}, \pi \in S_n} \sum_{i=1} \left(y_i - w x_{\pi(i)}
ight)^2$ **Theorem 1.** There is an algorithm that given any inputs $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$, and $\epsilon \in (0,1)$, returns a $(1+\epsilon)$ -approximate solution to the least squares problem in time $(n/\epsilon)^{O(k)} + \operatorname{poly}(n,d)$, where $k = \dim(\operatorname{span}(x_i)_{i=1}^n)$.;

Approximation algorithm

This uses the following coreset result for linear systems: **Proposition 2 (Boutsidis, Drineas, Magdon-Ismail).** Given a matrix $A \in \mathbb{R}^{n \times k}$, there exists a weighted subset of 4k rows determined by a matrix $S \in \mathbb{R}^{4k imes n}$ such that for any **b**, every minimizer of the subsampled linear system

$$w' \in rg\min \|S(Aw-b)\|_{2}^{2}$$

 $\|Aw'-b\|_2^2 \leq c$

for c = O(n/k). Morever, there exists an efficient algorithm which returns a matrix S in time poly(n,k).

Algorithm 1 Approximation algorithm input Covariate matrix $X = [x_1 | x_2 | \cdots | x_n]^ op \in \mathbb{R}^{n imes k}$; response vector $y = (y_1, y_2, \dots, y_n)^ op \in \mathbb{R}^n$; approximation parameter $\epsilon \in (0, 1)$. 1: Compute the matrix $S \in \mathbb{R}^{r \times n}$ from input matrix X. 2: Let \mathcal{B} be the set of all permutations of y3: Let $c := 1 + 4(1 + \sqrt{n/(4k)})^2$. 4: for each $b \in \mathcal{B}$ do 5: Compute $ilde{w}_b \in \mathrm{arg\,min}_{w\in\mathbb{R}^k} \|[\|0]S(Xw-b)_2^2]$ and let $r_b \coloneqq \min_{\Pi \in \mathcal{P}_n} \| [\| 0] X ilde{w}_b - \Pi^ op y_2^2.$ 6: Construct a $\sqrt{\epsilon r_b/c}$ -net \mathcal{N}_b for the Euclidean ball of radius $\sqrt{cr_b}$ around $ilde{w}_b$, so that for each $v\in \mathbb{R}^k$ with $\| [\| 0] v - ilde{w}_{b2} \leq \sqrt{cr_b}$, there exists $v' \in \mathcal{N}_b$ such that $\|[\|0]v - {v'}_2 \leq \sqrt{\epsilon r_b/c}$.

$$w \in lpha \sup_{w \in igcup_{b \in \mathcal{B}}} \min_{\mathcal{N}_b} \min_{\Pi \in \mathcal{P}_n} \|Xw - \Pi^ op y\|_2^2$$

$$\hat{\Pi} \in rgmin_{\Pi \in \mathcal{P}_n} \|X \hat{w} - \Pi^{ op} y\|_2^2$$

Polynomial time recovery in the random setting

Theorem 2. Fix any $\bar{w} \in \mathbb{R}^d$ and $\bar{\pi} \in S_n$, and assume $n \geq d$. Suppose $(x_i)_{i=0}^n$ are drawn iid from $\mathrm{N}(0, I_d)$, and $(y_i)_{i=0}^n$ satisfy $y_0 \ = \ ar{w}^{\scriptscriptstyle op} x_0 \, ; \qquad y_i \ = \ ar{w}^{\scriptscriptstyle op} x_{ar{\pi}(i)} \, , \quad i \in [n] \, .$ There is an algorithm that, given inputs $(x_i)_{i=0}^n$ and $(y_i)_{i=0}^n$, returns $ar{\pi}$ and $ar{w}$ with high probability.

Reduction to (random) subset sum

Given d + 1 measurements and one correspondence $y_0 = ar{w}^T x_0$, for orthogonal $(x_i)_{i=0}^n$, can write:

 $y_0 =$

Solving random subset-sum instances

Proposition 3 (Lagarias and Odlyzko). Random instances of subset sum are efficiently solvable when the $c_{i,j}$'s are independently and uniformly distributed over a large enough subinterval of \mathbb{Z} .

This relies on the following inequality which lower bounds the closeness to the target sum of incorrect solutions. **Lemma 1.** For any vector $(z_{i,j})$ which is not the correct correspondence,

We show this bound holds under other distributions satisfying general anticoncentration bounds and even if the $c_{i,j}$'s are not independent

$$\sum_{j=1}^d \left(ar{w}^{ op} x_j
ight)(x_j^{ op} x_0) = \sum_{j=1}^d y_{ar{\pi}^{-1}(j)}\left(x_j^{ op} x_0
ight) \ \sum_{i=1}^d \sum_{j=1}^d \mathbb{1}\{ar{\pi}(i)=j\} \cdot \underbrace{y_i\left(x_j^{ op} x_0
ight)}_{C_{i,j}}$$

 \triangleright { $c_{i,j}$ } and y_0 define a subset sum problem whose solution recovers the underlying correspondence. ▷ In general $(x_i)_{i=0}^n$ are close to orthogonal; use the Moore-Penrose pseudoinverse.

▷ The one given correspondence can be brute-forced, creating d+1 subset sum instances of which only one has a solution

$$ig|y_0-\sum_{i,j}z_{i,j}c_{i,j}ig|\geq rac{1}{2^{ extsf{poly}(d)}}\|ar{w}\|_2$$

 $\mathsf{B}z\in\Lambda\mathsf{B}$ where

Lemma 2 (LLL Lattice Basis Reduction). There is an efficient approximation algorithm for solving the Shortest Vector Problem with \triangleright Approximation factor: $2^{d/2}$ \triangleright Running time: $poly(d, \log \lambda(B))$

Information-theoretic lower bounds on SNR

Observe

where

$$\triangleright \ \epsilon_i \stackrel{iid}{\sim} \mathcal{N}$$

 $\triangleright \ x_i \stackrel{iid}{\sim} \mathcal{N}$

Definition 5 (SNR).

some constant C

that

Reduction to shortest vector problem

Definition 3 (Shortest vector problem). Given a lattice basis $\mathbf{B} \subset \mathbb{R}^d$, output a lattice vector

$$egin{array}{lll} z = rgmin \, \| \mathsf{B} m{z} \|_2^2 \ z \in \mathbb{Z} - \{ m{0} \} \end{array}$$

Algorithm 2 Lattice algorithm for subset sum input Source numbers $\{c_i\}_{i\in\mathcal{I}}\subset\mathbb{R}$; target sum $t\in\mathbb{R}$; lattice parameter $\beta > 0$. 1: Construct lattice basis $B \in \mathbb{R}^{(|\mathcal{I}|+2) imes (|\mathcal{I}|+1)}$ where $B \ \coloneqq \ \left[rac{I_{|\mathcal{I}|+1}}{eta t \mid -eta c_i : i \in \mathcal{I}}
ight]$ $\in \mathbb{R}^{(|\mathcal{I}|+2) \times (|\mathcal{I}|+1)}$.

2: Run LLL Lattice Basis Reduction to find non-zero lattice vector v of length at most $2^{|\mathcal{I}|/2} \cdot \lambda_1(B)$.

Definition 4 (Random measurement setting).

 $y_i = ar{w}^T x_{ar{\pi}(i)} + \epsilon_i$

 $\mathcal{O}(0,\sigma^2)$ is the measurement noise $(0, I_d)$ are the covariates

The signal-to-noise ratio for this model is $\|ar{w}\|_2^2/\sigma^2$

Theorem 3. In the random measurement setting, if for

$$\text{SNR} \leq C \cdot \min\left\{rac{d}{\log\log n}, 1
ight\}$$

then for every estimator \hat{w} , there exists a $\overline{w} \in \mathbb{R}^d$ such

$$\mathbb{E}\left[\|\hat{w}-\overline{w}\|_2
ight]\geq rac{1}{24}\|\overline{w}\|_2$$

Recall that standard linear regression satisfies the bound $\mathbb{E}\left[\| w_{mle} - \overline{w}
ight] \leq C \sigma \sqrt{d/n}$ ▷ In the low SNR regime, more measurements makes the problem more difficult