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Problem definition

. Covariate vectors: x1, x2, . . . , xn ∈ Rd

. Responses: y1, y2, . . . , yn ∈ R

. Model:

yi = w̄>xπ̄(i) + εi , i ∈ [n]

. Unknown linear function: w̄ ∈ Rd

. Unknown permutation: π̄ ∈ Sn

. Measurement errors: ε1, ε2, . . . , εn ∈ R
e.g., (εi)

n
i=1 iid from N(0, σ2))

Examples

Multi-view geometry

. Unknown correspondence between keypoints

Flow cytometry

. Observe the entire emission spectrum at once

Strong NP-hardness

Definition 1 (Permuted Linear System).
Given X ∈ Zn×d, Y ∈ Qn, decide if there exists
a vector w ∈ Qd and a permutation π ∈ Sn
such that Xw = Yπ
Proposition 1.Permuted Linear System is
strongly NP-complete by a reduction from
3-Partition.

Approximation guarantee for least-squares

Definition 2 (Least-squares recovery).
Given (xi)

n
i=1 and (yi)

n
i=1 from R, find

(ŵmle, π̂mle) := arg min
w∈R,π∈Sn

n∑
i=1

(
yi − wxπ(i)

)2
Theorem 1.There is an algorithm that given any inputs
(xi)

n
i=1, (yi)

n
i=1, and ε ∈ (0, 1), returns a

(1 + ε)-approximate solution to the least squares problem
in time (n/ε)O(k) + poly(n, d), where
k = dim(span(xi)

n
i=1). ;

Approximation algorithm

This uses the following coreset result for linear systems:
Proposition 2 (Boutsidis, Drineas, Magdon-Ismail).
Given a matrix A ∈ Rn×k, there exists a weighted subset
of 4k rows determined by a matrix S ∈ R4k×n such that
for any b, every minimizer of the subsampled linear system

w′ ∈ arg min
w
‖S(Aw − b)‖2

2

also satisfies
‖Aw′ − b‖2

2 ≤ c
for c = O(n/k). Morever, there exists an efficient
algorithm which returns a matrix S in time poly(n, k).

Algorithm 1 Approximation algorithm
input Covariate matrix X = [x1|x2| · · · |xn]> ∈ Rn×k;

response vector y = (y1, y2, . . . , yn)
> ∈ Rn; approx-

imation parameter ε ∈ (0, 1).
1: Compute the matrix S ∈ Rr×n from input matrix X.
2: Let B be the set of all permutations of y
3: Let c := 1 + 4(1 +

√
n/(4k))2.

4: for each b ∈ B do
5: Compute w̃b ∈ arg minw∈Rk ‖[‖0]S(Xw − b)2

2,

and let rb := minΠ∈Pn ‖[‖0]Xw̃b −Π>y2
2.

6: Construct a
√
εrb/c-net Nb for the Euclidean ball of

radius
√
crb around w̃b, so that for each v ∈ Rk with

‖[‖0]v − w̃b2 ≤
√
crb, there exists v′ ∈ Nb such

that ‖[‖0]v − v′2 ≤
√
εrb/c.

7: end for
8: return

ŵ ∈ arg min
w∈

⋃
b∈BNb

min
Π∈Pn
‖Xw −Π>y‖2

2

and
Π̂ ∈ arg min

Π∈Pn
‖Xŵ −Π>y‖2

2

Polynomial time recovery in the random setting

Theorem 2.Fix any w̄ ∈ Rd and π̄ ∈ Sn, and assume
n ≥ d. Suppose (xi)

n
i=0 are drawn iid from N(0, Id),

and (yi)
n
i=0 satisfy

y0 = w̄>x0 ; yi = w̄>xπ̄(i) , i ∈ [n] .

There is an algorithm that, given inputs (xi)
n
i=0 and

(yi)
n
i=0, returns π̄ and w̄ with high probability.

Reduction to (random) subset sum

Given d+ 1 measurements and one correspondence
y0 = w̄Tx0, for orthogonal (xi)

n
i=0, can write:

y0 =
d∑
j=1

(w̄>xj) (x>jx0) =
d∑
j=1

yπ̄−1(j) (x>jx0)

=
d∑
i=1

d∑
j=1

1{π̄(i) = j} · yi (x>jx0)︸ ︷︷ ︸
ci,j

. {ci,j} and y0 define a subset sum problem whose
solution recovers the underlying correspondence.

. In general (xi)
n
i=0 are close to orthogonal; use the

Moore-Penrose pseudoinverse.
. The one given correspondence can be brute-forced,

creating d+ 1 subset sum instances of which only one
has a solution

Solving random subset-sum instances

Proposition 3 (Lagarias and Odlyzko).
Random instances of subset sum are efficiently solvable
when the ci,j’s are independently and uniformly distributed
over a large enough subinterval of Z.

This relies on the following inequality which lower bounds
the closeness to the target sum of incorrect solutions.
Lemma 1.For any vector (zi,j) which is not the correct
correspondence,∣∣∣∣∣∣y0 −

∑
i,j

zi,jci,j

∣∣∣∣∣∣ ≥ 1

2poly(d)
‖w̄‖2

. We show this bound holds under other distributions
satisfying general anticoncentration bounds and even if
the ci,j’s are not independent

Reduction to shortest vector problem

Definition 3 (Shortest vector problem).
Given a lattice basis B ⊂ Rd, output a lattice vector
Bz ∈ ΛB where

z = arg min
z∈Z−{0}

‖Bz‖2
2

Lemma 2 (LLL Lattice Basis Reduction).
There is an efficient approximation algorithm for solving the
Shortest Vector Problem with
. Approximation factor: 2d/2

. Running time: poly
(
d, log λ(B)

)
Algorithm 2 Lattice algorithm for subset sum
input Source numbers {ci}i∈I ⊂ R; target sum t ∈ R;

lattice parameter β > 0.
1: Construct lattice basis B ∈ R(|I|+2)×(|I|+1) where

B :=

[
I |I|+1

βt −βci : i ∈ I

]
∈ R(|I|+2)×(|I|+1) .

2: Run LLL Lattice Basis Reduction to find non-zero lattice
vector v of length at most 2|I|/2 · λ1(B).

Information-theoretic lower bounds on SNR

Definition 4 (Random measurement setting).
Observe

yi = w̄Txπ̄(i) + εi
where
. εi

iid∼ N (0, σ2) is the measurement noise

. xi
iid∼ N (0, Id) are the covariates

Definition 5 (SNR).
The signal-to-noise ratio for this model is ‖w̄‖2

2/σ
2

Theorem 3.In the random measurement setting, if for
some constant C

SNR ≤ C ·min

{
d

log logn
, 1

}
then for every estimator ŵ, there exists a w ∈ Rd such
that

E
[
‖ŵ − w‖2

]
≥

1

24
‖w‖2

. Recall that standard linear regression satisfies the
bound E

[
‖wmle − w

]
≤ Cσ

√
d/n

. In the low SNR regime, more measurements makes the
problem more difficult
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