Correspondence retrieval
Alexandr Andoni', Daniel Hsu® Kevin Shi" Xiaorui Sunf

TColumbia University, *Simons Institute for the Theory of Computing

CSak T
CU I

e —

SIMONS
INSTITUTE

r the Theory of Computing

Problem setup

d
s LL € R
> Sample measurement vectors wy, ++ -+ , Wy,

> Hidden vectors &y, « - -

> For each w,;, observe the unordered set
T T
{w; 1, , w; T}

> Goal is to recover the unknown vectors

Related problems

Phase retrieval (real-valued)

> Hidden vector ©

> Sample measurement vectors wq, - -+ , Wy,

> For each w;, observe |w; T

> Equivalent under k = 2 and w = %(a:l — o)

Mixture of linear regressions
> k hidden model parameters wq, -+ , Wy

> For each 2 = 1,--- ,mn, sample multinomial

random variable z;
> Observe response-covariate pairs

{(yzv wi)}?zl such that Y; —
k .
ijl <wjv w2> 1(2; = J)

Phase retrieval
> 2d — 1 measurement vectors are sufficient to
recover all possible hidden vectors @

> For all frames of 2d — 2 measurement vectors,
the mapping from observations to hidden vec-
tors is ambiguous

Mixture of linear regressions

> There is an efficient inference algorithm with
sample complexity O (k°d)

> Algorithm uses tensor decomposition for mix-
ture models

Theorem 1.
Assume the following conditions:

>n>d+1
> aw; K N(0,1) fori =1,+-+ ,n
> x1,+++ , ) are linearly dependent with condition

number X\(X)

Then there is an efficient algorithm which solves the
correspondence retrieval using n. measurement vectors.

> Each measurement corresponds to kK measurements in the
mixture of linear regressions model, for a total sample com-
plexity of k(d + 1)

> Running time is dominated by the running time of the LLL
algorithm on a basis of norm 29(@°%%) /X (X)

Algorithm

Algorithm 1 Lattice algorithm for correspondence retrieval

input Data (w;, M;) for ¢ € |[d + 1], parameter 3 > 0.
output Set of points {&1, L2y ..., Tk}
1 Let y;1,Yi2y-..,Yik be an arbitrary ordering the ele-
ments of M, for each ¢ € [d + 1].
> Definea = (a;; : 1 € [d],7 € [k]) € R by
a;; = (Wdi1, W;i)Yij s
where 1, is the i-th column of W1

: fort =1,2,...,k do
4. Construct basis

BO = [0 - b

I G541
/3yd+1,t —Ba’

s Let L0(2,2) 1= 20b)) + Y, 2:,08) € A(BWY)
for (20,2) € Z X Z% be the vector returned by LLL
as an approximate solution to Shortest Vector Problem for

c R(dk+2)x(dk+1)

A(B®)Y.
6: Let & be a solution to the system of linear equations (in
r € RY)
(Wi, ) = Yij s (2,7) € [d] X [k].2i; 70,
7. end for

A

> Thereis a subset S* C I such that ) ,_g. a;

Definition 1 (Subset sum).
Given positive integers {a;}!* , and a target sum

M, determine if there are z; € {0, 1} such that

n
E <id; = M
1=1

Lemma 1 (Average case analysis).
Suppose the Subset Sum instance specified by
source numbers {a;},. C R and target sum
t € R satisfies the following properties.

t

> There exists € > 0 such that

|z0-t—2zi-ai| > g
i€

for each (zg, z) with bounded norm that is not an
integer multiple of (1, x*), where x* € {0,1}*

Is the characteristic vector for 8*

Then the LLL lattice basis reduction algorithm
returns x* as the solution

Lattice tools

Definition 2 (Lattice).
Given a collection of linearly independent vectors
B:={bi,- - ,b, € R}, alattice AB over

the basis B is the Z-module of B embedded in R®

AB = izibi:ziez
1=1

Definition 3 (Shortest vector problem).
Given a lattice basis B C R, output a lattice
vector Bz € AB where

z = arg min ||Bz||;
zeZ—{0}

Lemma 2 (LLL Lattice Basis Reduction).
There is an efficient approximation algorithm for
solving the Shortest Vector Problem with

> Approximation factor: 29/2
> Running time: po/y(d, log )\(B))

Reduction to Subset Sum

For each y in {yd—l—l,la " yd—|—1,l~c}:
> t:=1vy

> a;; = w?

d+1
> Qutput subset sum instance ¢, {a;;}

w;Y;,; where w; is the ¢th column of W
d,k

i=1,j=1

With high probability over the w's, a subset sum solution
chooses exactly one a;; for each 1, thus identifying the

missing correspondences

Reduction to Shortest Vector Problem

) 2
* : I qr4+1 <0
1, X") = arg min
( ’ ) %o,z l@t_l@aT ~
- 2
= arg min ||(zg, 2)||* + 3° (z a — t)
(20,2)

Correct correspondence:
> zla—t=0

> ||(z0, 2)|| = vVd + 1

Proof sketch

Lemma 3.

There is an € > 0 such that for each incorrect integer
coefficient vector (zg, z), with probability 1 — 4,
lzta —t| > €

Lemma 4.
There are at most (2 . 2(dk+1)/2 vd+1+1

possible integer coefficient vectors (zg, z) with norm less

than 2(¢k+1)/2, /d + 1

)dk—l—l

> (3 can be set to make 0 as small as needed

> Apply a union bound over the number of possible coefficient
vectors from Lemma 4 to the high probability bound from
Lemma 3

> The only vector with norm less than 2(@+1/2,/d + 1 is
the correct solution vector

> The approximation factor of LLL Lattice Basis Reduction
now guarantees finding the correct solution vector
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