Problem setup

- \triangleright Hidden vectors $x_1, \cdots, x_k \in \mathbb{R}^d$
- \triangleright Sample measurement vectors w_1, \cdots, w_n
- \triangleright For each w_i , observe the unordered set $\{w_i^T x_1, \cdots, w_i^T x_k\}$
- ▷ Goal is to recover the unknown vectors

Related problems

Phase retrieval (real-valued)

- \triangleright Hidden vector \overline{x}
- \triangleright Sample measurement vectors w_1, \cdots, w_n
- \triangleright For each w_i , observe $|w_i^T\overline{x}|$
- \triangleright Equivalent under k = 2 and $\overline{w} = \frac{1}{2}(x_1 x_2)$

Mixture of linear regressions

- $\triangleright k$ hidden model parameters w_1, \cdots, w_k
- \triangleright For each $i = 1, \cdots, n$, sample multinomial random variable z_i
- ▷ Observe response-covariate pairs $\{(y_i, x_i)\}_{i=1}^n$ such that y_i \blacksquare $\sum_{i=1}^k ig\langle w_j, x_i ig
 angle$ 1 $(z_i=j)$

Prior work

Phase retrieval

- $\triangleright 2d 1$ measurement vectors are sufficient to recover all possible hidden vectors \overline{x}
- \triangleright For all frames of 2d 2 measurement vectors, the mapping from observations to hidden vectors is ambiguous

Mixture of linear regressions

- ▷ There is an efficient inference algorithm with sample complexity $ilde{O}(k^{10}d)$
- ▷ Algorithm uses tensor decomposition for mixture models

Theorem 1.

Algorithm

- <1
- 7: **end** return x_1, x_2, \ldots, x_k .

Main result

Assume the following conditions: $\triangleright n \ge d+1$ $\triangleright w_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i=1,\cdots,n$ $\triangleright x_1, \cdots, x_k$ are linearly dependent with condition

number $\lambda(X)$

Then there is an efficient algorithm which solves the correspondence retrieval using n measurement vectors.

 \triangleright Each measurement corresponds to k measurements in the mixture of linear regressions model, for a total sample complexity of k(d+1)

▷ Running time is dominated by the running time of the LLL algorithm on a basis of norm $2^{O(d^2k^2)}/\lambda(X)$

Algorithm 1 Lattice algorithm for correspondence retrieval

input Data (w_i, \mathcal{M}_i) for $i \in [d+1]$, parameter $\beta > 0$. **output** Set of points $\{\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k\}$ 1: Let $y_{i,1}, y_{i,2}, \ldots, y_{i,k}$ be an arbitrary ordering the elements of \mathcal{M}_i , for each $i \in [d+1]$. 2: Define $a = (a_{i,j}: i \in [d], j \in [k]) \in \mathbb{R}^{dk}$ by

$$a_{i,j} \ := \ \langle w_{d+1}, w_i
angle y_{i,j} \ ,$$

where $ilde{w}_i$ is the i-th column of W^{-1} . 3: for $t = 1, 2, \ldots, k$ do

4: Construct basis

$$egin{aligned} B^{(t)} &= \left[egin{aligned} b^{(t)}_0 & b^{(t)}_{1,1} \cdots & b^{(t)}_{d,k}
ight] \ &\coloneqq \left[egin{aligned} I_{dk+1} \ \overline{eta y_{d+1,t}} - eta a^ op
ight] &\in & \mathbb{R}^{(dk+2) imes(dk+1)} \ \end{aligned}$$

5: Let $L^{(t)}(\hat{z}_0,\hat{z}) := \hat{z}_0 b_0^{(t)} + \sum_{i,j} \hat{z}_{i,j} b_{i,j}^{(t)} \in \Lambda(B^{(t)})$ for $(\hat{z}_0, \hat{z}) \in \mathbb{Z} imes \mathbb{Z}^{dk}$ be the vector returned by LLL as an approximate solution to Shortest Vector Problem for $\Lambda(B^{(t)})$.

6: Let \hat{x}_t be a solution to the system of linear equations (in $x\in \mathbb{R}^d)$

$$egin{aligned} & v_i, x
angle &= y_{i,j}\,, & (i,j) \in [d] imes [k] \,.\, \hat{z}_{i,j}
eq 0\,, \end{aligned}$$
 I for

Main proof idea

Definition 1 (Subset sum).

Lemma 1 (Average case analysis).

Suppose the Subset Sum instance specified by source numbers $\{a_i\}_{i\in\mathcal{I}}\subset\mathbb{R}$ and target sum $t \in \mathbb{R}$ satisfies the following properties. $\triangleright \ \textit{There is a subset } \mathcal{S}^{\star} \subseteq \mathcal{I} \textit{ such that } \sum_{i \in \mathcal{S}^{\star}} a_i = \mathbf{1}$ ⊳ There

Correspondence retrieval

[†]Columbia University, [#]Simons Institute for the Theory of Computing

Given positive integers $\{a_i\}_{i=1}^n$ and a target sum M, determine if there are $z_i \in \{0,1\}$ such that

$$\sum_{i=1}^n z_i a_i = M$$

exists
$$arepsilon > 0$$
 such that $|z_0 \cdot t - \sum z_i \cdot a_i| \geq arepsilon$

 $i{\in}\mathcal{I}$ for each (z_0, z) with bounded norm that is not an integer multiple of $(1, \chi^{\star})$, where $\chi^{\star} \in \{0, 1\}^{\mathcal{I}}$ is the characteristic vector for \mathcal{S}^{\star} Then the LLL lattice basis reduction algorithm returns χ^{\star} as the solution

Lattice tools

Definition 2 (Lattice).

Given a collection of linearly independent vectors $\mathsf{B} := \{b_1, \cdots, b_m \in \mathbb{R}^d\}$, a lattice $\Lambda \mathsf{B}$ over the basis **B** is the \mathbb{Z} -module of **B** embedded in \mathbb{R}^d

$$\Lambda \mathsf{B} = \left\{ \sum_{i=1}^m oldsymbol{z}_i b_i \, : \, oldsymbol{z}_i \in \mathbb{Z}
ight\}$$

Definition 3 (Shortest vector problem).

Given a lattice basis $\mathbf{B} \subset \mathbb{R}^d$, output a lattice vector ${\sf B} z \in \Lambda {\sf B}$ where

$$egin{array}{lll} oldsymbol{z} = rgmin_2 \| oldsymbol{B} oldsymbol{z} \|_2^2 \ oldsymbol{z} \in \mathbb{Z} - \{oldsymbol{0}\} \end{array}$$

Lemma 2 (LLL Lattice Basis Reduction).

There is an efficient approximation algorithm for solving the Shortest Vector Problem with \triangleright Approximation factor: $2^{d/2}$ \triangleright Running time: $poly(d, \log \lambda(B))$

Reduction to Subset Sum

For each y in $\{y_{d+1,1}, \cdots, y_{d+1,k}\}$: $\triangleright t := y$ $Delta \; a_{ij} := w_{d+1}^T ilde w_i y_{i,j}$ where $ilde w_i$ is the ith column of W▷ Output subset sum instance $t, \{a_{ij}\}_{i=1, j=1}^{d,k}$ With high probability over the w's, a subset sum solution chooses exactly one a_{ij} for each i, thus identifying the missing correspondences

Reduction to Shortest Vector Problem

$$(1, \mathcal{X}^*) =$$

Correct correspondence: $\triangleright z^T a - t = 0$ $\triangleright \|(z_0,z)\| = \sqrt{d+1}$

Proof sketch

Lemma 3. $|z^Ta-t|\geq\epsilon$

Lemma 4.

There are at mo possible integer than $2^{(dk+1)/2}$

- Lemma 3
- the correct solution vector

There is an $\epsilon > 0$ such that for each incorrect integer coefficient vector (z_0, z) , with probability $1 - \delta$,

ost
$$\left(2\cdot2^{(dk+1)/2}\cdot\sqrt{d+1}+1
ight)^{dk+1}$$
r coefficient vectors (z_0,z) with norm less $\sqrt{d+1}$

 $\triangleright \beta$ can be set to make δ as small as needed

▷ Apply a union bound over the number of possible coefficient vectors from Lemma 4 to the high probability bound from

 \triangleright The only vector with norm less than $2^{(dk+1)/2}\sqrt{d+1}$ is

▷ The approximation factor of LLL Lattice Basis Reduction now guarantees finding the correct solution vector