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Abstract. We give a simple and efficient method for obfuscating pattern
matching with wildcards. In other words, we construct a way to check an
input against a secret pattern, which is described in terms of prescribed
values interspersed with unconstrained “wildcard” slots. As long as the
support of the pattern is sufficiently sparse and the pattern itself is
chosen from an appropriate distribution, we prove that a polynomial-
time adversary cannot find a matching input, except with negligible
probability. We rely upon the generic group heuristic (in a regular group,
with no multilinearity). Previous work [9, 10, 32] provided less efficient
constructions based on multilinear maps or LWE.

1 Introduction

The discipline of cryptography is fundamentally about the separation of seemingly
intertwined information and abilities: how do we separate the ability the compute
a function from the ability to invert a function? How do we separate the ability to
encrypt from the ability to decrypt? How do we separate partial knowledge of a
key through a side-channel attack from the ability to compromise a cryptographic
scheme? The study of cryptographic obfuscation is born from the question: how
do we separate the ability to run code from the ability to read code? Since the
seminal work of [7] that placed this question firmly on a rigorous theoretical
foundation, it has been clear that this kind of separation would be powerful, both
inside and outside the typical reach of the discipline of cryptography.

If we can hide secrets inside functioning software, we can protect cryptographic
keys, and many of cryptography’s disparate and hard won achievements follow as
a consequence. We can also protect intellectual property, and the inner workings
of critical code like software patches, which in their unprotected form might leak
information that could be used to attack remaining vulnerable machines. But as
with any cryptographic primitive, the suitability of program obfuscation for any
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particular task depends on three main axes by which we must evaluate proposed
constructions: (1) efficiency, (2) the underlying computational and architectural
assumptions, and (3) the derived security guarantees.

Two possibiilities for (3), defined in [7], are the notion of virtual black box
obfusction (VBB) and the notion of indistinguishability obfuscation (IO). Virtual
black box obfuscation is a very powerful and intuitive notion, which requires that
anything that can be done by an attacker in possession of the obfuscated code
can also be done by a simulator who can only run the software in a “black box,”
with no access to intermediary values or other properties of the computation
between input ingestion and output production. This notion would be suitable
for virtually4 all possible applications of obfuscation, but it is shown in [7]
that it is impossible to achieve for general functionalities. The notion of IO
requires something weaker, merely that an attacker in possession of two different
obfuscations of the same functionality cannot tell them apart. In other words,
we only enforce indistinguishability for program descriptions that may differ
internally but whose external input/output behavior is identical.

At the time of its introduction by [7], IO was neither shown to be impossible, nor
shown to be particularly useful. Progress instead was made for VBB obfuscation
of very basic functionalities, such as point obfuscation [27, 31] and hyperplane
membership [12], which lie below the reach of the impossibility result for VBB.
But following the unprecedented construction of cryptographic multilinear maps
in [17], two breakthroughs occurred in quick succession. A first candidate con-
struction for indistinguishability obfuscation of general functions was proposed
in [18], and the flexible technique of “punctured programming” was developed for
deriving meaningful cryptographic results from the IO security guarantee [30].

Since then, the cryptographic research community has been riding out wave
of positive and negative results: increasingly powerful constructions employing
idealized models on multilinear maps or new, complex assumptions
[18, 20, 26, 24, 25, 6, 33, 4, 5, 23, 19, 2], attacks on the underlying multilinear maps [14,
15, 28, 13, 16, 3], and a steady stream of works deriving applications and conse-
quences from various forms of obfuscation(e.g., [1, 21, 22], and many more).

Our work is focused on the goal of obfuscating a modest but well-motivated
functionality, one that does not require the use of multilinear maps, and hence does
not inherit the risks of their still volatile security assumptions or the inefficiency
that currently comes with using such a general-purpose tool. We consider the
problem of pattern matching with wildcards: suppose there is an input binary
string S of length n, and a pattern specification P also of length n, where for
each bit P either dictates a particular bit value, or has a wildcard ∗, indicating
that either value is allowed. For example, with n = 5, a pattern P would look like:
00 ∗ 11, and there would be two “matching” input strings S in this case, 00011
and 00111. The function we will obfuscate is the final “yes” or “no” outcome: for
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each P , we define the associated function fP (S) that outputs 1 when S matches
P and outputs 0 otherwise.

This kind of functionality might appear, for instance, in a context like software
patching. If a pattern P represents a problematic type of user input, say, that
needs to be filtered out, we can obfuscate this function fP to reject bad inputs
without unnecessarily revealing P in full and helping attackers learn how to
design such bad inputs. If the input length n is reasonably long and the number
of matches to the pattern is not too dense in the space of inputs, we can hope that
an attacker who queries a polynomial number of input strings will never manage
to find a “bad” input that matches the pattern. We find these situations (where
the adversary does not have enough information to identify the function being
obfuscated) to be the most compelling subset of the standard VBB obfuscation
security guarantee (as opposed to the subset involving simulating an adversary
that already knows the function being obfuscated). Accordingly, we demonstrate
that our construction satisfies a distributional security notion from [9, 10, 32]: if
the pattern P is chosen from a suitable random distribution (and the number of
wildcards w ≤ 0.75n), then a PPT attacker will not be able to distinguish our
obfuscation of fP from an obfuscation of a function that always outputs 0.

Our construction uses only the basic tools of group operations and polynomial
interpolation, and so is quite efficient. Our security analysis will be in the generic
group model, for a regular cyclic group, with no multilinearity required. It remains
an interesting open problem to obtain a security analysis in the standard model,
using standard assumptions like DDH, for instance. [29] showed that the easier
problem of bounded Hamming distance decoding is at least as hard as the DDH
problem. While the result is not applicable to the obfuscation construction, the
intermediary problem of finding nontrivial representations of the identity element
first described by [11] is potentially applicable.

The functionality of pattern matching with wildcards has been previously ob-
fuscated in [9, 10]. These constructions rely on multiplicative encoding schemes
that enable multiplication of the encoded values and also zero-testing, i.e. check-
ing whether an encoded value is zero. Unlike multilinear maps, these encoding
schemes do not need to have additive properties. This functionality has been
realized either through the use of general multilinear maps [9] or through lattice-
based encodings relying on a new instance dependent assumption called entropic
LWE [10]. A recent work by Wichs and Zirdelis [32] provides an obfuscation
construction for a more general high entropy class, called compute-and-compare
functions, from LWE. This class includes our pattern matching with wildcards.
We view our construction as a simple and highly efficient alternative to such an
LWE-based construction, and this is in line with the long tradition of analogous
functionalities being achieved in the discrete-logarithm and LWE regimes.

To keep our scheme as intuitive and as efficient as possible, we start from additive
basics. Let’s first consider a pattern P with no wildcards. In this case, our
function fP is just a point function, since there is only one input string that
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matches the fully prescriptive pattern. Here we can work over Zp and choose
uniformly random values a1, . . . , an−1 ∈ Zp and set an = −(a1 + · · · + an−1).
We can choose additional random values r1, . . . , rn ∈ Zp. Now our obfuscated
program can be comprised of 2n elements of Zp, which we will label as xi,b where
i ∈ [n] and b ∈ [0, 1]. For each input bit position i, if the pattern value P is b, we
set xi,b := ai and xi,1−b = ri. To evaluate the obfuscated program on an input
string, the evaluator simply selects the value corresponding to each input bit,
and takes the sum modulo p. If it is 0, the output is 1. Otherwise the output is
0. Given these 2n values, if an attacker wants to find the pattern P , they are
essentially trying to solve the subset sum problem (this is a slight variant since
we have this kind of pair structure on the elements, but still the security intuition
is the same).

Now if we want to introduce wildcards, it is clear we cannot simply give out ai
for both values for input bit i, since this will be noticed. The next thing we might
try is to choose a random polynomial F of degree n over Zp whose constant
term is 0. Now we can set xi,b = F (2i+ b) for positions that match the pattern,
including both values of b in a wildcard position i. Our desired functionality can
now be evaluated through polynomial interpolation. However, we quickly start
to run into attacks based on list-decoding or regular decoding of Reed-Solomon
codes, which can enable an attacker to recover the polynomial F once there are
enough valid evaluations due to the wild cards.

A key observation at this point is that these decoding-style attacks rely upon non-
linear functions of the given values, while the honest evaluation of the intended
program needs only linear operations. This allows us to place the values xi,b in
the exponent of a group G = 〈g〉 where discrete-log is difficult, and give out gxi,b

instead. This stops the decoding attacks without preventing honest evaluations.
In the generic group model, the attacker is essentially limited to linear functions
of the given exponents, so we can indeed formalize this intuition and obtain a
security proof.

The hardness of noisy polynomial interpolation in the exponent was previously
analyzed by [29], who gave a generic group argument concerning the problem
of interpolating a polynomial with a slightly different error distribution. Our
work follows a similar idea, but the specific wildcard structure we employ for our
application creates some subtle differences, so we give a full argument here for
completeness. We also provide a more rigorous exposition of the generic group
proof argument.

It is an interesting problem to prove security for such a scheme without resorting
to a generic group analysis. It seems that we should need a computational
assumption like subset sum to assert that even though the group operations allow
a discovery of the hidden structure, it is too sparse inside a combinatorially large
space of possible input evaluations to be efficiently found. It also seems that we
should need a computational assumption like DDH to explain exactly how the
group blocks non-linear attacks. However, assumptions like DDH allow us to hide
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structure that is already non-linear, but requires us to preserve any structure
that is linear, since linear structure on any small number of group elements can
be discovered by brute force by an attacker. We could try to formulate some new
assumption that is a strengthening of the subset sum assumption to the kind
of intertwined linear structures that arise from polynomial evaluation, but this
doesn’t yet seem to yield insight beyond asserting security of the scheme itself.
We would ideally like to see a hybrid argument that combined simple subset-sum
like steps with simple DDH-like steps, but designing such a reduction remains an
intriguing challenge. Given that LWE-based approaches in the standard model
are known, this represents a new test case on the boundary of the analogies we
know between DDH-hard groups and the LWE setting. We expect that further
study of this disconnect in proof technology between the LWE setting and the
DDH setting may yield general insights into the inherent relationships (or lack
thereof) between these different mathematical underpinnings.

2 Preliminaries

2.1 The Generic Group Model

We will prove the security of our construction against generic adversaries, which
interact with group elements via the generic group model as defined in [8]. In
this model, an adversary can only interact with the group via oracle calls to
its group operation and zero test functionality. Group elements are represented
by “handles,” which are uniformly random strings long enough that the small
probability of collision between handles representing different group elements can
be ignored. A generic group operation oracle takes as input two group handles
and returns a new handle representing the group element that is the result of the
group operation on the two inputs (and is consistent with all handles previously
used). Note that such an oracle can be efficiently simulated using a lookup table.

We use G to denote such a generic group operation oracle that answers adversary
calls. AG will denote an adversary given access to this oracle and OG will denote
the set of handles generated by G corresponding to the group elements in the
construction O.

2.2 Distributional Virtual Black-Box Obfuscation in the Generic
Group Model

We will use a definition of distributional virtual black-box (VBB) obfuscation in
the generic group model which is essentially the definition of [9], except using the
generic group model instead of the random graded encoding model:

Definition 1 (Distributional VBB Obfuscator). Let C = {Cn}n∈N be a
family of polynomial-size circuits, where Cn is a set of boolean circuits operating
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on inputs of length n, and let O be a ppt algorithm which takes as input an
input length n ∈ N and a circuit C ∈ C and outputs a boolean circuit O(C) (not
necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families Dn
where each D ∈ Dn is a distribution over Cn.

O is a distributional VBB obfuscator for the distribution class D over the circuit
family C if it has the following properties:

1. Functionality-Preserving: For every n ∈ N, C ∈ Cn, and x ∈ {0, 1}n, with all
but negl(n) probability over the coins of O:

(O(C, 1n)(x) = C(x)

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of
O(C, 1n) can be performed in time poly(|C|, n).

3. Distributional Virtual Black-Box in Generic Group Model: For every polyno-
mial (in n) time generic adversary A, there exists a polynomial time simulator
S, such that for every n ∈ N, every distribution D ∈ Dn (a distribution over
Cn, and every predicate P : Cn → {0, 1}:

| Pr
C←Dn,G,OG ,A

[AG(OG(C, 1n)) = P (C)]− Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)]| = negl(n)

Remark 1. As in [9], we remark that a stronger notion of functionality-preserving
exists in the literature, where the obfuscated program must agree with C(x) on
all inputs x simultaneously. We use the relaxed requirement that for every input
(individually), the obfuscated circuit is correct except for negligible probability.
We also note that our construction can be modified to achieve the stronger
property by using a group of sufficiently large size (22n) and the union bound
over each of the 2n inputs.

2.3 Schwartz-Zippel Lemma

A key step in our hybrid proof of security relies on the Schwartz-Zippel Lemma,
which we will reproduce here:

Lemma 1. Let Zp be a finite field of size p and let P ∈ Zp[x1, . . . , xn] be a non-
zero polynomial of degree ≤ d. Let r1, ..., rn be selected at random independently
and uniformly from Zp. Then: Pr[P (r1, ..., rn) = 0] ≤ d

p .

3 Obfuscating Pattern Matching with Wildcards

The class of functions for pattern matching with wildcards is parametrized by
(n,y,W), where W ⊂ [n] is an index set and fy : {0, 1}n−|W| −→ {0, 1} is a
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point function over n− |W| input variables that outputs 1 on the single input
y ∈ {0, 1}n−|W|. The function ΠWc : {0, 1}n −→ {0, 1}n−|W| projects a boolean
vector of length n onto only the entries not in the index setW . fy,W , the function
for pattern y with wildcard slots W, is defined to be fy,W(x) := fy (ΠWc(x)).
Our obfuscation scheme for the class of functions for pattern matching with
wildcards is as follows:

Setup(n): sample a1, · · · , an−1 ∼ Zp uniformly at random and construct the
fixed polynomial F (x) := a1x+ a2x

2 + · · ·+ an−1x
n−1. Let G be a group with

generator g of prime order p > 2n.

Construction(n,y,W): the obfuscator outputs 2n elements arranged in a 2×n
table of n columns corresponding to the n input variables with two entries each
corresponding to the two possible boolean values of each input. For each slot
hij where (i, j) ∈ {0, 1}n × {0, 1}, if either i ∈ W or yi = j, then the obfuscator
releases the element hij = gF (2i+j). Otherwise, the obfuscator releases hij as a
uniformly random element of G.

Evaluation(x): to evaluate fy,W(x), for each i = 1, · · · , n, compute:

Ci :=
∏
j 6=i

−2j − xj
2i− xi − xj + 2j

choose the elements hixi , and compute:

T :=

n−1∏
i=0

(hixi
)Ci

Output 1 if T = g0 and 0 otherwise.

Functionality-Preserving: The fact that this obfuscation scheme is functionality-
preserving follows from the fact that, if x is an accepting input of f (f(x) = 1),
then the chosen handles form n proper evaluations of the polynomial F (x) on
distinct elements. Further, the Ci scalars used in evaluation are Lagrange coeffi-
cients, making the evaluation a polynomial interpolation that returns F (0) = 0
in this case, causing T = g0 and the evaluation to output 1 (with probability 1).

n−1∏
i=0

(hixi
)Ci =

n−1∏
i=0

gCiF (2i+xi)

= g
∑n−1

i=0 CiF (2i+xi)

= gF (0)

= g0

On the other hand, if even one input bit was not accepting (so f(x) = 0), then at
least one of the hixi

’s used in interpolation would be a uniformly random group
element (not gF (2i+j)). Thus, the evaluation product would be a product that
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includes a uniformly random group element raised to some power, which would
result in T = g0 with negligible probability 1

p .

Polynomial Slowdown: Given a the set of 2n group elements, assuming group
operations can be performed in poly(n) time, the computation of Ci and T
described in the Evaluation procedure can be performed in polynomial time.

Distributional Virtual Black-Box: We give a proof of our construction’s
distributional VBB security in the generic group model in Section 4 in Theorem 1.

4 Distributional VBB Security in the Generic Group
Model

This section will prove Theorem 1, which establishes the distributional virtual
black box security of our construction in the generic group model over the class
of uniform distributions for point functions with wildcards. Our framework for
reasoning in the generic group setting draws from [8].

In a generic group proof, there are many closely related but technically distinct
kinds of objects that are often conflated. There are the underlying group elements,
which can be associated with their exponents in Zp relative to the common base.
There are the handles that the group oracle associates to these elements. There
are formal polynomials which may track known or unknown relationships between
group elements. There are subsets of handles which the adversary has previously
seen, and other handles whose distribution remains independent of the adversary’s
view so far. In order to make our proof as rigorous and precise as possible, we will
keep explicit track of all of these various objects, and the maps between them.

We define an equivalent security game where an adversary calls two oracles
simultaneously, one of whose behavior is already completely known. The purpose
of incorporating a known oracle into the security game is to rigorously define
when the unknown oracle deviates from expected behavior, and thus, when the
adversary has distinguishing power. Given that a low probability failure event
does not occur, any algorithm’s behavior when interacting with either of these
oracles should be identical. The actual calculation of the probability of such a
failure event is conceptually simple and done by many previous works for different
noise distributions. On the other hand, in order to properly describe the notion of
“identical behavior” we introduce some basic technical machinery from category
theory.

We establish some notation before proceeding. Let bold letters denote symbolic
variables and non-bold letters denote the sampled random values for the corre-
sponding variable. Let f ∈ Zp[a1, · · · ,an,x] be a fixed polynomial of degree n−1
in x which is linear in each ai individually. Let HS and HM be two identical
copies of the same space of strings corresponding to handles in the generic group
model.
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Since our proof takes place in the generic group model, and our obfuscated
program consists of a set of group elements, we will use the notation GS ,GM ,GE
to denote three different ways that an adversary can be supplied with handles
representing an obfuscated program and how requests to the generic group
operation oracle are answered. GS will implement faithful interaction with the
true construction in the generic group model. GM implements a hybrid setting
that we will show is indistinguishable from GS to the adversary. Finally, GE
implements a setting that can be simulated without knowledge of the function
drawn from the distribution (and is indistinguishable from GM ).

The high level structure of our proof is pretty typical for a generic group argument.
The group oracle GM will behave similarly to GS , but instead of sampling random
exponents according to the proscribed polynomial structure, it will work with
formal polynomials representing this structure, hence ignoring any spurious
relationship arises from a particular choice at the sampling stage. Arguing that
GS and GM are indistinguishable is where we use the Schwartz-Zippel Lemma.
An adversary will only receive a different distribution of handles if it manages to
find a spurious relationship while interacting with GS , which must mean that the
sampling happened to choose a root of a non-trivial, low degree formal polynomial.
The Schwartz-Zippel Lemma allows us to conclude that this will occur with only
negligible probability over the sampling employed by GS .

To argue that GM and GE are indistinguishable, we will need to argue that the
adversary cannot (except with negligible probability), detect the remaining formal
polynomial structure in GM , since doing so requires referencing many correctly
structured elements and avoiding the random elements completely. As long as
the wildcards are not too dense, this is an intractable combinatorial problem for
the adversary.

Definition 2 (GS: Oracle Start).
First, sample the following uniformly at random:

– W = {i1, · · · , iw} ⊂ [n]

– yi ∈ {0, 1} for each i 6∈ W

– a1, · · · , an ∈ Zp

– Random embedding ΦS : G ↪→ HS

For the initial set of handles representing the 2n group elements in the obfuscation
of fy,W , for each entry (i, j) ∈ [n]× {0, 1}:

– If i ∈ W or yi = j (i.e. the input bit is part of an accepting string), output
ΦS
(
gF (a1,··· ,an,2i+j)

)
– Otherwise sample a uniformly random exponent ρij and output ΦS(gρij )

Given a group operation query on (h1, h2):
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– Find g1 = Φ−1S (h1) and g2 = Φ−1S (h2). If either does not exist, ignore the
query.

– Return ΦS(g1 · g2)

Note that GS faithfully instantiates our construction described in Section 3 in the
generic group model. We will now describe an alternative oracle implementation
that uses symbolic variables instead of group elements to produce the generic
group functionality:

Definition 3 (GM : Oracle Middle).
First, sample the following uniformly at random:

– W = {i1, · · · , iw} ⊂ [n]

– yi ∈ {0, 1} for each i 6∈ W

– Random embedding ΦM : Zp[a1, · · · ,an, b1, · · · , bn−w] ↪→ HM .

Let σ : {0, 1}n × {0, 1} → [n − w] be an arbitrary ordering of the (n − w)
coordinate pairs (i, j) where i 6∈ W and j 6= yi, and which is not defined on the
other coordinate pairs.

For the initial set of handles representing the 2n group elements in the obfuscation
of fy,W , for each entry (i, j) ∈ [n]× {0, 1}:

– If i ∈ W or yi = j (i.e. the input bit is part of an accepting string), output
ΦM (F (a1, · · · ,an, 2i+ j))

– Otherwise output the label ΦM (bσ(ij))

Given a group operation query on (h1, h2):

– Find p1 = Φ−1M (h1) and p2 = Φ−1M (h2). If either does not exist, ignore the
query.

– Return ΦM (p1 + p2)

The two oracles are related by the existence of the following evaluation map in
the exponent :

φ : Z[a1, · · · ,an,b1, · · · ,bn−w] −→ G

F (a1, · · · ,an,an,b1, · · · ,bn−w) 7−→ gF (a1,··· ,an,b1,··· ,bn−w)

where bk = ρσ−1(k) are the values of the random exponents sampled by Oracle S
for the non-accepting slots. Only the existence of this evaluation map is necessary
for the proof, so its dependence on unknown random values is not an issue.

In particular φ is a surjective group homomorphism of (Zp[a1, · · · ,an,b1, · · · ,bn−w],+)
into (G,×), since it is a composition of an evaluation map with an exponential
map, which are both surjective group homomorphisms.
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The idea behind defining such an evaluation map is to define the failure event
as a substructure of a larger structure which may then be used to formalize
when the behavior is identical. In particular, we will see that the failure event
corresponds to the kernel of this evaluation map that we just defined.

Simultaneous Oracle Game Rather than proving that the difference in any
adversary’s output probabilities when interacting with (GS vs. GM ) or (GM vs.
GE) is small directly, we will define another security game and exhibit a reduction
to the desired statements. In this new security game, the adversary simultaneously
queries two oracles for operations on group elements: one oracle GM is known and
serves as a convenience for formalizing the generic group oracle, and the second
G∗ is the unknown that the adversary wishes to identify. We define the game
with oracles (GS ,GM ) below and note that the game and reduction for oracles
(GM ,GE) is symmetric.

Definition 4 (Simultaneous Oracle Game). An adversary is given access
to a pair of oracles (GM ,G∗), where G∗ is GM with probability 1/2 and GS with
probability 1/2. In each round, the adversary asks the same query to both oracles.
The adversary wins the game if he guesses correctly the identity of G∗.

To make precise the notion of an adversary playing both oracles simultaneously
and asking the same queries, the adversary maintains two sets HtS and HtM
which are the sets of handles returned by the oracles after t query rounds. The
adversary then maintains a function Ψ : HtM → HtS . Initially, the adversary sets
Ψ(hbij) = haij for each initial slot location (i, j) ∈ {1, n} × {0, 1}, where haij is the

handle corresponding to the slot (i, j) in oracles S and hbij the handle in oracles

M . After each query hm = GM (hb1, h
b
2) and hs = GS(Ψ(hb1), Ψ(hb2)) the adversary

updates the function with the definition Ψ(hs) = hm.

Lemma 2. Suppose there exists an algorithm A such that∣∣Pr[AGM (OGM ) = 1]− Pr[AGS (OGS ) = 1]
∣∣ ≥ δ

Then an adversary can win the simultaneous oracle game with probability at least
1
2 + δ

2 for any pair of oracles (GM ,G∗ = GM/GS).

Proof. Let p = Pr[AGM (OGM ) = 1] and q = Pr[AGS (OGS ) = 1]. The adversary
can estimate these parameters to within a bounded polynomial of the true
parameter by simulating each oracle and A’s behavior on each.

Without loss of generality, we can assume that p ≥ q. Otherwise, we can define p, q
to be the inverse quantities Pr[AGM (OGM ) = 0],Pr[AGS (OGS ) = 0] respectively.

The adversary will guess G∗ = GM if AG∗(OG∗) = 1 and G∗ = GS if AG∗(OG∗) = 0.
The probability of success is given by
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Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GM ] Pr[AGM (OGM ) = 1]

+ Pr[G∗ = GS ] Pr[AGS (OGS ) = 0]

=
1

2
+

1

2
(p− q)

≥ 1

2
+
δ

2

Indistinguishability between Start and Middle The following gives a
criteria for overall indistinguishability of the output handle distributions.

Definition 5. The pair (hs, hm) of answers returned by (GS ,GM ) after query
number t is called identical if it satisfies one of the following:

1. hs 6∈ HtS and hm 6∈ HtM
2. The oracles return handles hs ∈ HS , hm ∈ HM respectively such that Ψ(hm) =

hs

Note that in case (1), hs and hm are both freshly sampled uniformly random
strings and their distributions are equal.

Lemma 3. In the simultaneous oracle game with G∗ = GS, suppose for every
query (hm1 , h

m
2 ) to oracle M and corresponding query (Ψ(hm1 ), Ψ(hm2 )) to oracle

S, the answers returned are identical. Then for any algorithm A, we have

Pr[AGS (OGS ) = 1] = Pr[AGM (OGM ) = 1]

Proof (Proof of Lemma 3). If we had swapped the oracles GS and GM and the
adversary had used Ψ−1 instead of Ψ , the answer distributions would have been
identical and A would have to produce the same output distribution.

Remark 2. Note that this argument does not depend on the particular imple-
mentations of GS ,GM , and therefore the lemma also holds for the pair of oracles
GM ,GE (to be defined later in Definition 6).

Thus it suffices to show that

Lemma 4. Suppose an adversary makes an arbitrary sequence of queries and
receives answers

{hst = GS(Ψ(hmt1), Ψ(hmt2))}Qt=1

{hmt = GM (hmt1, h
m
t2)}Qt=1

Then with overall probability at least 1− (Q+ 2n)2

p
, for every t, hst and hmt are

identical as defined in Definition 5.

12



Proof. Initially each set of 2n handles given by each oracle are uniformly random
strings and hence indistinguishable. The proof is by induction under the following
hypothesis:

Suppose the adversary has made t queries so far and has HtS ,HtM satisfying the
following:

1. For each query made so far, the answer distributions have been identical.

2. For every hs ∈ HtS , there exists a unique f ∈ Zp[a,b] such that ΦS ◦ φ(f) =
iS(hs) and Ψ−1(hs) = ΦM (f)

We can state this inductive hypothesis this in the following commutative diagram:

Zp[a,b] Im(ΦM ) HtM

G Im(ΦS) HtS

ΦM ,'

φ ∃!

iM

Ψ,=

ΦS ,' iS

Here Im(ΦM ), Im(ΦS) are the relevant handles in the handle spaces. Commuta-
tivity of the lower triangle under the unique lift means that for all hs ∈ HtS ,∃!f ∈
Zp[x] such that iS(hs) = ΦS ◦ φ(f). Note that the upper triangle trivially com-
mutes because the unique lift is defined by the composition ΦM ◦ iM ◦ Ψ−1. To
ease the notation a little, we’ll omit the inclusion maps from here on when it is
obvious the handle is in Ht∗.

Now assuming the inductive hypothesis, suppose the (t+ 1)th query is the group
operation of h1, h2 ∈ HtM and Ψ(h1), Ψ(h2) ∈ HtS . Oracle M will output the
handle hm = ΦM

(
Φ−1M (h1) + Φ−1M (h2)

)
=: h1 · h2, and Oracle S will output the

handle hs = ΦS
(
Φ−1S (Ψ(h1))× Φ−1S (Ψ(h2))

)
=: Ψ(h1) · Ψ(h2). The (·) notation

on handles is justified by the fact that Im(ΦM ) ⊂ HM is trivially isomomorphic
as a group to Zp[a1, · · · ,an], where its group operation is obtained by pulling
back by ΦM , and likewise for Im(ΦS) ⊂ HS .

We have the following two cases:

1. hm ∈ HtM (i.e. this handle was seen previously). Then

Ψ(h1) · Ψ(h2) = (ΦS ◦ φ ◦ Φ−1M )(h1) · (ΦS ◦ φ ◦ Φ−1M )(h2)

= (ΦS ◦ φ ◦ Φ−1M )(h1 · h2)

= (ΦS ◦ φ ◦ Φ−1M )(hm)

= Ψ(hm)

where we use commutativity of the diagram on each factor handle, the
homomorphism property of the maps, the definition of oracle M ’s output,
and commutativity of the diagram on the output handle (which we can do
since the handle was previously defined).

13



Thus the handles in the output pair have the same distribution, and since no
new handles are created, the inductive hypothesis trivially remains satisfied.

2. hm 6∈ HtM (i.e. this is a new handle).

(a) If hs 6∈ HtS is also a new handle, then the unique lift simply extends to
map hs to Φ−1M (hm), and both HtM and HtS are augmented by one element.
The handles in the output pair are new and uniformly distributed, and
the inductive hypothesis is satisfied.

(b) If hs ∈ HtS , then by the inductive hypothesis, hs lifts to some fs ∈ Zp[a, b].
However we also have fm = Φ−1M (hm) 6= fs, since hm 6∈ HtM . Thus both
fs and fm are lifts of hs which make the diagram commute, so after this
query the inductive hypothesis is no longer satisfied for the next query.

If such an event happens, then fs − fm ∈ kerφ and fs − fm is nontrivial.
Thus the proof is complete as long as we show this event happens with
low probability.

Now consider the following sequential variant of the game. The adversary plays
the game using the real Oracle M and his own simulation of Oracle S obtained
by outputting a uniformly random string when GM does and using the Ψ map
when GM outputs an existing string. He then plays the exact same sequence to
the real Oracle S and compares these answers to the ones produced by the real
Oracle M . As long as the bad event does not occur, the sequence of queries asked
in this sequential game is identical to the sequence of queries asked playing the
real pair of oracles.

Note that the occurrence of the bad event is decided by the initial random
sampling of a1, · · · , an ∈ Zp, and thus the bad event either occurs in both the
sequential and parallel variants or in neither. So it suffices to just bound the
probability of the bad event occurring at any time in the sequential game.

For each pair (fs, fm), fs − fm is a degree-1 polynomial in n variables over
Zp. Thus the bad event happens with probability at most 1

p by Lemma 1, the
Schwartz-Zippel lemma. Thus by a union bound, after Q queries of either type,
there are at most (Q+ 2n)2 pairs of symbolic polynomials, so with probability

at most (Q+2n)2

p the two distributions of handles are distinguishable.

We remark that everything in the proof only relied on diagram arguments and
did not care about the actual structure of the underlying objects, except for
analyzing when fs − fm ∈ kerφ occurred. Thus in the proceeding reductions
between other oracles, all this automatically follows provided we can define an
appropriate evaluation map φ, and we only need to analyze the kernel of the
corresponding evaluation map.

14



Lemma 5. For an adversary A in the generic group model which makes Q
queries to the generic group oracle,

| Pr
C←Dn,
GS,O,A

[AGS (OGS (C, 1n)) = P (C)]− Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)]| ≤ (Q+ 2n)2

2n

Proof. From Lemma 3 we have that:

Pr[AGS (OGS ) = 1] = Pr[AGM (OGM ) = 1]

as long as all queries to the generic group oracles are identical as defined in
Definition 5.

Lemma 4 tells us that the probabilities of all queries not being identical during

the simultaneous oracle game between (GS ,GM ) is at most
(Q+ 2n)2

p
, where Q

is the number of the adversary’s queries to the generic group oracle and p > 2n

is the order of the group.

Therefore, the difference Pr[AGM (OGM ) = 1] − Pr[AGS (OGS ) = 1] is at most
(Q+ 2n)2

2n
, and so an adversary’s advantage in the simultaneous oracle game

between (GM ,GS) and (GM ,GM ) is:

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GM ] Pr[AGM (OGM ) = 1]

+ Pr[G∗ = GS ] Pr[AGS (OGS ) = 0]

=
1

2
+

1

2
(Pr[AGM (OGM ) = 1]− Pr[AGS (OGS ) = 1])

≤ 1

2
+

(Q+ 2n)2

2 · 2n

This, plugged into the reduction from Lemma 2, tells us that for all adversaries:

∣∣Pr[AGM (OGM ) = 1]− Pr[AGS (OGS ) = 1]
∣∣ ≤ (Q+ 2n)2

2n

Game between Middle and End

Definition 6 (GE: Oracle End).
First, sample the following uniformly at random:

– Random embedding ΦE : Zp[c1, · · · , c2n] ↪→ HE.

For the initial set of handles representing the 2n group elements in the obfuscation
of fy,W , for each entry (i, j) ∈ [n]× {0, 1}:

– Output ΦE(c2i+j)

15



Given a group operation query on (h1, h2):

– Find p1 = Φ−1E (h1) and p2 = Φ−1E (h2). If either does not exist, ignore the
query.

– Return ΦE(p1 + p2)

Oracle M and Oracle E are related by the following evaluation map which is
defined on the generators of Zp[c1, · · · , c2n] and extended by linearity.

φ : Zp[c1, · · · , c2n] −→ Zp[a1, · · · ,an,b1, · · · ,bn−w]

ck 7−→ bσ(bk/2c,k mod 2) if σ is defined here

ck 7−→ F (a1, · · · ,an, k) otherwise

In other words the monomial ck is mapped to the same symbolic polynomial that
Oracle Middle assigned to the slot (bk/2c, k mod 2), which is either a symbolic
variable b or a symbolic polynomial F (a1, · · · ,an, k). Since the ck’s generate the
entire additive group Zp[c1, · · · , c2n], this extends to a group homomorphism of
(Zp[c1, · · · , c2n],+) into (Zp[a1, · · · ,an,b1, · · · ,bn−w],+).

Lemma 6. Suppose an adversary makes an arbitrary sequence of queries and
receives answers

{hmt = GS(Ψ(het1), Ψ(het2))}Qt=1

{het = GM (het1, h
e
t2)}Qt=1

If w/n ≤ 3/4, then with overall probability at least 1 − 2
20.0613n for every t, hst

and hmt are identical as defined in Definition 5.

The proof of this lemma starts with the same setup as the proof of 4. The
adversary maintains a function Ψ : HE → HM and two sets of handles HtE ,HtM .

Proof. Inductively, after t queries, assume the following commutative diagram is
true:

Zp[c1, · · · , · · · , c2n] Im(ΦE) HtE

Zp[a1, · · · ,an,b1, · · · ,bn−w] Im(ΦM ) HtM

ΦE ,'

φ ∃!

iE

Ψ,=

ΦM ,' iM

The same diagram chase from the proof of (4) tells us that the next pair of query
answers (he, hm) only fails to satisfy the inductive hypothesis if hm lifts to fm ∈
Zp[c] by the inductive hypothesis, butfm 6= Φ−1E (he) =: fe, so fm − fe ∈ kerφ
and fm − fe is nontrivial. Necessary but not sufficient conditions for fm − fe to
be in the kernel of φ are:

16



1. fm − fe must have a zero coefficient in front of any ck that is defined under
the σ map, since each free variable bj has a unique preimage.

2. fm − fe must have at least n− 1 nonzero coefficients

As with the proof of (4), we analyze the sequential variant where the adversary
plays a sequence of queries to GE and then plays the exact same sequence of
queries to GM . After Q queries the adversary has at most Q + 2n symbolic
polynomials in Zp[c]. For each pair of polynomials fm, fe in this set, the variables
ck are mapped by the initial random sampling of the wildcard slots by Oracle M .

Now suppose the adversary fixes a polynomial containing n−1 nonzero coefficients
of the ck’s such that m columns in the original table of 2n entries have nonzero
coefficients for both entries in the column. This means that the oracle must
necessarily choose those m columns to be wildcard slots, since otherwise one of
the two entries in the column will not be in the kernel of the φ map.

This means that the probability over the initialization of the oracle that these m

columns are all chosen to be wildcard slots is
(n−m
w−m)
(n
w)

. The remaining n− 1− 2m

columns each must either match the entry chosen by the adversary or be a
wildcard slot. There are (n− 1− 2m)− (w −m) = (n− 1− w)−m slots that
cannot be wildcard slots and thus have at most probability 1/2 each of matching
the entry chosen by the adversary. Thus the probability that this polynomial is
in the kernel of φ is

(
n−m
w −m

)
(
n

w

) (
1

2

)n−1−w−m
(1)

An upper bound for this can be computed by maximizing the expression with
respect to the adversary’s choice of m. If we increment m by 1, the first factor is
multiplied by w−m

n−m while the second factor is multiplied by 2. Note that w−m
n−m

is monotonically decreasing in m; thus, this quantity is maximized when m is
the largest possible integer such that w−m

n−m > 1/2 is still true. Note that when
w < n/2, then the optimal choice is m = 0. Assuming w > n/2 and solving for
this inequality we obtain that m = 2w − n. Now the problem also has a physical
constraint that m ≤ n/2 since the adversary can choose at most n/2 slots. Thus
there are three parameter regimes based on α:

1. α ≤ n/2: the optimal choice is m = 0

2. n/2 ≤ α ≤ 3n/4: the optimal choice is m = 2w − n

3. n > 3n/4: the optimal choice is m = n/2

In case 1, the probability is then clearly bounded by (1/2)n−1−w.
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In case 2, making the substitution m = 2w − n and w = αn where α ∈ [0, 1) in
the expression (1), we obtain

(
2(1− α)n

(1− α)n

)
(
n

αn

) 2(3α−2)n =
[2(1− α)n]!

[(1− α)n]![(1− α)n]!

[αn]![(1− α)n]!

n!
2(3α−2)n

=
[2(1− α)n]![αn]!

[(1− α)n]!n!
2(3α−2)n

Recall that for all integers k the following is true by Sterling’s formula:

√
2π
√
k

(
k

e

)k
≤ k! ≤ e

√
k

(
k

e

)k

We can absorb the factors of
√

2π and e in front into a small constant term less
than 2. Note that since each factorial is a constant multiple of n, then the

√
k

term also yields a constant term, so we only need to compute the (k/e)k terms.
This gives

[2(1− α)n/e]2(1−α)n[αn/e]αn

[(1− α)n/e](1−α)n[n/e]n
2(3α−2)n =

(
[2(1− α)n/e]2(1−α)[αn/e]α

[(1− α)n/e](1−α)[n/e]1
2(3α−2)

)n

We just need to show that the base is a constant bounded away from 1. Collecting
terms in this, we obtain

22(1−α)[1− α]2(1−α)[n/e]2(1−α)αα[n/e]α[1− α]−(1−α)[n/e]−(1−α)[n/e]−123α−2

= [n/e]2(1−α)n−(1−α)+α−1[1− α]2(1−α)−(1−α)αα22(1−α)+3α−2

= (1− α)1−ααα2α

Taking log2 we obtain (1−α) log2(1−α)+α log2 α+α ≤ −0.0613 when α ≤ 3/4,
so the probability of success is bounded by 2

20.0613n .

Finally in case 3, substituting m = n/2 in the expression (1) gives
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(
n/2

(α− 1/2)n

)
(
n

αn

) 2(α−1/2)n =
[n/2]!

[(1− α)n]![(α− 1/2)n]!

[αn]![(1− α)n]!

n!
2(α−1/2)n

=
[n/2]![αn]!

n![(α− 1/2)n]!
2(α−1/2)n

Applying the Sterling approximation, we obtain

[n/e]n/22−n/2[αn/e]αn

[n/e]n[(α− 1/2)n/e](α−1/2)n
2(α−1/2)n =

(
[n/e]1/22−1/2[αn/e]α

[n/e]1[(α− 1/2)n/e](α−1/2)
2(α−1/2)

)n

The base of the exponent is

[n/e]1/2+α−1−(α−1/2)[α]α[α− 1/2](1/2−α)2α−1 = αα(α− 1/2)1/2−α2α−1

Again taking log2 we obtain the condition (1/2−α) log2(α−1/2)+α logα+α−1 <
0, which is satisfied when α < 0.774. This does not give much of an improvement
over the previous constraint of α ≤ 3/4, so we state our final result just in that
regime.

Apply a union bound of this probability over all (Q + 2n)2 pairs of symbolic
polynomials to get the statement in the theorem.

Lemma 7. For an adversary A in the generic group model which makes Q
queries to the generic group oracle,

| Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)]− Pr
C←Dn,
GEO,A

[AGE (OGE (C, 1n)) = P (C)]| ≤ 1

20.0613n

Proof. Uses Lemmas 3 (recalling that the statement also holds for the pair
GM ,GE) and 6 plugged into the reduction from Lemma 2.

From Lemma 3 (recalling that the statement also holds for the pair GM ,GS) we
have that:

Pr[AGM (OGM ) = 1] = Pr[AGE (OGE ) = 1]

as long as all queries to the generic group oracles are identical as defined in
Definition 5.

Lemma 4 tells us that the probabilities of all queries not being identical during
the simultaneous oracle game between (GM ,GE) is at most 2

20.0613n .
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Therefore, the difference Pr[AGE (OGE ) = 1] − Pr[AGM (OGM ) = 1] is at most
2

20.0613n , and so an adversary’s advantage in the simultaneous oracle game between
(GM ,GE) and (GM ,GM ) is:

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GE ] Pr[AGE (OGE ) = 1]

+ Pr[G∗ = GM ] Pr[AGM (OGM ) = 0]

=
1

2
+

1

2
(Pr[AGE (OGE ) = 1]− Pr[AGM (OGM ) = 1])

≤ 1

2
+

2

20.0613n

This, plugged into the reduction from Lemma 2, tells us that for all adversaries:∣∣Pr[AGM (OGM ) = 1]− Pr[AGE (OGE ) = 1]
∣∣ ≤ 1

20.0613n

Theorem 1. The obfuscator for pattern matching with wildcards defined in
Section 3 satisfies distributional VBB security for the ensemble of uniform distri-
butions over {0, 1}n.

Proof. For any adversary A in the Distributional VBB game (in the generic
group model), consider the following Simulator S which simply runs A on input
produced by and interacted with like in Oracle End and outputs the same. Note
that none of the behavior in Oracle End is dependent on the actual function fy,W
obfuscated. Therefore a simulator with no access to the function fy,W drawn
from the distribution is able to simulate A as described.

S then perfectly simulates the behavior of A interacting with oracle OE :

Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)] = Pr
C←Dn,GE ,O,A

[AGE (OGE (C, 1n)) = P (C)]

From Lemma 7, we have that the difference in output probabilities between
AGE (OGE ) and AGM (OGM ) in the distributional VBB game in the generic group
model is at most 1

20.0613n :

| Pr
C←Dn,
GE,O,A

[AGE (OGE (C, 1n)) = P (C)]− Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)]| ≤ 1

20.0613n

From Lemma 5, we have that the difference in output probabilities between
AGM (OGM ) and AGS (OGS ) in the distributional VBB game in the generic group

model is at most
(Q+ 2n)2

2n
:

| Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)]− Pr
C←Dn,
GS,O,A

[AGS (OGS (C, 1n)) = P (C)]| ≤ (Q+ 2n)2

2n
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Now, recall that GS faithfully instantiates O in the generic group model. Therefore,
using the triangle inquality we have:

| Pr
C←Dn,
G,O,A

[AG(OG(C, 1n)) = P (C)]− Pr
C←Dn,
S

[SC(1|C|, 1n) = P (C)]| ≤ (Q+ 2n)2

2n
+

1

20.0613n

which is a negligible function of n since the number of an adversary’s generic
group queries Q is a polynomial function of n, and so O satisfies distributional
VBB security in the generic group model.
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