Alternative Architectures

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



* Singularity OS
— Motivation
— Software Isolated Processes
— Contract based IPC
— Kernel Architecture
— Benefits

* Summary

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Singularity OS

 Microsoft Research OS
— Developed between 2003-2008

— Shared source code available (http://
research.microsoft.com/en-us/projects/singularity/)

— Influence on MSFT OSes unknown

* Why is it interesting?
— Radically different approach to memory isolation

— Use programming language/compiler techniques rather
than paging/segmentation hardware

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




e Reuvisit basic OS design decisions that have been
untouched since the 1970s (UNIX)

— Memory paging based protection model
— IPC mechanisms

* Incorporate work on programming languages, compilers,
and code verification into core OS architecture

— Assume higher level tools than assembly language

* Improved robustness/reliability than existing OS designs
— Security vulnerabilities
— Failures caused by dynamic code (e.g., extensions, etc.)
— Unexpected interactions between applications

 Good enough performance

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Basic Architectural Ideas

» Software Isolated Processes (SIP)
— Provide memory isolation purely in software

* Contract-based Channels
— Allow IPC only through statically verifiable protocols
— Strict memory ownership (one page one process)

 Manifest-Based Programs
— Programs declare resource requirements upfront
— No dynamic code injection/extensions

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Paging and Software Isolation

* How does paging work?
— Don’t allow direct memory access
— Access through a pointer (virtual address)
— OS controls what pointer points to

— Maintains mappings such that process A pointers never
point to process B memory

e Software isolation idea
— Enforce pointer control through programming language
— Don’t let programmer change pointer indiscriminately
— E.g., Java
— The compiler is the OS?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Memory Safety

* |n an unsafe language like C
— Programmer gets direct control of pointers

— Can access arbitrary memory (int to ptr cast)
* char *ptr = (char *)0x88888888

— Can increment/decrement existing pointer
* char *dangerous ptr = ptr + 100000;

* |n language with type/memory safety
— No “pointer” data type — only references to objects
— Can’t arbitrarily change reference

— Can’t directly cast address to a reference
e E.g., MyClass c = (MyClass)0x88888888 is not allowed

— Runtime bounds check ensure array safety

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Software Isolated Processes (SIP)

e OS/runtime controls initial pointer assignment
* Processes are allocated their own memory
* SIP provided only pointers to its own
e Safety semantics ensure subsequent isolation

* No need for paging/hardware isolation
— Kernel/processes in same address space and priv level!
— All memory visible to all instructions (fast IPC)
— Every syscall is simply a function call
— No page table change on context switch

— Very fast (paper shows significantly improved
performance compared to paging)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Compile Time Verification

e Compiler creates bytecode (MSIL or Microsoft
Intermediate Language)

* |nstaller “verifies” bytecode and compiles to
native code (e.g., x86)

* Verification ensures
— SIP doesn’t create or modify pointers

— Don’t change type of pointer to circumvent bounds
check etc.

— Don’t use uninitialized pointer variables
— Don’t use pointers after SIP relinquishes ownership

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



e But...reality intrudes
— Only type/memory safe PLs supported
— No C/C++ code, no assembly snippets
— What to do about legacy code?
 Still need some hardware protection

— Relying on compiler and verifier to be correct
* Millions of lines of complex code (GCC: 7.3 million LOC)
 Single bug can destroy safety
* Need fallback, i.e., hardware protection

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Other Paging Features?

Illusion of contiguous memory
Uniform address space

Freedom from external fragmentation
Efficient sharing of memory
Swapping/paging to disk

What have we gained? Robustness or
performance?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Contract Based Channels

* S|Ps can communicate only via Contract Based IPC
channels

— Need to be efficient (shared memory)
e Strict control over IPC contents

— Otherwise SIP may pass any pointer in IPC message
— Applications must declare protocol before hand

— Message format, message flow (like we did informally for
hwb5)

* Ensure memory isolation
— One SIP can never affect another SIP’s memory
— Makes garbage collection self contained within SIP

» Static verifier checks compliance
— Does the SIP conform to protocol?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Exchange Heap

m N

=]

SIPA

SIPB

.

Exchange Heap

* Used for implementing IPC through contract channels
* Enforce single SIP ownership of all pages

— Verify that SIP doesn’t access pointer after sending to another SIP

e Easier garbage collection (no dependency between SIPs)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Manifest Based Programs

* Each program declares manifest up-front
— Code resources, executable segments
— Channels, channel contracts, SIP dependencies
— Hardware resources needed (e.g., ports)

* Disallow dynamic code

— No loadable modules, dynamic libraries, self-
modifying code

— May have install time extensions

— Principle: all code must go through same verification
process as main program

— Principle: all safety properties of program must be
verified together when it loads

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Conclusions

* Does singularity show that...

— We should get rid of paging/hardware enforcement?
* No

— Software isolation provides performance benefits?
* Yes

— better robustness is possible than a with a well isolated
hardware protected kernel (e.g., microkernels)?

 Unknown
* Perhaps its utility lies in...

— Better protecting modules that must exist in a single
address space anyway

— E.g., browser extensions, loadable modules, JVMs etc.
— Use more explicit communications channels

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Course Summary

OS Architecture
— Kernels, how kernels are structured

OS Abstractions
— Processes, threads, address spaces, files, directories
— Synchronization

OS Implementation

— Interrupts, scheduling, memory management, storage
management, filesystems, I/0

— Both mechanisms and policy

How a modern OS really works

— The Linux kernel as modified for Android

— Saw how theoretical concepts map to reality
— How to navigate a large codebase

A flavor of OS research and new designs

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Isolation vs. Access Control

* Spent a lot of time on isolation mechanisms
— How to isolate one application from another
— CPU (preemptive multitasking),
— Memory (virtual memory)
— Disk (filesystems)
— Network (IPC)

* But how to decide how to use isolation (i.e., policy)?
— Can a process access a file?
— Can two processes communicate via IPC?
— Can a process access an abstraction?
— Can a process access a resource?
— The domain of access control policies
— What are the security implications of various kinds of access control?
— lgnored in this class — CS4187

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Hope it was good for you...

* Learnt a lot
— You: about operating systems, kernel hacking

— Me: grading, isolating group conflicts, how much
time it takes to teach an OS class ©

* If you feel excited about systems/OS and did
well with the programming assignments
— Come talk to me about opportunities
— Consider research/graduate school
— Talk to the other systems faculty members

e Good luck with the finals!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



