/O Subsystem

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Subsystem

e Goals
e Architecture
e Device Characteristics

* OS Mechanisms
— Transferring data
— Notification
— Buffering

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Requirements of 1/0

* Without I/O, computers are not very useful

* But... thousands of devices, each slightly different
— How to standardize the interface to all devices?

* Devices unpredictable and/or slow

— How can we utilize them if we dont know what they will do
or how they will perform?

e Devices unreliable: media failures, transmission errors
— How to make them reliable?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Varied /O Speeds

Some typical device,

network, and bus data rates.

Device Rates vary over many
orders of magnitude

- System better be able
to handle this wide
range

- Better not have high
overhead/byte for fast
devices!

- Better not waste time
waiting for slow devices

Table from Tanenbaum, Modern Operating Systems
3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved.
0-13-6006639

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Scanner 400 KB/sec
Digital camcorder 3.5 MB/sec
802.11g Wireless 6.75 MB/sec
52x CD-ROM 7.8 MB/sec
Fast Ethernet 12.5 MB/sec
Compact flash card 40 MB/sec
FireWire (IEEE 1394) 50 MB/sec
USB 2.0 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec
SATA disk drive 300 MB/sec
Ultrium tape 320 MB/sec
PCI bus 528 MB/sec

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Varied Device Characteristics

 Some operational parameters:
— Byte/Block
* Some devices provide single byte at a time (e.g.
keyboard)
* Others provide whole blocks (e.g. disks, tapes, etc)
— Sequential/Random
* Some devices must be accessed sequentially (e.g. tape)
* Others can be accessed randomly (e.g. disk, cd, etc.)
— Polling/Interrupts
* Some devices require continual monitoring
* Others generate interrupts when they need service

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Goal of the I/O Subsystem

* Provide uniform Interface for wide range of devices

— This code works on many different devices:
int fd = open(“/dev/something”);
for (inti=0;i<10;i++){
fprintf(fd,” Count %d\n’,i);

}
close(fd);

— Why? Because code that controls devices (“device driver”)
implements standard interface.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Subsystem

e Architecture
e Device Characteristics

* OS Mechanisms
— Transferring data
— Notification
— Buffering

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Review: |/O Architecture

;
3
monitor processor)
cache
graphics bridge/memory memory SCSI controller
controller controller
i PCl bus)
IDE disk controller expansion bus keyboard
interface
@ @ { expansion bus)
@ @ parallel serial
port port

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Intel Chipset Components

Intel® Pentium* 4

* Northbridge:
— Handles memaQry Extrome Edition
— Graphics

* Southbridge:
— PCl bus
— Disk controllers
— USB controllers intor” Hign

Definition Audio

— Audio SARCIE:
— Serial I/O BHi-Speed.
— Interrupt controller

— Timers

6.4 GB/s

PCIl Express*
x16 Graphics

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Typical I/O Device Architecture

Memory / 1/0 Bus Regular
Memory
Bus Device \

Adaptor
) . Address+ Controller
ot erB ewcei Data Bus Hardware
[< il Interface Controll
Controller Interrupt Request ontrolier
Jver?g,_. Addressable
* CPU interacts with device Controller control Memory
— Contains read/write control registers RStf’ttus and/or
— May contain memory for request (port 0x20) R
gueues or bit-mapped images Memory Mapped
Region: 0x8f008020

* Accessed by processor in two ways:
— 1/O instructions: explicit in/out instructions
* E.g., x86: 0ut Ox21,AB
— Memory mapped I/O: load/store instructions
* Registers/memory appear in physical address space
* |/O accomplished with load and store instructions

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Memory-Mapped vs. Explicit I/0

* Explicit I/O Instructions:
— Must use assembly language
— Prevents user-mode 1/O

* Memory-Mapped I/O:
— No need for special instructions (can use in C)
— Allows user-based |I/0O
— Caching addresses must be prevented

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Device |/O Port Locations on PCs (partial)

I/O address range (hexadecimal)

device

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Memory-Mapped I/0

Two address One address space Two address spaces

OxFFFF... Memory

I/O ports

/

(@) (b) ()
(a) Separate I/O and memory space.

(b) Memory-mapped /0.

(c) Hybrid: control in I/O address, data in
memory

Picture from Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Memory-Mapped I/0

CPU reads and writes of memory
go over this high-bandwidth bus

/

CPU Memory I/O CPU Memory I/O
]]] ”3\]]
\ \ N\ 1 .
All addresses (memory This memory port is
Bus to allow I/O devices

and I/O) go here
(a) (b)

access to memory

(a) A single-bus architecture.
(b) A dual-bus memory architecture.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Application I/O Interface

/0 system calls encapsulate device behaviors in
generic classes

Device-driver layer hides differences among I/O
controllers from kernel

Devices vary in many dimensions
— Character-stream or block

— Sequential or random-access

— Sharable or dedicated

— Speed of operation
— read-write, read only, or write only

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Device Drivers

Device-specific code in the
kernel that interacts

directly with the device ;2224

hardware

- Supports a standard, !
internal interface r

- Same kernel I/O
system can interact
easily with different

. . Kernel
device drivers space
- Special device-specific
configuration
supported with the L
ioctl() system call
Hardware
Devices

Picture from Tanenbaum, Modern Operating ¢

User process

/

User
program

4

Rest of the operating system

Y

Printer
driver

Camcorder
driver

CD-ROM
driver

Y

Y

Y

Printer controller

Camcorder controller| |CD-ROM controller

|

|

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Increased specificity

software

hardware

A Kernel |/O Structure

kernel

kernel 1/0O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device e device device device
controller | controller | controller controller | controller | controller

ATAPI

scs| floppy- | | devices
e keyboard| | mouse eee PCI bus d.ISk (disks,
drives tapes,

drives)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Increased flexibility, reusability

>

UNIX I/O Kernel Structure

Kernel keeps state
for 1/O components,
including open file
tables, network
connections,
character device
state

system-wide open-file table

file descriptor

per-process
open-file table

4

~

user-process memory

Y

file-system record

inode pointer

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

active-inode
table

>

networking (socket) record

pointer to network info

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

network-
information
table

kernel memory

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Device Driver Structure

* Device Drivers typically divided into two pieces:

—Top half: accessed in call path from system calls

* Implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl()

e Implement special VMAs to support mmap() based I/0O
* This is the kernel’s interface to the device driver
* Top half will start I/O to device, may put thread to sleep until
finished
— Bottom half: run as interrupt routine
e Gets input or transfers next block of output
* May wake sleeping threads if I/O now complete
* May use deferred processing (softirg, tasklet, kernel threads)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Life Cycle of An I/O Request

User
Program

Kernel I/O or memory
Subsystem

" NN NN NN RN EEEEEEEEEN A EEEEEE RN EEEEEEEEEEEEEEEEEEEEEEEEE]

Device Driver
Top Half

Device Driver
Bottom Half

user 1/O completed,
request 1/0 process input data available, or
output completed
|
system call
Illllllyl IIIIIIIIIIIIIIIllllllliqwqtiihlaqqm@ull EEEEEEN
kernel
transfer data
can already VO subsystem (if appropriate) to process,
satisfy request? yes return completion
or error code
send request to device
driver, block process if kernel
appropriate l[{e] Subsystem
EEEEEEEN EEEEEEN

process request, issue

commands to controller,
configure controller to
block until interrupted

device
driver

determine which /O
completed, indicate state
change to I/0 subsystem

interrupt

device-controller commands handler

receive interrupt, store
data in device-driver buffer
if input, signal to unblock

Device
Hardware

device driver
IIIIIIIIIIIIIIIIIIIIIIIIlllllllllllmeirumllllll EEEEEER
device
monitor device, controller
interrupt when 1/0 Vo cc:mflteeted, ;
compiotod generate interrup

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Subsystem

e Device Characteristics

* OS Mechanisms
— Transferring data
— Notification
— Buffering

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Characteristics of 1/0O Devices

aspect variation example
qalolr o mode character terminal
block disk
sequential modem
access method e CD-ROM
transfer schedule Syl [
asynchronous keyboard
shatin dedicated tape
9 sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
|/O direction write only graphics controller
read—write disk

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Block and Character Devices

* Block devices include disk drives
— Commands include read, write, seek
— Raw /0O or file-system access
— Memory-mapped file access possible
* Character devices include keyboards, mice,
serial ports
— Single character at a time
— Commands include get, put
— Libraries layered on top allow line editing

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Network Devices

* Different enough from block and character to
have own interface

* Unix and Windows NT/9x/2000 include socket
interface

— Separates network protocol from network
operation

— Includes select functionality

* Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Clock Devices and Timers

* Maintaining the time of day
* Accounting for CPU usage

* Preventing processes from running longer than
they are allowed to

 Handling alarm system call made by user
orocesses

* Providing watchdog timers for parts of the
system itself.

* Doing profiling, monitoring, statistics gathering

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Clock Hardware

A programmable clock.

Crystal oscillator

—0|

Counter is decremented at each pulse

Holding register is used to load the counter

Picture from Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Subsystem

* OS Mechanisms
— Transferring data
— Notification
— Buffering

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Transferring Data to/from Controller

* Programmed I/O:

— Each byte transferred via processor in/out or
load/store

— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to
data size
* Direct Memory Access:
— Give controller access to memory bus
— Ask it to transfer data to/from memory directly

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Programmed 1/0O

Writing a string to the printer using
programmed |/O.

copy_ from _user(buffer, p, count); /* p is the kernel buffer */

for (i = 0; I < count; i++) { /* loop on every character */
while (*printer _status _reg != READY) ; /* loop until ready */
printer_data_register = pli]; / output one character */

}

return_to_user();

Figure from Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Direct Memory Access (DMA)

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 SV
us
6. when C = 0, DMA . = X
interrupts GPU to signal égﬁ:glfgr 1+ CPU memory bus —| memory | buffer
transfer completion
3 PCl bus |
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
disk) (disk

- Used to avoid programmed 1/0O for large data movement

- Requires DMA controller
- Bypasses CPU to transfer data directly between 1/O device and memory

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Notifying the OS: Polling

* The OS needs to know when:
— The 1I/O device has completed an operation
— The |I/O operation has encountered an error

 One way is to Poll:
— OS periodically checks a device-specific status register

— 1/0 device puts completion information in status
register

— Busy-wait cycle to wait for I/O from device
— Pro: simple, potentially low overhead

— Con: may waste many cycles on polling if infrequent,
expensive, or unpredictable I/O operations

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Notifying the OS: Interrupts

* |/O Interrupt:

— Device generates an interrupt whenever it needs
service

— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead

* Some devices combine both polling and
Interrupts
— Example: Intel E1000 Gigabit Ethernet Adapter:

* Interrupt for first incoming packet

* Poll for subsequent packets until hardware packet
arrival queue is empty

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Performance

* |/O a major factor in system performance:
— Demands CPU to execute device driver, kernel 1/O code
— Context switches due to interrupts
— Data copying
— Network traffic especially stressful

* Improving performance:
— Use DMA
— Reduce/eliminate data copying
— Reduce number of context switches

— Reduce interrupts by using large transfers, smart
controllers, polling

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Blocking and Nonblocking 1/0

* Blocking Interface: “Wait”
— Put process to sleep until data is ready (for read) or written (for write)
« Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred

— Read may return nothing, write may write nothing
e Asynchronous Interface: “Tell Me Later”

— When request data, take pointer to user’s buffer, return immediately;
later kernel fills buffer and notifies user

— When send data, take pointer to user’s buffer, return immediately;
later kernel takes data and notifies user

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Asynchronous 1/0

l(ernel user

N

requesting process
waiting

A

device driver

,requesting process -

!
4 i

interrupt handler

device driver

hardware

—— data transfer —

i
tinterrupt handler

time ——y

(a)

u hardware
--data transfer —

time ——»

(b)

user

AN J

> kernel

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Synchronous

Asynchronous

Kernel I/O Subsystem

e Common Interfaces for

— Device reservation - exclusive access to a device

» System calls for allocation and deallocation
* Watch out for deadlock

— Caching - fast memory holding copy of data
e Always just a copy
* Key to performance

— Scheduling — I/O request reordering
* Via per-device queue, goal: fairness

— Spooling - hold a copy of output for a device
* If device can serve one request at a time, e.g., printing

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Buffering - store data in memory while
transferring between devices

— To cope with device speed mismatch
— To cope with device transfer size mismatch
— To maintain “copy semantics’

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buffering

User process

_ /
User 4
space 9 A l?' I?I
Kernel { R
space Elj
1
Modem Modem Modem
(a) (b) (c)

* Unbuffered input
e Buffering in user space
* Buffering in the kernel followed by copying to user space

* Double buffering in the kernel.
Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buffering

Networking may involve many copies of a
packet. May reduce performance.

, User process

Network
controller

¥
User
=l & @
Kernel V1 i,
space -
A
—
[3

- J

Network ”

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Requests to Hardware Operations

* Consider reading a file from disk for a process:
— Determine device holding file
— Translate name to device representation
— Physically read data from disk into buffer
— Make data available to requesting process
— Return control to process

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Interaction of I/O and VMM

* The kernel deals with (kernel) virtual addresses

 These do not necessarily correspond to physical
addresses

e Contiguous virtual addresses are probably not
contiguous in physical memory

e Some systems have an I/O map — the I/O bus
manager has a (version of) the virtual memory map

 More often, the kernel has to translate the virtual
addresses itself

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Other I/O Issues

e Scatter/Gather1/0O

— Suppose we’re reading a single packet or disk block into two or more
non-contiguous pages

— The I/0O transfer has to use more than one (address, length) pair for
that transfer to scatter the data around memory

— The same applies on output, where it has to be gathered from
different physical pages

 Direct!/O
— For efficiency, we may want to avoid copying data to/from user space
— Sometimes possible to do direct I/0
— Must consult user virtual memory map for translation
— Must lock pages in physical memory during I/O

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/O Protection

e User process may accidentally or purposefully
attempt to disrupt normal operation via illegal
|/O instructions

— All I/O instructions defined to be privileged

— 1/0O must be performed via system calls

* Memory-mapped and I/O port memory locations must
be protected too

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

