Linux VFS

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, Understanding
the Linux Kernel 37 edition (Bovet and Cesati), previous W4118s

Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File Systems

e old days —"the" filesystem!

* now — many filesystem types, many instances
— need to copy file from NTFS to Ext3

e original motivation — NFS support (Sun)

* idea —filesystem op abstraction layer (VFS)
— Virtual File System (aka Virtual Filesystem Switch)
— File-related ops determine filesystem type
— Dispatch (via function pointers) filesystem-specific op

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File System Types

* |ots and lots of filesystem types!
— 2.6 has nearly 100 in the standard kernel tree
* examples
— standard: Ext2, ufs (Solaris), svfs (SysV), ffs (BSD)
— network: RFS, NFS, Andrew, Coda, Samba, Novell
— journaling: Ext3, Veritas, ReiserFS, XFS, JFS
— media-specific: jffs, ISO9660 (cd), UDF (dvd)
— special: /proc, tmpfs, sockfs, etc.
* proprietary
— MSDOS, VFAT, NTFS, Mac, Amiga, etc.
* new generation for Linux
— Ext3, ReiserFS, XFS, JFS

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

(VFS) Virtual File System

* Object-oriented way of implementing FSs

 Same API for different types of file systems

— Separates file-system generic operations from
implementation details

— Implementation can be one of many file systems
types, or network file system

— Then dispatches operation to appropriate file
system implementation routines

e Syscalls program to VFS API rather than
specific FS interface

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Virtual File System (VFS)

file-system interface

VFS interface

Y Y

local file system local file system remote file system
type 1 type 2 type 1

A A 4
:
. . network

* Very flexible use cases:
— User files remote and system files local? No problem.
— Boot from USB? Network? RAM? No problem.
— Boot from another file? No problem.
— Interesting FSes: sshfs, gmailfs, FUSE (user space FS)

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VFS Stakeholders

* VFS Objects
— inode, file, superblock, dentry
— VFS defines which ops on each object

— Each object has a pointer to a function table
* Addresses of routines to implement that function on that object

* VFES Users
— System calls that provide file related services
— Use VFS function pointer and objects only

* VFS Implementers

— File systems that translate VFS ops into native operations
— Store on disk, send over network, etc.
— Provide the functions pointer to by function pointers

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux File System Model

e basically UNIX file semantics
— File systems are mounted at various points
— Files identified by device inode numbers

* VFS layer just dispatches to fs-specific functions

— libc read() -> sys_read()
* what type of filesystem does this file belong to?
 call filesystem (fs) specific read function
* maintained in open file object (file)

— example: file->f _op->read(...)

e similar to device abstraction model in UNIX

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VFS Users

 fundamental UNIX abstractions
— files (everything is a file)
» ex: /dev/ttySO — device as a file
* ex: /proc/123 — process as a file
— processes
— users

* |ots of syscalls related to files! (~100)
— most dispatch to filesystem-specific calls
— some require no filesystem action
* example: Iseek(pos) — change position in file
— others have default VFS implementations

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VES System Calls

* filesystem ops — mounting, info, flushing, chroot, pivot_root

e directory ops — chdir, getcwd, link, unlink, rename, symlink

» file ops — open/close, (p)read(v)/(p)write(v), seek, truncate, dup fcntl,
creat,

* inode ops — stat, permissions, chmod, chown

* memory mapping files — mmap, munmap, madvise, mlock

e wait for input — poll, select

e flushing — sync, fsync, msync, fdatasync

* file locking — flock

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VFS-related Task Fields

e task_struct fields

— fs—includes root, pwd
* pointers to dentries

— files —includes file descriptor array fd[]
* pointers to open file objects

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VES Objects: The Big Four

e structfile
— information about an open file
— includes current position (file pointer)
e struct dentry
— information about a directory entry
— includes name + inode#
e structinode
— unique descriptor of a file or directory
— contains permissions, timestamps, block map (data)
— inode#: integer (unique per mounted filesystem)
e struct superblock
— descriptor of a mounted filesystem

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Two More Data Structures

e struct file_system_type
— name of file system
— pointer to implementing module
— including how to read a superblock

— On module load, you call register_file_system and pass a pointer to
this structure

e struct vfsmount
— Represents a mounted instance of a particular file system

— One super block can be mounted in two places, with different covering
sub mounts

— Thus lookup requires parent dentry and a vfsmount

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Data Structure Relationships

inode cache

fds open
file
object

/|

open
file N TN T/ superblock
object | .7 N\~ X 1

|
|
|
open |
|
|
|
|
|

file
object

'dentry cache

—_———— e —_———a

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Data Structure Relationships

open f dent
file > dentry - Y >
object / d_subdirs i
open dentry +*| dentry [+* d_inode —
file 3) % l :
object d_subdirs
open d_parent
file :
object |_sb —
d sb
superblock —
i_dentries | .

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Sharing Data Structures

e calling dup() —
— shares open file objects
— example: 2>&1

* opening the same file twice —
— shares dentries

* opening same file via different hard links —
— shares inodes

* mounting same filesystem on different dirs —
— shares superblocks

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Superblock

 mounted filesystem descriptor

usually first block on disk (after boot block)

copied into (similar) memory structure on mount
» distinction: disk superblock vs memory superblock
 dirty bit (s_dirt), copied to disk frequently

* important fields

4/22/13

s_dev, s_bdev — device, device-driver
s_blocksize, s maxbytes, s_type

s_flags, s_magic, s_count, s_root, s_dquot
s_dirty — dirty inodes for this filesystem
s_op — superblock operations

u — filesystem specific data

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Superblock Operations

* filesystem-specific operations

4/22/13

— read/write/clear/delete inode
— write_super, put_super (release)
* no get_super()! that lives in file_system_type descriptor
— write_super_lockfs, unlockfs, statfs
— file_handle ops (NFS-related)

— show_options

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Inode

* "index" node — unique file or directory descriptor
— meta-data: permissions, owner, timestamps, size, link count
— data: pointers to disk blocks containing actual data
* data pointers are "indices" into file contents (hence "inode")

* inode # - unique integer (per-mounted filesystem)

 what about names and paths?
— high-level fluff on top of a "flat-filesystem"
— implemented by directory files (directories)
— directory contents: name + inode

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File Links

e UNIX link semantics

— hard links — multiple dir entries with same inode #
* equal status; first is not "real" entry
* file deleted when link count goes to 0

* restrictions
— can't hard link to directories (avoids cycles)
— or across filesystems

— soft (symbolic) links — little files with pathnames
* just aliases for another pathname
* no restrictions, cycles possible, dangling links possible

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Inode Fields

 large struct (~50 fields)

* important fields
—i_sb, i _ino (number), i_nlink (link count)
— metadata: i_mode, i uid,i_gid, i size, i times
— i _flock (lock list), i_wait (waitq — for blocking ops)
— linkage: i_hash, i_list, i_dentry (aliases)
—i_op (inode ops), i_fop (default file ops)
— u (filesystem specific data — includes block map!)

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Inode Operations

4/22/13

create — new inode for regular file

link/unlink/rename —
— add/remove/modify dir entry

symlink, readlink, follow_link — soft link ops
mkdir/rmdir — new inode for directory file
mknod — new inode for device file

truncate — modify file size

permission — check access permissions

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

(Open) File Object

e struct file (usual variable name - filp)
— association between file and process
— no disk representation
— created for each open (multiple possible, even same file)
— most important info: file pointer
 file descriptor (small ints)
— index into array of pointers to open file objects
* file object states
— unused (memory cache + root reserve (10))
» get_empty_filp()
— inuse (per-superblock lists)
* system-wide max on open file objects (~8K)
— /proc/sys/fs/file-max

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File Object Fields

* important fields
— f_dentry (directory entry of file)
— f_vfsmnt (fs mount point)
— f _op (fs-specific functions — table of function pointers)
— f _count, f_flags, f mode (r/w, permissions, etc.)
— f_pos (current position — file pointer)
— info for read-ahead (more later)
— f uid, f_gid, f owner
— f _version (for consistency maintenance)
— private_data (fs-specific data)

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File Object Operations

 f op field —table of function pointers
— copied from inode (i_fop) initially (fs-specific)
— possible to change to customize (per-open)
* device-drivers do some tricks like this sometimes
* important operations
— llseek(), read(), write(), readdir(), poll()
— ioctl() = "wildcard" function for per-fs semantics
— mmap(), open(), flush(), release(), fsync()
— fasync() — turn on/off asynchronous i/o notifications
— lock() — file-locks (more later)

— readv(), writev() — "scatter/gather i/o"
* read/write with discontiguous buffers (e.g. packets)

— sendpage() — page-optimized socket transfer

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e abstraction of directory entry
— ex: line from Is -I
— either files (hard links) or soft links or subdirectories
— every dentry has a parent dentry (except root)
— sibling dentries — other entries in the same directory
e directory api: dentry iterators
— posix: opendir(), readdir(), scandir(), seekdir(), rewinddir()
— syscall: getdents()
 why an abstraction?

— Local filesystems: directories are really files with directory
"records”

— Network filesystems: often have separate directory
operations (e.g., NFS, FTP)

— Having abstraction allows unification, caching

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Dentry (continued)

* not-disk based (no dirty bit)
— dentry_cache —slab cache
* important fields
— d_name (gstr), d_count, d_flags
— d_inode — associated inode
— d_parent — parent dentry
— d_child —siblings list
— d_subdirs — my children (if i'm a subdirectory)
— d_alias — other names (links) for the same object (inode)?
— d_lru —unused state linkage
— d_op —dentry operations (function pointer table)
— d_fsdata — filesystem-specific data

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Dentry Cache

e veryimportant cache for filesystem performance
— every file access causes multiple dentry accesses!
— example: /tmp/foo

* dentries for"/", "/tmp", "/tmp/foo" (path components)
* dentry cache "controls" inode cache

— inodes released only when dentry is released

* dentry cache accessed via hash table

— hash(dir, filename) -> dentry

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Dentry Cache (continued)

* dentry states
— free (not valid; maintained by slab cache)
— in-use (associated with valid open inode)
— unused (valid but not being used; LRU list)
— negative (file that does not exist)

e dentry ops
— just a few, mostly default actions
— ex: d_compare(dir, namel, name2)

 case-insensitive for MSDOS

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process-related Files

e current->fs (fs_struct)
— root (for chroot jails)
— pwd
— umask (default file permissions)
e current->files (files_struct)
— fd[] (file descriptor array — pointers to file objects)
* 0,1, 2-stdin, stdout, stderr
— originally 32, growable to 1,024 (RLIMIT_NOFILE)
* complex structure for growing ... see book

— close_on_exec memory (bitmap)
* open files normally inherited across exec

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Filesystem Types

e Linux must "know about" filesystem before mount
— multiple (mounted) instances of each type possible

* special (virtual) filesystems (like /proc)
— structuring technique to touch kernel data

— examples:
» /proc, /dev (devfs)
» sockfs, pipefs, tmpfs, rootfs, shmfs

— associated with fictitious block device (major# 0)
* minor# distinguishes special filesystem types

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Registering a Filesystem Type

* must register before mount
— static (compile-time) or dynamic (modules)
* register filesystem() / unregister_filesystem
— adds file_system_type object to linked-list
 file_systems (head; kernel global variable)
* file_systems_lock (rw spinlock to protect list)
e file_system_ type descriptor
— name, flags, pointer to implementing module
— list of superblocks (mounted instances)

— read_super() — pointer to method for reading superblock
* most important thing! filesystem specific

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Integration with Memory Subsystem

 The address_space structure
— One per file, device, etc.

— Mapping between logical offset in object to page in
memory

— Pages in memory are called “page cache”
— Files can be large: need efficient data structure

* You don’t have to use address_space for hw4.
Use a simple array to maintain your offset-

>page mapping.

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The address space structure

struct address space {

struct inode *host; /* owner: inode, block _device */

struct radix tree root page tree; /* radix tree of all pages */

spinlock t tree lock; /* and lock protecting it */

unsigned int i mmap writable;/* count VM SHARED mappings */

struct prio tree root i _mmap; /* tree of private and shared
mappings */

struct list head i_mmap nonlinear;/*list VM_NONLINEAR mappings */

spinlock t i mmap lock; /* protect tree, count, list */
unsigned long nrpages; /* number of total pages */

pgoff t writeback index;/* writeback starts here */

const struct address space operations *a_ ops; /* methods */

unsigned long flags; /* error bits/gfp mask */

struct backing dev_info *backing dev info;

/* device readahead, etc */

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

4/22/13

The Page Cache Radix Tree

radix_tree_root

(rnode
{ height =2 '

radix_tree_node
count = 2

radix_tree_root

(mode
| height=1 ' slots[0} slots[2]

radix_tree_node radix_tree_node radix_tree_node
count =1

index=0 index=4 index=0 index=4 index=131
() radix tree of height 1 (b) radix tree of height 2

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

address space operations structure

struct address space operations {
int (*writepage) (struct page *page, struct writeback control *wbc);
int (*readpage)(struct file *, struct page *);

int (*write begin) (struct file *, struct address space *mapping,
loff t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);

int (*write end) (struct file *, struct address space *mapping,
loff t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);

sector t (*bmap) (struct address space *, sector t);
void (*invalidatepage) (struct page *, unsigned long);

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buffer Cache Descriptors

' P é —— b _data
| Page desriptor ': - :Iﬂl i P > Eriv:te
Vo sy » b _this_page
<+- 1|, '
' i =——-=9b_page
Page ' I v
= Bufferhead I

Bufferhead r.ﬁ_:
- Bufferhead r
Bufferhea r.:.‘i""

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Reverse Mapping for Memory Maps

* Problem: anon_vma is good for limited sharing
— Memory maps can be shared by large numbers of processes
— E.g., libc shared by everyone
— l.e., need to do linear search for every eviction

— Also, different processes may map different ranges of a
memory map into their address space

e Need efficient data structure

— Basic operation: given an offset in an object (such as a file),
or a range of offsets, return vmas that map that range

— Enter priority search trees
— Allows efficient interval queries

* Note: you don’t need this for hw4. Use anon_vma

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

|_mmap Priority Tree

Part of struct address_space in fs.h

radix size heap

0‘““5\1/ ®

0,55
02,2

255 O D
23,5
20,2

MO NOIOND
= 0,0,0

(a) (b)

4/22/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

