File Systems ||

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File system examples

e BSD Fast File System (FFS)
— What were the problems with Unix FS?
— How did FFS solve these problems?

* The Linux Second Extended File System (Ext2)
— What is the EXT2 on-disk layout?
— What is the EXT2 directory structure?

* The Linux Third Extended File System (Ext3)
— What is the file system consistency problem?
— How to solve the consistency problem using journaling?

* Log-Structured File system (LFS)
— What was the motivation of LFS?
— How did LFS work?

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Original Unix FS

* From Bell Labs
* Simple and elegant

Unix disk layout

inodes data blocks (512 bytes)

super

* Problem: slow

— 2% of maximum disk bandwidth even for
sequential disk transfer (20KB/s)

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Why so slow?

* Problem 1: blocks too small
— Fixed costs per transfer (seek and rotational delays)
— Require more indirect blocks

* Problem 2: unorganized freelist
— Consecutive file blocks are not close together
— Pay seek cost even for sequential access

* Problem 3: no data locality

— inodes far from data blocks
— inodes of files in directory not close together

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Problem 1: blocks too small

——Space Wasted —* Bandwidth

100.00% /
80.00% / /
60.00% // /

40.00% / /
20.00% -

0.00% — 1 \ ‘ |
5128 10248 2048B 4096 1MB

Block size

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Larger blocks

(d BSD FFS: make block 4096 or 8192 bytes

 Solve the internal fragmentation problem by chopping large blocks
into small ones called fragments

= Algorithm to ensure fragments only used for end of file
= Limit number of fragments per block to 2, 4, or 8
= Keep track of free fragments

 Pros
= High transfer speed for larger files
= Low wasted space for small files or ends of files

 This internal fragmentation problem is not a big deal today

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Problem 2: unorganized freelist

* Leads to random allocation of sequential
file blocks overtime

S []
Q
D
G
D
Q
C D
»

Initial performance good et worse over fime

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Fixing the unorganized free list

* Periodical compact/defragment disk
— Cons: locks up disk bandwidth during operation

* Keep adjacent free blocks together on freelist
— Cons: costly to maintain

* Bitmap of free blocks

— Bitmap: each bit indicates whether block is free
* E.g.,010001000101010000001
 cache (all or parts of) bitmap in mem = few disk ops

— Used in BSD FFS

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Problem 3: data Locality

* Locality techniques
— Store related data together

— Spread unrelated data apart
* Make room for related data

— Always find free blocks nearby

* Rule of thumb: keep some free space on disks (10%)

* FFS new organization: cylinder group
— Set of adjacent cylinders
— Fast seek between cylinders in same group

— Each cylinder group contains superblock, inodes, bitmap of

free blocks, usage summary for block allocation, data
blocks

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Achieving locality in FFS

* Maintain locality of each file
— Allocate data blocks within a cylinder group

 Maintain locality of inodes in a directory

— Allocate inodes in same dir in a cylinder group

 Make room for locality within a directory

— Spread out directories to cylinder groups
— Switch to a different cylinder group for large files

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

BSD FFS performance improvements

* Achieve 20-40% of disk bandwidth on large files

— 10X improvements over original Unix FS
— Stable over FS lifetime

— Can be further improved with additional placement
techniques

e Better small file performance

 More enhancements (e.g., file locking, long file
names)

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File system examples

* The Linux Second Extended File System (Ext2)
— What is the EXT2 on-disk layout?
— What is the EXT2 directory structure?

* The Linux Third Extended File System (Ext3)
— What is the file system consistency problem?
— How to solve the consistency problem using journaling?

* Log-Structured File system (LFS)
— What was the motivation of LFS?
— How did LFS work?

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e “Standard” Linux File System
— Was the most commonly used before ext3 came out

e Uses FFS-like layout
— Each FS is composed of identical block groups
— Allocation is designed to improve locality

* inodes contain pointers (32 bits) to blocks
— Direct, Indirect, Double Indirect, Triple Indirect
— Maximum file size: 4.1TB (4K Blocks)
— Maximum file system size: 16TB (4K Blocks)
— Block size: 1k, 2k, 4k, 8k. Upper limit: page size. Why?

* On-disk structures defined in include/linux/ext2 fs.h

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Ext2 Disk Layout

 Filesin the same directory are stored in the
same block group

 Files in different directories are spread
among the block groups

Boot| Block group 0 | Block group 1 | Block group 2 | Block group 3 | Block group 4

D~
(4
Super—| Group Block | l-node nod Data
block |[descriptor | bitmap | bitmap —nodes blocks N
(8

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Block Addressing in Ext2

direct blocks

BLKSIZE/4

BLKSIZE/4)?

Double
Indirect

(BLKSIZE/4)?

Triple Double
Indirect Indirect

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Ext2 Directory Structure

()

I-node number
Entry size
Type

/ /— File name length

19 |

F 8 colossal 19! F 10 voluminous 885 D 6 bigdir
ks

’\/_/

—
(=3
o

195

4/15/13

@

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File system examples

* The Linux Third Extended File System (Ext3)
— What is the file system consistency problem?
— How to solve the consistency problem using journaling?

* Log-Structured File system (LFS)
— What was the motivation of LFS?
— How did LFS work?

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

4/15/13

The consistent update problem

Atomically update file system from one
consistent state to another, which may
require modifying several sectors, despite that
the disk only provides atomic write of one
sector at a time

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example: Ext2 File Creation

Memory
Disk |o01000 |01000 u ‘J
inode block inode blocks

bitmap bitmap

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Read to In-memory Cache

01000 / — i 1

01000 (01000 u

inode block
bitmap bitmap

inode data blocks

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Modify blocks

o1
01010 / .1
f 3

"Dirty" blocks,
must write to disk

01000 | 01000 u

inode block
bitmap bitmap

inode data blocks

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Disk: atomically write one sector

— Atomic: if crash, a sector is either completely
written, or none of this sector is written

* An FS operation may modify multiple sectors
— Crash = FS partially updated

* Like race conditions in concurrent programs
— But, can’t lock out a failure using a lock!

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Possible Crash Scenarios

* File creation dirties three blocks
— inode bitmap (B), inode for new file (l), parent directory data block (D)

 Old and new contents of the blocks
— B = 01000 B’ = 01010

I = free I' = allocated, initialized
— D = {} D' = {<f, 3>}

* Crash scenarios: any subset can be written

B I D Consistent (new data lost)

B’ I D Inconsistency. Bitmap says | allocated, but no file/dir using |
B I’ D Asifnothing occurred

B I D’ Seriousproblem. Trust D’ and follow pointer? Garbage! Trust B that |
not allocated? Inconsistency!

B’ I’ D Inconsistency. Bitmaps says | allocated, but no one uses I.

B’ I D’ Mostseriousproblem. FScompletely consistent if we just look at the
pointers and bitmap. But | hasn’t been initialized and contains garbage.

B I’ D’ Inconsistency

B’ I’ D’ Consistent(new data preserved)

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

One solution: fsck

 Upon reboot, scan entire disk to make FS consistent

* Advantages
— Simplify FS code
— Can repair more than just crashed FS (e.g., bad sector)

* Disadvantages
— Slow to scan large disk
— Cannot correctly fix all crashed disks (e.g., B 1D)
— Not well-defined consistency

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Another solution: Journaling

* Write-ahead logging from database community

e Persistently write intent to log (or journal), then update file

system
* Crash before intent is written == no-op
* Crash after intent is written == redo op

* Advantages
* no need to scan entire disk
* Well-defined consistency

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Ext3 Journaling

* Physical journaling: write real block contents of the update to log
— Four totally ordered steps
* Commit dirty blocks to journal as one transaction
* Write commit record
* Write dirty blocks to real file system
* Reclaim the journal space for the transaction

e Logical journaling: write logical record of the operation to log
— “Add entry F to directory data block D”
— Complex to implement
— May be faster and save disk space

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Step 1: write blocks to journal

01010 /

"Dirty" blocks,
must write to disk

01000 | 01000 u

journal 01010

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Step 2: write commit record

01010 /
-

"Dirty" blocks,
must write to disk

01000 | 01000 u

journal 01010 commit

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Step 3: write dirty blocks to real FS

01010 /

"Dirty" blocks,
must write to disk

01010 01000 u

journal 01010 commit

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Step 4: reclaim journal space

01010 /
L

"Dirty" blocks,
must write to disk

01010 01000 u

journal 01010 commit

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Summary of Journaling write orders

e Journal writes < FS writes

— Otherwise, crash =» FS broken, but no record in
journal to patch it up

* FS writes < Journal clear

— Otherwise, crash = FS broken, but record in
journal is already cleared

e Journal writes < commit block < FS writes

— Otherwise, crash =» record appears committed,
but contains garbage

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

4/15/13

Ext3 Journaling Modes

Journaling is expensive
— one write = two disk writes, two seeks
— Several journaling modes balance consistency and performance

Data journaling: journal all writes, including file data
— Problem: expensive to journal data

Metadata journaling: journal only metadata
— Used by most FS (IBM JFS, SGI XFS, NTFS)
— Problem: file may contain garbage data

Ordered mode: write file data to real FS first, then journal
metadata

— Default mode for ext3
— Problem: old file may contain new data

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File system examples

Log-Structured File system (LFS)
— What was the motivation of LFS?
— How did LFS work?

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Log-structured file system

* Motivation

— Faster CPUs: I/O becomes more and more of a
bottleneck

— More memory: file cache is effective for reads
— Implication: writes compose most of disk traffic

* Problems with previous FS

— Perform many small writes

* Good performance on large, sequential writes, but many
writes are still small, random

— Synchronous operation to avoid data loss
— Depends upon knowledge of disk geometry

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

LFS idea

* |nsight: treat disk like a tape-drive
— Disk performs best for sequential access
— Essentially, extreme journaling
— Get rid of FS snapshot, everything in the journal

* Write data to disk in a sequential log
— Delay all write operations

— Write metadata and data for all files intermixed in
one operation

— Do not overwrite old data on disk

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros

— Always Large sequential writes =» good
performance

— No knowledge of disk geometry
* Assume sequential better than random

* Potential problems
— How do you find data to read?
— What happens when you fill up the disk?

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Read in LFS

e Same basic structures as Unix
— Directories, inodes, indirect blocks, data blocks

— Reading data block implies finding the file’s inode

* Unix: inodes kept in array
 LFS: inodes move around on disk

e Solution: inode map indicates where each inode
is stored

— Small enough to keep in memory
— inode map written to log with everything else

— Periodically written to known checkpoint location on
disk for crash recovery

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Efficient Reads: Indexing the Log

UNIX FFS (or Ext2)

Inode area .

File data File inode Dir data Dirinode Inode map Fixed checkpoint
(LFS only) (LFS only)

\

> New data writes

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Writes: Copy on Write

Original

\

>

New data writes

A A

,
. 7
“Q—"I

File data File inode Dir data Dirinode Inode map
(LFS only)

Update second file data block

Fixed checkpoint Free
(LFS only)

—

New data writes

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Disk cleaning

* When disk runs low on free space
— Run a disk cleaning process
— Compacts live information to contiguous blocks of disk

File data File inode Dir data Dirinode Inode map Fixed checkpoint Free
(LFS only) (LFS only)

In reality, too expensive to clean contiguously.
FS is split into moderately large segments (e.g., 1MB or more).
Segments close to being full untouched. So, segment sized holes are allowed.

4/15/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Disk cleaning

4/15/13

When disk runs low on free space
— Run a disk cleaning process
— Compacts live information to contiguous blocks of disk

Problem: long-lived data repeatedly copied over time

— Solution: Group older files into same segment

— Old segments won’t have many changes. Skip.

— But when old segment does have space, prioritize it. Why?

Try to run cleaner when disk is not being used

LFS: neat idea, influential
— Paper on LFS one of the most widely cited OS paper
— Many real file systems based on the idea

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

