File Systems

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* File system concepts
— What is a file?

— What operations can be performed on files?

— What is a directory and how is it organized?

* File implementation
— How to allocate disk space to files?

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

What is a file

e User view

— Named byte array
* Types defined by user

— Persistent across reboots and power failures

e OSview

— Map bytes as collection of blocks on physical
storage

— Stored on nonvolatile storage device
* Magnetic Disks

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Role of file system

* Naming
— How to “name” files
— Translate “name” + offset =» logical block #

* Reliability

— Must not lose file data

* Protection
— Must mediate file access from different users

* Disk management
— Fair, efficient use of disk space
— Fast access to files

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

4/10/13

File metadata

Name — only information kept in human-readable form

Identifier — unique tag (number) identifies file within file system
(inode number in UNIX)

Location — pointer to file location on device
Size — current file size
Protection — controls who can do reading, writing, executing

Time, date, and user identification — data for protection, security,
and usage monitoring

How is metadata stored? (inode in UNIX)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File Access Methods

e Sequential Access

— Maintain file pointer

current position

beginning end

= rc\/ind

* Direct Access
— Relative block number

— Relative block numbers: allow OS to decide where file
should be placed (like paging virtual memory addresses)

* Indexed Access (e.g., ISAM)

— File records kept sorted on a specified index-key
— Index block tracks beginning record in each data block

— read or write =)

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

UNIX File operations

* int creat(const char* pathname, mode_t mode)
* int unlink(const char* pathname)

e int rename(const char* oldpath, const char*
newpath)

* int open(const char* pathname, int flags, mode_t
mode)

* int read(int fd, void* buf, size t count);

* int write(int fd, const void™* buf, size_t count)

* int Iseek(int fd, offset_t offset, int whence)

* int truncate(const char* pathname, offset _t len)

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Everything as a file

* A core UNIX tenet from the early days

— Block devices (disks, graphics cards in /dev)

— Character devices (USB devices, network cards in /dev)
— |IPC: Pipes, Network sockets

— Accessing kernel data structures (/proc, /sys)

— Setting kernel configuration

— Volatile filesystems in RAM (e.g., tmpfs)

— Shared memory (based on tmpfs/shmfs)

— Remote files (NFS, SMB, AFP, ...)

— Even normal local files

* |mplications

4/10/13

— Everything accessed using common API (open, read, write)
— Implementation may be totally different
— OS must support some measure of object orientedness

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Open files

* Problem: expensive to resolve name to identifier on each access

* Solution: open file before access

— Name resolution: search directories for file name and check
permission

— Read relevant file metadata into open file table in memory
— Return index in open file table (file descriptor)
— Application pass index to OS for subsequent access

e System-wide open file table shared across processes

* Per-process open file table stores current pointer position and
index to system-wide open file table

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Directories

* Organization technique
— Map file name to location on disk
— Also stored on disk

* Single-Level directory

— Single directory for entire disk
* Each file must have unique name

— Not very usable

 Two-level directory
— Directory for each user
— Still not very usable

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Tree-structured directory

* Directory stored on disk just like files

— Data consists of <name, index> pairs
* Index points to file identifier (inode)
* Name can be another directory

— Designated by special bit in meta-data
— Reference by separating names with slashes
— Operations

e User programs can read (readdir())
* Only special system calls can write

e Special directories
— Root (/): fixed index for metadata
— . : this directory
— .. . parent directory

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Acyclic-graph directories

* Directories can share files
* Create links from one file

* Two types of links

— Symbolic link
e Special file, designated by bit in meta-data
* File data is name to another file

— Hard link
* Multiple directory entries point to same file
e All hard-links are equal: no primary
 Store reference count in file metadata
e Cannot refer to directories; why?

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

General Graph Directory and Cycles

root | avi tc jim
text | mail | count| book book | mail \unhex| hyp
avi | count unhex| hex

* Cycles cause problems with reference counts
 E.g., acycle thatisn’t accessible through root
* Need garbage collection

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Absolute path name (full path name)

— Start at root directory
* E.g. /home/html

* Relative path name
— Full path is lengthy and inflexible
— Give each process current working directory
— Assume file in current directory

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Directories as files

* Direction as special files that store pointers to
the contained files

— File data is interpreted by FS code

* Separate functionality in two levels
— Lowest: storage management
— Highest: naming, directory

e Advantage: simplifies design and
implementation

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

In-Memory File System Structures

Principle: heavy caching to reduce impact of slow disk I/O

[]
[][]

directory structure

open (file name) ,|:|

directory structure

h 4

file-control block

user space kernel memory secondary storage

(a)

index

[[]
[]

r | = data blocks

\
0

/
8

read (index)

per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage

(b)

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Unified Buffer Cache

 We've seen the Linux page cache
— Example of unified memory-disk subsystems

I/O using
read() and write()

y I/O using
‘ memory-mapped I/O read() and write()

page cache \ /
\ buffer cache

buffer cache A

memory-mapped I/0O

4

A 4

w file system

file system

Separate I/O and paging systems Unified disk and paging cache
(double caching)

Example: Linux In-memory Data Structures

e struct super_block
— Contains FS type, size, free space, pointer to root dir
struct inode
— One per physical file
— Unique inode number
— Contains file size, permissions, attributes, timestamps
struct dentry
— A directory entry (to file or another directory)
— Contains name used to access file, inode number
e struct file
— File opened by process
— Contains file pointer, mode user opened the file in

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File System Mounting

e Start off with root filesystem

* New file systems can be mounted into an existing
directory (mount point)

* E.g., mount —o opts —t ext2 /dev/hda3 /users

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Protection

* Type of access

— Read, write, execute, append, delete, list ...

e Access control list
— Associate lists of users with access rights for every file
— Advantage: complete control
— Disadvantage

* Tedious to construct list (may not know in advance for all users)
* Require variable-size information

e Classify users
— Assign a owner and group to each file
— Different permissions based on who is accessing: owner, group, other
— Advantage: easier to implement
— Disadvantage: no fine grained control

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* File implementation
— How to allocate disk space to files?

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Typical file access patterns

e Sequential Access

— Data read or written in order

* Most common access pattern
— E.g., copy files, compiler read and write files,

— Can be made very fast (peak transfer rate from disk)

e Random Access

— Randomly address any block
* E.g., update records in a database file

— Difficult to make fast (seek time and rotational delay)

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Disk management

* Need to track where file data is on disk

— How should we map logical sector # to surface #, track
#, and sector #?

* Order disk sectors to minimize seek time for sequential
access

e Need to track where file metadata is on disk

e Need to track free versus allocated areas of disk

— E.g., block allocation bitmap (Unix)
* Array of bits, one per block
* Usually keep entire bitmap in memory

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Allocation strategies

e Various approaches (similar to memory allocation)

Contiguous
Extent-based
Linked

FAT tables

Indexed
Multi-Level Indexed

* Key metrics

4/10/13

Fragmentation (internal & external)?

Grow file over time after initial creation?

Fast to find data for sequential and random access?
Easy to implement?

Storage overhead?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Contiguous allocation

e Allocate files like continuous memory

4/10/13

allocation (base & limit)

— User specifies length, file system allocates space
all at once

— Can find disk space by examining bitmap

— Metadata: contains starting location and size of
file

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

4/10/13

Contiguous allocation example

directory
file start length
count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

count
gl 2| | 3|
f
4| | 5 |EG[IEE
8 | 9 HoL 11|
tr
12| [13[114 _[15]
16 _[17[_ 118 _119]
mail
20 24|l 22l 23]
24| |25 126[|27]
list
28| 129(|30 |31

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros
— Easy to implement

— Low storage overhead (two variables to specify disk
area for file)

— Fast sequential access since data stored in continuous
blocks

— Fast to compute data location for random addresses.
Just an array index

* Cons
— Large external fragmentation
— Difficult to grow file

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Extent-based allocation

e Multiple contiguous regions per file (like
segmentation)
— Each region is an extent

— Metadata: contains small array of entries
designating extents

e Each entry: start and size of extent

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros
— Easy to implement

— Low storage overhead (a few entries to specify file
blocks)

— File can grow overtime (until run out of extents)
— Fast sequential access
— Simple to calculate random addresses

* Cons
— Help with external fragmentation, but still a problem

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linked allocation

* All blocks (fixed-size) of a file on linked list

— Each block has a pointer to next
— Metadata: pointer to the first block

block pointer

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linked allocation example

4/10/13

N
~

of | 10w 2[| 3| |

41 51 61 707

directory
file start end
jeep 9 25

8[| ?fo 11[]

121314/ 115]

16 11718 _[19[|

20[]21 2[123[]

24[)25 -1'56 [127[]

28 (29[[30[31|

-

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros
— No external fragmentation
— Files can be easily grown with no limit

— Also easy to implement, though awkward to spare
space for disk pointer per block

* Cons
— Large storage overhead (one pointer per block)
— Potentially slow sequential access
— Difficult to compute random addresses

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Variation: FAT table

e Store linked-list pointers outside block in File-
Allocation Table

— One entry for each block
— Linked-list of entries for each file

* Used in MSDOS and Windows operating
systems

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

FAT example

directory entry
test coe 217
name start block

— 217 618

339 =

618 339 |[e——

no. of disk blocks -1

FAT

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros
— Fast random access. Only search cached FAT

* Cons
— Large storage overhead for FAT table
— Potentially slow sequential access

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Indexed allocation

* File has array of pointers (index) to block

— Allocate block pointers contiguously in metadata

* Must set max length when file created
* Allocate pointers at creation, allocate blocks on demand
* Cons: fixed size, same overhead as linked allocation

— Maintain multiple lists of block pointers

* Last entry points to next block of pointers
e Cons: may need to access a large number of pointer blocks

block pointers — L

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Indexed allocation example
AT directory

file index block
o] 1l L\zl | 3[] [l 19

4 5 7

8[| QQQQHZI
1

12113 _[14

16 18[_|
20 _|21[_|22[A23[
24[Jo5[J26[127[]

28 _129[(30 |31

~ >

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros
— Easy to implement
— No external fragmentation
— Files can be easily grown with the limit of the array
Size
— Fast random access. Use index

* Cons
— Large storage overhead for the index

— Sequential access may be slow.
* Must allocate contiguous block for fast access

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multi-level indexed files

 Block index has multiple levels

B -
/
N
AN |
AN
N
\\
\\
outer-index

index table data blocks

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multi-level indexed allocation

UNIX FFS, and Linux ext2/ext3

direct blocks

(BLKSI

BLKSIZE/4)?

XE/4)3

BLKSIZE/4

Double
Indirect

Triple Double
Indirect Indirect

4/10/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons

* Pros
— No external fragmentation

— Files can be easily grown with much larger limit
compared to one-level index

— Fast random access. Use index

e Cons

— Large space overhead (index)

— Sequential access may be slow.
* Must allocate contiguous block for fast access

— Implementation can be complex

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Advanced Data Structures

* Combine Indexes with extents/multiple cluster sizes
* More sophisticated data stuctures

* B+ Trees
— Used by many high perf filesystems for directories and/or data
— E.g., XFS, ReiserFS, ext4, MSFT NTFS and ReFS, IBM JFS, brtfs
— Can support very large files (including sparse files)
— Can give very good performance (minimize disk seeks to find block)

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Free Space Management

* File system maintains free-space list to track available blocks/clusters

* Free bitmap stored in the superblock
0O 1 2 n-1

1 = block[i] free
bit[i] =

free-space list head

0 = block[i] occupied

* Linked free list in free blocks

— Pros: space efficient

— Cons: requires many disk reads to find free cluster of right size
* Grouping

— Use a free index-block containing n-1 pointers to free blocks
and a pointer to the next free index-block

2021|227 123[]

* Counting
— Free list of variable sized contiguous clusters instead of blocks 28[J2o[Jso[J31[]
— Reduces number of free list entries o

4/10/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

