Linux Memory Management

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Understanding the Linux Kernel (3™ edition)

by Bovet and Cesati, previous W4118s

Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Why aren’t Page Tables Sufficient?

How to device if a memory region unallocated vs. unloaded?
— Virtual memory areas (VMAS)

How to manage physical memory allocation?

— Page descriptors
— Page allocators (e.g., buddy algorithm, SLOB, SLUB, SLAB)

Where to read a demand fetched page from?
— Radix trees (page_tree)

How to identify which PTEs map a physical page when
evicting?

— Reverse mappings

— anon vmas (anon_vma), and radix priority trees (i_mmap)

How to unify file accesses and swapping?
— Page Cache

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Memory Subsystem Outline

* Memory data structures

* Virtual Memory Areas (VMA)

* Page Mappings and Page Fault Management
* Reverse Mappings

* Page Cache and Swapping

* Physical Page Management

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux MM Objects Glossary

struct mm: memory descriptor (mm_types.h)
struct vm_area_struct mmap: vma (mm_types.h)

struct page: page descriptor (mm_types.h)

pgd, pud, pmd, pte: pgtable entries (arch/x86/include/asm/
page.h, page 32.h, pgtable.h, pgtable _32.h)

— pgd: page global directory
— pud page upper directory
— pmd: page middle directory
— pte: page table entry

struct anon_vma: anon vma reverse map (rmap.h)
struct prio_tree root i_mmap: priority tree reverse map (fs.h)

struct radix_tree_root page tree: page cache radix tree (fs.h)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The mm_struct Structure

* Main memory descriptor
— One per address space
— Each task_struct has a pointer to one
— May be shared between tasks (e.g., threads)

e Contains two main substructures

— Memory map of virtual memory areas (vma)
— Pointer to arch specific page tables

— Other data, e.g., locks, reference counts,
accounting information

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

struct mm_ struct

struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */

unsigned long mmap_base; /* base of mmap area */

unsigned long task_size; /* size of task vm space */

pgd_t * pgd;

atomic_t mm_users; /* How many users with user space? */
atomic_t mm_count; /* How many references to "struct mm_struct */
int map_count; /* number of VMAs */

struct rw_semaphore mmap_sem;

spinlock_t page_ table lock; /* Protects page tables and some counters */

unsigned long hiwater_rss; /* High-watermark of RSS usage */
unsigned long hiwater_vm; /* High-water virtual memory usage */
unsigned long total_vm, locked_vm, shared_vm, exec_vm;

unsigned long stack_vm, reserved_vm, def flags, nr_ptes;
cpumask_t cpu_vm_mask;

unsigned long flags; /* Must use atomic bitops to access the bits */

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Virtual Memory Areas (vma)

Access to memory map is protected by mmap_sem read/write semaphore

Linear Address Space

/

A

4
l :I I I’ | ItI I I _____ B |r| I I, | | 'I I I Memory Regions
t

nmap [mmap_c ache
4]
Memory Descriptor
\ J

—p Vm_start
- = =pvn_end
........... » vm_next

Reference: http://www.makelinux.net/books/ulk3/understandlk-CHP-9-SECT-3

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Types of VMA Mappings

* File based mappings (mmap):
— Code pages (binaries), libraries
— Data files
— Shared memory
— Devices

* Anonymous mappings:
— Stack
— Heap
— CoW pages

e Use different mechanisms for reverse mapping,
demand fetching, swapping

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Virtual Memory Areas

————— » vm_end: first address outside virtual memory area

———» vm_start: first address within virtual memory area

vm_area_struct T stack
VM_READ | VM_WRITE (anonymous)
(_> | VM_GROWS_DOWN
vm_area_struct
VM_READ | VM_EXEC — Memory
-7 mapping
vm_area_struct
VM_READ | VM_EXEC >
\ vm_area_struct B Heap
VM_READ | VM_WRITE (anonymous)
'd >
vm_next indetiii
| vm_area_struct BSS
VM_READ | VM_WRITE (anonymous)
f s
vm_next preee - T T T
T vm_area_struct Data
m_file VM_READ | VM_WRITE (file-
- s backed)
vm_next -
\ vm_area_struct Text
<—vm_file VM_READ | VM_EXEC (file-
4 backed)

task_struct

mmap

http://duartes.org/gustavo/blog/post/how-
the-kernel-manages-your-memory

(/bin/gonzo)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Anatomy of a VMA

Pointer to start and end of region in address
space (virtual addresses)

Data structures to index vmas efficiently

Page protection bits

VMA protection bits/flags (superset of page bits)
Reverse mapping data structures

Which file this vma loaded from?

Pointers to functions that implement vma
operations

— E.g., page fault, open, close, etc.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

struct vm_area_struct

struct vm_area_struct {

struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end;

struct vm_area_struct *vm_next;

pgprot_tvm_page_ prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */

struct rb_node vm_rb;

struct raw_prio_tree_node prio_tree_node;

struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
struct vm_operations_struct * vm_ops;

unsigned long vm_ pgoff;

struct file * vm_file; /* File we map to (can be NULL). */

void * vm_private_data; /* was vm_pte (shared mem) */

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VMA Addition and Removal

]
(@) Accessrights of interval to be added are (a") The existing region is enlarged new ﬁle iS
equal to those of contiguous region
mmaped, a new
/ ! shared memory
A . segment is created,
(b) Access rights of interval to be added are (b) Anew memory regionis created or a new SeCtion iS

different from those of contiguous region

created (e.g.,
s | library, code, heap,
(0 Lr;tlg:ina; Eg;g [r]emoved is at the end of (¢') The existing region is shortened stac k)

e Kernel tries to

e P | merge with

(d) Interval to be removed is inside (d) Two smaller regions are created . .
existing region adjacent sections
Address space before operation Address space after operation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VMA Search

* VMA is very frequently accessed structure
— Must often map virtual address to vma
— Whenever we have a fault, mmap, etc.
— Need efficient lookup

e Two Indexes for different uses

— Linear linked list
* Allows efficient traversal of entire address space
* vma->vm_next

— Red-black tree of vmas
e Allows efficient search based on virtual address
* vma->vm_rb

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Efficient Search of VMASs

* Red-black trees allow O(lg n) search of vma
based on virtual address

* Indexed by vm_end ending address

vm_end=300

task->mm->mmap_cache Ym_end=1
vm_end=400

vm_end=30 vm_end=150 vm-end=490

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

struct vm_operations_struct

struct vm_operations_struct {

void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

/* notification that a previously read-only page is about to become
* writable, if an error is returned it will cause a SIGBUS */
int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);

/* called by access_process_vm when get_user_pages() fails, typically
* for use by special VMAs that can switch between memory and hardware
*/
int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Demand Fetching via Page Faults

2. brk() enlarges heapVMA.
New pages are not mapped onto physical memory.

1. Program calls brk() to grow its heap

c:) Heap

Heap {:

Size: BKB, Size: 16KB,

Rss: 8KB Rss: 8KB
3. Program tries to access new memory. 4. Kernel assigns page frame to process,
Processor page faults. creates PTE, resumes execution. Program is

unaware anything happened.

— —
Size: 16KB, Size: 16KB,
Rss: BKB Rss: 12KB

http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Fault Handling

* Entry point: handle_pte_ fault (mm/memory.c)
* |dentify which VMA faulting address falls in

* |dentify if VMA has registered a fault handler

* Default fault handlers

— do_anonymous_page: no page and no file

— do_linear_fault: vm_ops registered?
— do_swap_page: page backed by swap
— do_nonlinear_fault: page backed by file

— do_wp_page: write protected page (CoW)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Page Fault Handler

Ininterrupt, softirg,
critical region, or
kernel thead

Addressina

memory region

Kemel page table
entry fixup

.~°|

NO

ES Region is readable

{ or executable T
do_sigbus l {—

('ﬁ)gupl I;ode'd
sen
lygo(c;a%v)

DemandPaging Demand Send Kill process
and/or ; and kernel
(opy On Witite ’ paging l SGSEGY *Oops”

Complex logic:
easier to read code
than read a book!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Copy on Write

* PTE entry is marked as un-writeable
 But VMA is marked as writeable

* Page fault handler notices difference
— Must mean CoW
— Make a duplicate of physical page
— Update PTEs, flush TLB entry
— do_wp_page

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Which page to map when no PTE?

* |f PTE doesn’t exist for an anonymous mapping, its easy
— Map standard zero page
— Allocate new page (depending on read/write)

* What if mapping is a memory map? Or shared memory?

— Need some additional data structures to map logical object
to set of pages

— Independent of memory map of individual task

 The address_space structure
— One per file, device, shared memory segment, etc.
— Mapping between logical offset in object to page in memory
— Pages in memory are called “page cache”
— Files can be large: need efficient data structure

* You don’t have to use address_space for hw4. Use a
simple array to maintain your offset->page mapping.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Page Cache Radix Tree

radix_tree_root

(rnode
{ height =2 '

radix_tree_node
count = 2

radix_tree_root

(mode
| height=1 ' slots[0} slots[2]

radix_tree_node radix_tree_node radix_tree_node
count =1

index=0 index=4 index=0 index=4 index=131
() radix tree of height 1 (b) radix tree of height 2

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Physical pages: struct page

Each physical page has a page descriptor associated with it
Contains reference count for the page

Contains a pointer to the reverse map (struct address space or
struct anon_vma)

Contains pointers to Iru lists (to evict the page)

Descriptor to address: void * page_address(struct page *page)

struct page {
unsigned long flags;
atomic_t _count;
atomic_t _mapcount;
struct address_space *mapping;
pgoff tindex;
struct list_head Iru;

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Allocating a Physical Page

* Physical memory is divided into “zones”

— ZONE_DMA: low order memory (<16MB) certain older
devices can only access so much

— ZONE_NORMAL: normal kernel memory mapping into the
kernel’s address space

— ZONE_HIGHMEM: high memory not mapped by kernel.
|dentified through (struct page *). Must create temporary
mapping to access

 To allocate, use kmalloc or related set of functions.
Specify zone and options in mask

— kmalloc, get free pages, get free page,
get_zeroed page: return virtual address (must be mapped)

— alloc_pages, alloc_page: return struct page *

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Page Table Structure

Linear Address
MIDDLE DIR | TAB! |

GLOBAL DIR

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Working with Page Tables

* Access page table through mm_struct->pg d

 Must to a recursive walk, pgd, pud, pmd, pte
— Kernel includes code to assist walking
— mm/pagewalk.c: walk_page_range

— Can specific your own function to execute for each
entry

* Working with PTE entries
— Lots of macros provided (asm/pgtable.h, page.h)
— Set/get entries, set/get various bits

— E.g., pte_mkyoung(pte_t): clear accessed bit,
pte_wrprotect(pte_t): clear write bit

— Must also flush TLB whenever entries are changed
* include/asm-generic/tkb.h: tlb_remove_tlb_entry(tlb)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Reverse Mappings

* Problem: how to swap out a shared mapping?
— Many PTEs may point to it
— But, we know only identity of physical page
* Could maintain reverse PTE

* i.e., for every page, list of PTEs that point to it
* Could get large. Very inefficient.

* Solution: reverse maps
— Anonymous reverse maps: anon_vma

— ldea: maintain one reverse mapping per vma (logical object)
rather than one reverse mapping per page

— Based on observation most pages in VMA or other logical
object (e.g., file) have the same set of mappers

— rmap contains VMAs that may map a page
— Kernel needs to search for actual PTE at runtime

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Anonymous rmaps: anon_vma

anon_vma anon_vmal
vm_area_struct) - vim_area_struct) <—
anon_vma_node
ym_start vm mm ym_start ym_mm
mm_struct gd page tables mm_struct bod page tables
] mapping "_..,3
page
descr.
index

|

anonymous memory region anonymous memaory region

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

anon_vma in Action

Page
table

Reference: Virtual Memory II: the return of objrmap. http://lwn.net/Articles/75198/

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

anon_vma in Action

table

VMA Page
table

Page
VMA table

—

Reference: Virtual Memory II: the return of objrmap. http://lwn.net/Articles/75198/

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Reverse Mapping for Memory Maps

* Problem: anon_vma is good for limited sharing
— Memory maps can be shared by large numbers of processes
— E.g., libc shared by everyone
— l.e., need to do linear search for every eviction

— Also, different processes may map different ranges of a
memory map into their address space

e Need efficient data structure

— Basic operation: given an offset in an object (such as a file),
or a range of offsets, return vmas that map that range

— Enter priority search trees
— Allows efficient interval queries

* Note: you don’t need this for hw4. Use anon_vma

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

|_mmap Priority Tree

Part of struct address_space in fs.h

radix size heap

0 1 2345\1/
S S S — Ty 1 ~ @

———

F— 0,2,2
e

255 o @
e 2'3 ,S

20,2

LT | oo @) @2 (2) Qo

(a) (b}

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Page Frame Reclaiming (Swapping)

e Generic subsystem for memory and files (vmscan.c)
— Handles anonymous pages (swapping)
— Memory mapped files (synchronizing)

* Handles anonymous/file pages differently
— Unreclaimable: pages locked in memory (PG_locked)
— Swappable: anonymous user mode pages

— Syncable: memory mapped pages, synchronize with
original file they were loaded from

— Discardable: unused pages in memory caches, non-dirty
pages in page cache
* PFRA Design
— ldentify pages to evict using simplified LRU

— Unmap all mappers of shared using reverse map
(try _to_unmap function)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

When is PFRA Invoked?

* Invoked on three different occasions:
— Kernel detects low on memory condition
* E.g., during alloc_pages
— Periodic reclaiming

* kernel thread kswapd

—Hibernation reclaiming
 for suspend-to-disk

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Page Frame Reclaiming Algorithm

i LOW ON MEMORY RECLAIMING HIBERNATION RECL AIMING?EB!QP.'.(.BEEM.'M'N@...
s Low memory on Low memory on X Suspend to disk |
buffer allocation page allocation (maion) reap_work
__getblk() kemelt ©ad workqueue

pn_suspend_disk()

alloc_page_buffers() __alloc_pages()

kswapd() | |cache_reap()

v

it ry_to_free_pages() balance_pgdat()

l »| shrink_slab() ‘J slab_destroy()

shrink_caches()

free_more_memory()

out_of_memory() L | shrink_zone()

v

refill_inactive zone() [— shrink_list()

—| page_referenced() pageout()

1 »|shrink_cache()

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Swap Area Descriptor

Free page siot Defective page slot
inf
swap_info N o
Swap area page siot
A
swap_device B
or
swap_file : s : : s : :
swap_map : : E
—»| 0 | 0 2 | 0 32768
Array of counters
3 87 10
Swap area desaiptors Page slot index Area number 0

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Swap Cache

* Goal: prevent race conditions due to concurrent page-in
and page-out

e Solution: page-in and page-out serialized through a
single entity: swap cache
* Page to be swapped out simply moved to cache

* Process must check if swap cache has a page when it
wants to swap in

— If the page is there in the cache already: minor page fault
— If page requires disk activity: major page fault

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Swap Cache

Swap area Swap area Swap area
A
: Swap cache
B
S]
(a)
Swap area Swap area
(2)
A
Swap cache Swap cache
3~
(e)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Page Allocation

* Buddy Allocator

* SLAB allocator: data structure specific
e SLOB: simple list of blocks

* SLUB: efficient SLAB

We’ll see next

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

