Memory Management Il

Memory Allocation

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Dynamic memory allocation overview

* Heap allocation strategies

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Dynamic memory allocation

* Paging solves contiguous memory problem
— Virtual memory is contiguous
— Pages can be discontiguous

e But, paging doesn’t always work for kernel memory

— Requests smaller than a page (e.g., kmalloc)

— DMA hardware doesn’t understand paging
* unless IOMMU support is available

 Two ways of dynamic allocation
— Stack allocation
* Restricted, but simple and efficient

— Heap allocation
* More general, but less efficient
* More difficult to implement

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Dynamic allocation issue: fragmentation

* Fragment: small chunk of free memory, too small for
future allocation requests (“holes”)

— External fragment: visible to allocation system

— Internal fragment: visible to process (e.g. if allocate at some
granularity)

e Goal
— Reduce number of holes
— Keep holes large

e Stack fragmentation v.s. heap fragmentation
— Stack: all free space is one big hole — no fragmentation
— Can only deallocate when everything above you is gone
— Heap: fragmentation possible

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Typical heap implementation

e Data structure: free list
— Chains free blocks together

 Allocation

— Choose block large enough for request
— Update free list

* Free
— Add block back to list
— Merge adjacent free blocks (reduce fragmentation)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Heap allocation strategies

e Best fit
— Search the whole list on each allocation
— Choose the smallest block that can satisfy request

— Can stop search if exact match found

e First fit
— Choose first block that can satisfy request

 Worst fit
— Choose largest block (most leftover space)

Which is better?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Free space: 2 blocks, size 20 and 15
 Workload 1: allocation requests: 10 then 20

First fit - Request of 20: fail!
Worst fit - Request of 20: fail!

e Workload 2: allocation requests: 8, 12, then 13
Best fit -_ i_ Request of 13: fail!
Worst fit - -: Request of 13: faill

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Comparison of allocation strategies

e Best fit
— Tends to leave very large holes and very small holes
— Disadvantage: very small holes may be useless

e First fit:
— Tends to leave “average” size holes
— Advantage: faster than best fit

e Worst fit:

— Simulation shows that worst fit is worst in terms of
storage utilization

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buddy allocator motivation

* Allocation requests: frequently 2"

— E.g., allocation physical pages in FreeBSD and
Linux

— Generic allocation strategies: overly generic

e Fast search (allocate) and merge (free)
— Avoid iterating through entire free list

* Avoid external fragmentation for req of 2";
keep free pages contiguous

Real: used in FreeBSD and Linux

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buddy allocator implementation

e Allocation restrictions: 2% 0<=k<=N
* Data structure

— N free lists of blocks of size 29, 21, ..., 2N
* Allocation of 2k

— Search free lists (k, k+1, k+2, ...) for appropriate size

e Recursively divide larger blocks until reach block of
correct size

* Insert “buddy” blocks into free lists

* Free
— Recursively coalesce block with buddy if buddy free

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buddy System Allocator

physically contiguous pages

256 KB
128 KB 128 KB
A A
64 KB 64 KB
B Bp
32 KB| |32 KB
6 G

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Buddy allocation example

Color Legend:
freelist[3] = {0} Black: allocated.
Other: on freelist of
that color.
freelist[0] = {1}, freelist[1] = {2}
freelist[2] = {4}

pl = alloc(270

freelist[3] = free list for
blocks of 2”3 pages.

2 = alloc(212)
ﬁ freelist[0] = {1}, freelist[1] = {2}

free[pl)
free(p2)

freelist[2] = {0}

freelist[3] = {0}

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pros and cons of buddy allocator

* Advantages

— Fast and simple compared to general dynamic
memory allocation

— Avoid external fragmentation by keeping free
physical pages contiguous

* Disadvantages

— Internal fragmentation
* Allocation of block of k pages when k |=2/n

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Slab allocator

Motivation:
— Frequent (de)allocation of some kernel objects, E.g., task_struct, inode
— Other allocators: overly general; assume variable size

Cache: slab of “slots”
— Each cache holds only single object type (task_struct, inode, dentry, vma)
— Each cache has one (or more) slabs, each 1 page long
— Each slab is split into slots
— Slot size = object size

Slab operations
— Free memory management = bitmap
— Allocate: set bit and return slot
— Free: clear bit

Used in FreeBSD and Linux on top of buddy page allocator
— For objects smaller than a page

— kmem_cache_create: create a new cache for your own object type
— kmem_cache_alloc: allocate new object from cache

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

kernel objects

3-KB
objects

7-KB
objects

caches

T

Slab Allocation

physically
contiguous
pages

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

