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Background: memory hierarchy

Levels of memory in computer system

memory

<1cycle

a few cycles

<100 ns

a few ms
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Virtual memory motivation

Previous approach to memory management
— Must completely load user process in memory
— One large AS or too many AS = out of memory

Observation: locality of reference
— Temporal: access memory location accessed just now

— Spatial: access memory location adjacent to locations
accessed just now

Implication: process only needs a small part of address space
at any moment!

— Can load programs faster (don’t load everything)

— Can fit more programs in memory (better utilization)
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Linux Address Space Layout

1GB

3GB .<

-

0xCc0000eR0 == TASK_SIZE
} Random stack offset

Stack (grows down)

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

T;T brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

0x08048000

0

Read: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

3/27/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




The Working Set Model

 Working set: set of memory addresses (pages) that the program
needs in memory to make progress

— Often set of pages program accesses in a short period of time

 Why does program need pages in main memory?
— Instructions can only address main memory and registers
— Accessed by same instruction
— Accessed many times
— Loops access a lot of memory

* Working usually much smaller than full program
— Program does one thing at a time
— Code for exception handling rarely accessed
— Process migrates from one working set to another
— Working sets may overlap
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Locality In A Memory-Reference Pattern
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Keeping working sets small

* Small changes to program = big changes to working set
— Try to preserve locality in high performance code (“cache friendly”)
— Keep accesses related in time also related in space

 Example:
— int data[1024][1024] of a 2d 1024x1024 byte array
— Row major: each row is stored in one 4k page

Programl: for (3 = 0; 3j <1024; j++)
for (1 = 0; 1 < 1024; i++)
datal[i] [j] = 0;
Working set: 1024x1024 = 4MB

Program2: for (i = 0; 1 < 1024; i++)
for (3 = 0; 7 < 1024; J++)
datali] [J] = 0;

Working set = 1024 = 4KB!
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Virtual memory idea

* OS and hardware produce illusion of disk as fast as
main memory, or main memory as large as disk

* Process runs when not all pages are loaded in
memory
— Only keep referenced pages in main memory

— Keep unreferenced pages on slower, cheaper backing
store (disk)

— Bring pages from disk to memory when necessary
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Virtual memory illustration

Physical
Memory

w N -, O

Virtual Memory
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Virtual memory operations

* Detect reference to page on disk
* Recognize disk location of page

* Choose free physical page

— OS decision: if no free page is available, must replace
a physical page

* Bring page from disk into memory
— OS decision: when to bring page into memory?

* Above steps need hardware and software
cooperation
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Detect reference to page on disk and recognize disk

location of page
* Overload the present bit of page table entries

* |f a page is on disk, clear present bit in
corresponding page table entry and store disk
location using remaining bits

e Page fault: if bit is cleared then referencing
resulting in a trap into OS

* |n OS page fault handler, check page table entry
to detect if page fault is caused by reference to
true invalid page or page on disk
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Steps in handling a page fault

page is on
backing store

operating
system
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instruction
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Performance of Demand Paging

 Page FaultRateO=p=<1
— if p = 0 no page faults
— if p =1, every reference is a fault

* Effective Access Time (EAT)
EAT = (1 — p) Xx memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead)
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Demand Paging Example

Disparity in memory and disk access times is huge. E.g.,
— Memory access time = 200 nanoseconds
— Average page-fault service time = 8 milliseconds

EAT = (1 —p) x 200 + p (8 milliseconds)
=(1-p x 200 + p x 8,000,000
=200 + p x 7,999,800
If one out of 1,000 accesses faults, then EAT = 8.2 us, or 40x slower!

If want performance degradation < 10 percent
— 200+ 7,999,800 x p < 220, or 7,999,800 x p < 20
— p <.0000025
— Less than one page fault in every 400,000 memory accesses
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* Page selection
— When to bring pages from disk to memory?

* Page replacement

— When no free pages available, must select victim
page in memory and throw it out to disk
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Page selection algorithms

 Demand paging: load page on page fault
— Start up process with no pages loaded
— Wait until a page absolutely must be in memory

* Request paging: user specifies which pages are needed
— Requires users to manage memory by hand
— Users do not always know best
— OS trusts users (e.g., one user can use up all memory)

* Prepaging: load page before it is referenced
— When one page is referenced, bring in next one

— Do not work well for all workloads
e Difficult to predict future
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Working Sets and Page Fault Rates

* With pure demand paging

working set

page
fault
rate

time

* Prepaging tries to smooth out bursts by
predicting and fetching in the previous valley
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Virtual Memory Gotchas

How to differentiate between access to
empty regions vs. access to a not present

0xC0000000 == TASK_SIZE

4 } Random stack offset page?
Stack (grows down) } * Linux, keep a separate data structure
Il RLIMIT_STACK (e.g., 8MB) . .
to represent valid regions. Called vma

} Random mmap offset

(vm_area_struct)
Memory Mapping Segment

File mappings (including dynamic libraries) and anonymous 4 COUId al SO use PTE b|t
mappings. Example: /lib/libc.so

How to swap out a shared page mapped

3GB < program break

u o by multiple AS?
Heap start_brk H H H
Random brk offset * Dlsable Swapplng (pln)
BSS segnent * Maintain reverse mapping
Uninitialized static variables, filled with zeros.
Example: static char *userName; ° PhyS|Ca| page tO AS that maps the
Data segment end_data .
Stati. iables initialized by th .
L et e I physical page
end_code 1 1 H
Stores the binary 1:::: os:';:l::tpr(oil:s)s (e.g., /bin/gonzo) 0x08048000 * L|nUX malntalns rmap between vmas
- 2]

Ref: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
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Page replacement algorithms

 Optimal: throw out page that won’t be used for longest time
in future

 Random: throw out a random page

* FIFO: throw out page that was loaded in first

 LRU: throw out page that hasn’t been used in longest time
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ldeal curve of # of page faults v.s. # of physical pages
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Evaluating page replacement algorithms

* Goal: fewest number of page faults

A method: run algorithm on a particular string
of memory references (reference string) and
computing the number of page faults on that
string

* |n all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5
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Optimal algorithm

 Throw out page that won’t be used for longest time in future

123412512345

1 1 1 1 1 1 1 1 1 1 24 4

6 page faults

Problem: difficult to predict future!
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First-In-First-Out (FIFO) algorithm

* Throw out page that was loaded in first

123412512345

1 1 1 1 1 1 5 5 5 5 24 4

2 2 2 2 2 2 1 1 1 1 5

3 3 3 3 3 3 2 2 2 2

allallal|lalla|lal]|l3]|]3]]3

10 page faults

Problem: ignores access patterns

3/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



FIFO algorithm (cont.)

* Results with 3 physical pages

123412512345

9 page faults

Problem: fewer physical pages = fewer faults!
belady anomaly
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Least-Recently-Used (LRU) algorithm

 Throw out page that hasn’t been used in longest
time. Can use FIFO to break ties

123412512345

1 1 1 1 1 1 1 1 1 1 1 5

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 5 5 5 5 e 4

allallal|lalla|lal]|l3]|]3]]3

8 page faults

Advantage: with locality, LRU approximates Optimal
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Implementing LRU: hardware

A counter for each page

Every time page is referenced, save system
clock into the counter of the page

Page replacement: scan through pages to find
the one with the oldest clock

Problem: have to search all pages/counters!
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Implementing LRU: software

* A doubly linked list of pages

* Every time page is referenced, move it to the
front of the list

* Page replacement: remove the page from back of
list
— Avoid scanning of all pages

* Problem: too expensive

— Requires 6 pointer updates for each page reference
— High contention on multiprocessor
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LRU: concept vs. reality

 LRU is considered to be a reasonably good algorithm

* Problemisin implementing it efficiently

— Hardware implementation: counter per page, copied per memory
reference, have to search pages on page replacement to find oldest

— Software implementation: no search, but pointer swap on each
memory reference, high contention

* In practice, settle for efficient approximate LRU
— Find an old page, but not necessarily the oldest
— LRU is approximation anyway, so approximate more
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Clock (second-chance) algorithm

* Goal: remove a page that has not been
referenced recently

— good LRU-approximate algorithm

* |dea
— A reference bit per page
— Memory reference: hardware sets bitto 1

— Page replacement: OS finds a page with reference
bit cleared

— OS traverses all pages, clearing bits over time
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Clock algorithm implementation

3/27/13

Combining FIFO with LRU: give the victim page
that FIFO selects a second chance

Keep pages in a circular list = clock
Pointer to next victim = clock hand

To replace a page, OS examines the page pointed
to by hand

— If ref bit == 1, clear, advance hand
— Else return current page as victim
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A single step in Clock algorithm

reference  pages reference  pages

bits /—\ bits

[o] [o]
v v

[o] o]
v v

Jiotm [o]
v v

o]
v v

o] == 0|

1]
v v

C [1]

circular queue of pages circular queue of pages
(a) (b)
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Clock algorithm example

1 2 3 4 1 2 3
T e T

5 1 2
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111411
2 1111221121121} 2 1)1 0
3|11 3(2)13 1131310 2 11([2]0
4 (1114 |1|14]|1([4]0 311([3]0
10 page faults

Advantage: simple to implement!
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Clock algorithm extension

* Problem of clock algorithm: does not
differentiate dirty v.s. clean pages

* Dirty page: pages that have been modified
and need to be written back to disk

— More expensive to replace dirty than clean pages
— One extra disk write (about 5 ms)
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Clock algorithm extension (cont.)

* Use dirty bit to give preference to dirty pages

e On page reference

— Read: hardware sets reference bit
— Write: hardware sets dirty bit

* Page replacement
— reference =0, dirty = 0 - victim page
— reference =0, dirty = 1 = skip (don’t change)
— reference = 1, dirty = 0 = reference =0, dirty =0
— reference = 1, dirty = 1 - reference =0, dirty =1
— advance hand, repeat

— If no victim page found, run swap daemon to flush unreferenced dirty
pages to the disk, repeat
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Summary of page replacement algorithms

* Optimal: throw out page that won’t be used for longest time in future
— Best algorithm if we can predict future
— Good for comparison, but not practical
e Random: throw out a random page
— Easy to implement
— Works surprisingly well. Why? Avoid worst case
— Random
* FIFO: throw out page that was loaded in first
— Easy to implement
— Fair: all pages receive equal residency
— Ignore access pattern
* LRU: throw out page that hasn’t been used in longest time
— Past predicts future
— With locality: approximates Optimal
— Simple approximate LRU algorithms exist (Clock)
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Page-Buffering

 Keep pool of free frames, always
— Frame always available when needed
— Read page into free frame
— Select victim to evict and add to free pool
— When convenient, evict victim

e Keep list of modified pages
— When disk idle, write pages there and set to non-dirty

 Note and keep free pool contents intact
— If referenced again before reused, no need to reload from
disk
— Useful if wrong victim frame was selected
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Thrashing

 What if we need more pages regularly than we have?
— Page fault to get page
— Replace existing frame
— But quickly need replaced frame back

* Leads to:
— High page fault rate
— Lots of I/0 wait
— Low CPU utilization
— No useful work done

* Thrashing = system busy just swapping pages in and out
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Effects of Thrashing

|
| thrashing

CPU utilization

degree of multiprogramming
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Memory-Mapped Files

* Treat files like memory by mapping a disk block to a
memory page

— mmap() syscall maps file into memory region

* File blocks initially loaded using demand paging
— Page-sized chunk of the file read into physical page
— Subsequent accesses to chunk treated as ordinary

mMemory accesses
* Lazily flush writes to disk

— Periodically, e.g., when pager scans for dirty pages
— At file close() time
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Memory-Mapped Files

* Benefits of memory mapped files
— Simplify/speed file access compared to read()/write() syscalls

— Allows several processes to map same file to facilitate
memory sharing (useful for binaries)

* Paging and file I/O often tightly intertwined
— Swapping can use original file as backing store (if not dirty)
— COW can be used to quickly create “clone” of file
— Memory mapped files can be used for shared memory

* Some OSes use mmap internally for all 1/0
— Process still does read() and write()
— Kernel maps file into kernel address space
— Copies data to and from kernel space and user space
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Memory Mapped Files
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Paging (or segmentation) and |/O

 DMA devices directly copy data to
memory

— Does I/0O device understand paging?

— Need IOMMU (newer CPUs) i <

— Else, OS must program DMA itself e
using physical addresses

— Must do permissions checks

— Pin pages into memory to prevent
swapping out while DMA ongoing
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Non-Uniform Memory Access

e So far all memory accessed equally

* NUMA - speed of access to memory varies

— E.g., many system boards containing CPUs and memory,
interconnected over a system bus

— Memory on same board is “fast”, other boards, “slow”

* Allocate memory close to CPU on which thread runs
— Use processor affinity to keep threads on same CPU
— E.g.: Solaris “lgroups”
* Groups of CPU/memory with low latency

» Scheduler/pager schedule all threads and memory for a process
within the Igroup
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Current trends in memory management

Virtual memory is less critical now
— Personal computer v.s. time-sharing machines
— Memory is cheap = Larger physical memory

* Virtual to physical translation is still useful

— “All problems in computer science can be solved using another level of
indirection” David Wheeler

* Larger page sizes (even multiple page sizes)
— Better TLB coverage
— Smaller page tables, less page to manage
— Internal fragmentation: not a big problem

* Larger virtual address space
— 64-bit address space
— Sparse address spaces

* File I/O using the virtual memory system
— Memory mapped I/O: mmap()
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Backup Slides
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Problem with LRU-based Algorithms

* LRU ignores frequency

— Intuition: a frequently accessed page is more likely to
be accessed in the future than a page accessed just
once

— Problematic workload: scanning large data set

«123123123123.. (pagesfrequently used)
e« 456789101112 .. (pages used just once)

e Solution: track access frequency
— Least Frequently Used (LFU) algorithm

* Expensive

— Approximate LFU: LRU-2Q
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Problem with LRU-based Algorithms (cont.)

 LRU doesnt handle repeated scan well when
data set is bigger than memory

— 4-frame memorywith123451234512345

e Solution: Most Recently Used (MRU)
algorithm
— Replace most recently used pages
— Best for repeated scans
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Virtual memory illustration
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