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e Memory management goals

* Segmentation

* Paging

* TLB

* Page sharing
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* Simple uniprogramming with a single segment

* Uniprogramming disadvantages

Uni- v.s. multi-programming

per process

— Only one process can run a time
— Process can destroy OS

 Want multiprogramming!
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OS

User Process
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Multiple address spaces co-exist

max PHYSTOP
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3/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Memory management wish-list

e Sharing

— multiple processes coexist in main memory

* Transparency
— Processes are not aware that memory is shared
— Run regardless of number/locations of other processes

* Protection
— Cannot access data of OS or other processes

* Efficiency: should have reasonable performance
— Purpose of sharing is to increase efficiency
— Do not waste CPU or memory resources (fragmentation)
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Memory Management Unit (MMU)

Virtual Addresses

-*L’-T MENORY

Physical Addresses

 Map program-generated address (virtual
address) to hardware address (physical address)
dynamically at every reference

* Check range and permissions
* Programmed by OS
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x86 address translation

 CPU generates virtual address (seg, offset)
— Given to segmentation unit
* Which produces linear addresses
— Linear address given to paging unit
* Which generates physical address in main memory

logical linear physical
CPU address | segmentation | address paging address | physical
unit unit memory
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A Simple MMU: Base/Limit Registers

e Base and limit registers define logical address space

* CPU checks every memory access generated in user mode to
be sure it is between base and limit for that user

0
operating
system
256000
process
300040 < 300040
process base base base + limit
420940 ) LAY
[imit
process address yes
CPU >
880000 no
1024000
trap to operating system
monitor—addressing error memory
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A better MMU: Relocatable Code

* Problem with base limit register solution?

— Need to know address at which program will be before hand: linker/
loader must rewrite instructions

— Can’t change location once loaded, prone to fragmentation
* Solution: add a relocation register
— Programmer uses addresses that are offsets from base
— Hardware adds actual value of base at runtime to get final address

limit relocation
register register
logical physical
address yes address
CPU s >  memory

no

trap: addressing error
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Problems with contiguous allocation

* Partition per program: how big should each partition be?
— Entire size of address space? Impractical
— How much program actually uses? May not know in advance
* Have to be conservative
— Too small: must reallocate and move program (expensive)
— Too big: wasted memory
* Fragmentation over time
— Hole — block of available memory; scattered throughout memory
— Need hole large enough to accommodate new processes
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(ON) (ON) (ON) (ON)
process 5 process 5 process 5 process 5
process 9 process 9
process 8 process 10
process 2 process 2 process 2 process 2
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* Segmentation

* Paging

* TLB

* Page sharing
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Segmentation

* Divide virtual address space into separate
logical segments; each is part of physical mem

stack
stack
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Segmentation translation

e Virtual address: <segment-number, offset>

 Segment table maps segment number to
segment information

— Base: starting address of the segment in physical
memory

— Limit: length of the segment
— Addition metadata includes protection bits

* Limit & protection checked on each access
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80x86 segment selector

* Logical address: segment selector + offset

 Segment selector stored in segment registers (16-bit)
— cs: code segment selector
— ss: stack segment selector
— ds: data segment selector
— es, fs, gs

* Segment register can be implicitly or explicitly specified
— Implicit by type of memory reference (jmp)
* mov $8049780, %eax //implicitly use ds
— Through special registers (cs, ss, es, ds, fs, gs on x86)
— mov %ss:58049780, %eax // explicitly use ss

e Support for segmentation removed in x86-64
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Logical address
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Xx86 segmentation hardware

15

selector

31

offset

Global descriptor table

Compute: base + offset
Check: offset <= limit

\l' Check: permissions

base limit perm
—> base limit perm
base limit perm

i

31 0
Linear address
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Linux Segments

* Not much to see
— Rely mainly on paging (next topic)
— Basic common segments that span entire memory

* Different permissions dependent on use
— Kernel code: read + executein kernel mode
— Kernel data: writable in kernel mode
— User code: readable + executable in user mode
— User data: writable in user mode

— These are all null mappings
* Map to [0, OXFFFFFFFF)
* Linear address = Offset
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Pros and cons of segmentation

* Advantages
— Segment sharing
— Easier to relocate segment than entire program
— Avoids allocating unused memory
— Flexible protection

— Efficient translation
* Segment table small = fit in MMU

* Disadvantages
— Segments have variable lengths = how to fit?
— Segments can be large =2 fragmentation
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Outline

* Paging

* TLB

* Page sharing
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Paging overview

* Goal
— Eliminate fragmentation due to large segments
— Don’t allocate memory that will not be used
— Enable fine-grained sharing

e Paging: divide memory into fixed-sized pages
— For both virtual and physical memory

* Another terminology
— A virtual page: page
— A physical page: frame
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Page translation

e Address bits = page number + page offset

* Translate virtual page number (vpn) to

physical page (frame) number (ppn/pfn) using
page table

pa = page_table[va/pg sz] + va%pg_sz

ppn
vpn | off ppn |off [—»

vpn ppn

Page table Memory
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Page translation example

w N = O
N | w [ B

Virtual Memory

Page table

Physical
Memory
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Page translation exercise

e 8-bit virtual address, 10-bit physical address, each page is 64 bytes
1. How many virtual pages?
— 278 /64 =4 virtual pages
2. How many physical pages?
— 2710/64 = 16 physical pages
3. How many entries in page table?
— Page table contains 4 entries

4. Given page table =[2, 5, 1, 8], what’s the physical address for
virtual address 2417

— 241 =11110001b

— 241/64=3=11b

— 241%64 =49 =110001b

— page_table[3] =8 = 1000b

— Physical address = 8 * 64 + 49 =561 = 1000110001b
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m

Page translation exercise

-bit virtual address, n-bit physical address, k-

bit page size
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# of virtual pages: 2(mk

# of physical pages: 2(n-k)

# of entries in page table: 2(m-)
vpn =va / 2K

offset = va % 2k

ppn = page_table[vpn]

pa = ppn * 2k + offset
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Page protection

* Implemented by associating protection bits with
each virtual page in page table

* Why do we need protection bits?

* Protection bits
— present bit: map to a valid physical page?
— read/write/execute bits: can read/write/execute?
— user bit: can access in user mode?
— x86: PTE_P, PTE_W, PTE_U

* Checked by MMU on each memory access
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Page protection example

* What kind of pages?
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pwu

0|1 (101

1(4]110

2 | 31000

Virtual Memory 37|
Page table

=

Physical
Memory
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Page allocation

* Free page management free_page_list
— E.g., can put page on a free list

* Allocation policy
— E.g., one page at a time, from head of

 WEe'll see allocation policies later

2,3,6,5,0

3/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Implementation of page table

* Page table is stored in memory

— Page table base register (PTBR) points to the base
of page table

* x86: cr3
— OS stores base in process control block (PCB)
— OS switches PTBR on each context switch

* Problem: each data/instruction access
requires two memory accesses

— Extra memory access for page table
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Page table size issues

* Given:
— A 32 bit address space (4 GB)
— 4 KB pages
— A page table entry of 4 bytes

* Implication: page table is 4 MB per process!

* Observation: address space are often sparse
— Few programs use all of 232 bytes

* Change page table structures to save memory
— Trade translation time for page table space
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Page table structures

* Hierarchical paging

* Hashed page tables

* |Inverted page tables
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Hierarchical page table

* Break up virtual address space into multiple
page tables at different levels

0
%
e
/ . 100
500 NG
~[ 700 V] 500
708 “‘R
. 708
outer page > 929
table e 900
coo e
page of 929
page table
page table
memor
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Hierarchical page tables

logical address
24 I ol ol

.

=

outer page d {

table

page of
page table
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X86 page translation with 4KB pages

e 32-bit address space, 4 KB page
— 4KB page =» 12 bits for page offset

* How many bits for 2"d-level page table?

— Desirable to fit a 2"9-level page table in one page
— 4KB/4B = 1024 =» 10 bits for 2"9-level page table

* Address bits for top-level page table: 32 — 10 —

12 =10 page number | page offset
Pi l P2 ‘ d
10 10 12
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X86 paging architecture

(logical address)

. Ppage directory | page table | offset |
31 22 21 12 11 0
k 4 ) 4
page 4-KB
¥ table > page
page B
directory

CR3 —» x 4-MB

register page
I}
. Ppage directory | offset |
31 22 21 0
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Intel x86-64 Paging

Current generation Intel x86 architecture

64 bits is ginormous (> 16 exabytes)

In practice only implement 48 bit addressing
- Page sizes of 4 KB, 2 MB, 1 GB
- Four levels of paging hierarchy

Can also use PAE so virtual addresses are 48 bits and
physical addresses are 52 bits

page map  page directory page page
| unused | level4 | pointertable | directory | table | offset
63 48 47 39 38 30 29 2120 1211 0
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ARM Paging

32-bit CPU

4 KB and 16 KB pages 32 bits

1 MB and 16 MB pages (termed outer page inner page offset
sections)

One-level paging for sections,

two-level for smaller pages A-KB
or
Two levels of TLBs N 16-KB
. — page
— Quter level has two micro _‘ R
TLBs (one data, one R
instruction)
.. : 1-MB
— Inner is single main TLB - or
o . 16-MB
— Firstinner is checked, on section

miss outers are checked,

and on miss page table walk
performed by CPU
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Four-level Paging in Linux

* Abstracts paging across architecture
— pgd: page global directory
— pud: page upper directory
— pmd: page middle directory
— pte: page table entry

 Each architecture defines
— Size of each directory, number of entries, bits
— Bypass levels that arch doesn’t have
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Other page table structures

* Hashed page tables

* |Inverted page tables
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Hashed page table

* Common in address spaces > 32 bits

* Page table contains a chain of elements
hashing to the same location

* On page translation

— Hash virtual page number into page table
— Search chain for a match on virtual page number
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Hashed page table example

physical
logical address address
¥
p d r d

| physical
-— | ]| s | _T PIVI_T“' memory

hash table
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Inverted page table

* One entry for each real page of memory

— Entry consists of the virtual address of the page stored
in that real memory location, with information about
the process that owns that page

* Same page table shared by all processes
— Need owner information

e Can use hash table to limit the search to one or
at most a few page-table entries
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Inverted page table example

logical

physical
address v address physical
GRUS—{fpidl e id L g memory

I

search l

pid

o]

page table
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Outline

* TLB

* Page sharing
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Avoiding extra memory accesses

* Observation: locality
— Temporal: access locations accessed just now

— Spatial: access locations adjacent to locations accessed
just now

— Process often needs only a small number of vpn=2ppn
mappings at any moment!

* Fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

— Fast parallel search (CPU speed) VPN PPN
— Small
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Paging hardware with TLB

logical
address |
EEU I~ d
page frame
number number
—
_’ .
—: TLB hit physical
- address
L k 4 Y
_— f d —>»
TLB 1
P
TLB miss
» i
- physical
memory
page table
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Effective access time with TLB

* Assume memory cycle time is 1 unit time
 TLB Lookup time =¢
* TLB Hit ratio =«

— Percentage of times that a vpn=»ppn mapping is
found in TLB

e Effective Access Time (EAT)
EAT=(1+¢)a+(2+¢)(1-0)
=o+ea+2+€-€0-20
=2+€&—Q
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TLB Miss

* Depending on the architecture, TLB misses are
handled in either hardware or software

 Hardware (CISC: x86)
— Pros: hardware doesn’t have to trust OS |
— Cons: complex hardware, inflexible

e Software (RISC: MIPS, SPARC)
— In effect, TLB is hardware page table
— Pros: simple hardware, flexible
— Cons: code may have bug!
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Reducing misses: TLB Reach

* |ncrease size of TLB
— Content addressable memory (CAM) is expensive

* |ncrease amount of memory accessible from the TLB
— TLB Reach = (TLB Size) X (Page Size)
— ldeally, equal to working set
— Otherwise lots of page faults

* |ncrease page size
— More reach for same TLB size
— Increase in fragmentation as well

* Provide multiple page sizes
— Applications can choose which size fits their access pattern
— Doesn’t increase fragmentation
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TLB and context switches

* What happens to TLB on context switches?

e Option 1: flush entire TLB

— X386
* “load cr3” (load page table base) flushes TLB

e Option 2: attach process ID to TLB entries
— ASID: Address Space Identifier
— MIPS, SPARC

 x86 “INVLPG addr” invalidates one TLB entry
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Address Space IDs (ASID

Mechanism to reduce frequency of TLB invalidations

Without ASID:

With ASID:
VPN
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VPN

©

©
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PPN

valid
1
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1
0

valid
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prot
rwx |

rwx |

prot
rwX

FWX
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Choosing a page size

 Many CPUs support multiple page sizes

* Page size selection affects (or is affected by):
— Fragmentation?
e Smaller is better.
— Page table size?
* Bigger is more efficient.
— 1/O overhead?
* Larger is better (fewer seeks).
— Resolution (locality)?
* Smaller is better.
— Number of page faults?
* Larger or smaller could be better. 1 page per byte vs. 1 page for entire mem.
— TLB size and effectiveness?
e Larger is better.

* On average, growing over time
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Outline

* Page sharing
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Motivation for page sharing

* Efficient communication. Processes
communicate by write to shared pages

* Memory efficiency. One copy of read-only
code/data shared among processes
— Example 1: multiple instances of the shell program

— Example 2: copy-on-write fork. Parent and child
processes share pages right after fork; copy only
when either writes to a page
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Page sharing example

ed 1
3
ed?2 4
ed 3 2
1
data 1 page table
for P,
process P,
3
4
6
2
page table
for P,

ed1

3
ed?2 4
ed3 6

7

data 2 page table
for P,
process P,

data 1

data 3

ed 1

ed 2

ed 3

data 2
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A cool trick: copy-on-write

* |n fork(), parent and child often share
significant amount of memory

— Expensive to copy all pages

* COW ldea: exploit VA to PA indirection
— Instead of copying all pages, share them

— |f either process writes to shared pages, only then
is the page copied

e Real: used in virtually all modern OS
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How to implement COW?
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(Ab)use page protection

Mark pages as read-only in both parent and child
address space

On write, page fault occurs

In OS p a§e fault handler, distinguish COW fault
from real fault

— How?

Copy page and update page table if COW fault
— Always copy page?
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Before Process 1 Modifies Page C

physical
process, memory process,

_|—> page A [

 L——» pageB —
» page C — ]
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After Process 1 Modifies Page C

physical
process, memory process,

_|—> page A n

T page B «—

page C —

» Copy of page C
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