Midterm Review

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Midterm Logistics

* Next week during class time
* 60 minute exam: please be on time

* Closed book, closed notes, closed electronics

— Allowed to bring one sheet of letter paper with
handwritten notes on both sides

— Can use old-school calculator
* Format

— 4 questions

— 200 points

— Extra credit questions

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




* Question types

— Multiple choice questions

— Short answers (2-3 sentences)

— Numerical problems

— Carry out tasks based on things you learned in class

— Code related problems (write or analyze pseudocode)
e What’s in

— All material up to and including scheduling

— Lecture slides (or if | said it in class)

— Concepts 9e, Ch. 1-7

— Linux Kernel Development: Ch. 2-10

— Based on general concepts

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




What’'s Out

* No memorization needed, but will expect you to know:
— High level mechanisms (monitors)
— What functions do in general (e.g., lock/unlock)
— What certain data-structures are used for in general (e.g., task_struct)

* | expect you understand the concepts at a base level
— Won’t ask you to explain them
— Test your understanding of concepts through applied questions

* No need to memorize
— Synchronization algorithms (but be prepared to explain)
— Specific Linux function semantics
— Data Linux structure elements
— Which OS implements which facility in what way

* No long descriptive answers
* No need to write working code (pseudo-code possible)

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Syllabus

* General concepts and Linux/Android specifics
— Basics
— OS Architecture
— Events
— Processes
— Threads
— Synchronization
— Synchronization Errors
— Scheduling

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Basic Architecture Concepts

 What hardware provides
— Stored program computer
— Instruction types
— Memory model (multicore, SMP, cache)
—1/0, memory-mapped I/O
— Interrupts, DMA
— Basic structures: stacks, heaps

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



* What does an OS do?
— Support multiprogramming
— Resource allocation
— |solation
— Abstraction
— Shared facilities and libraries

* Pieces of an OS
— Kernel
— Scheduler
— Memory management
— File systems
— Device drivers

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




OS History

* Early OSes
— Monitors
— Batch Processing
— Spooling
— Multiprogramming
— Timesharing
* Types of modern OSes

— Mainframes, Clusters, Servers, Desktops, Mobile,
Embedded

— Trends

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




OS = resource manager/coordinator

 Computer has resources, OS must manage.

— Resource = CPU, Memory, disk, device,
bandwidth, ...

System Call

o - - -

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




OS = resource manager/coordinator (cont.)

* Why good?

— Sharing/Multiplexing: more than 1 app/user to use
resource

— Protection: protect apps from each other, OS from

app
 Who gets what when

— Performance: efficient/fair access to resources

 Why hard? Mechanisms vs. policies
— Mechanism: how to do things
— Policy: what will be done

— ldeal: general mechanisms, flexible policies
* Difficult to design right

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




OS Abstractions

* Processes

* Address spaces
* Files

* Directories

* |PC: pipes, Shared mem, sockets
* Threads

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




OS = hardware abstraction layer

e “standard library” “OS as virtual machine”
— E.g. printf(“hello world”), shows up on screen
— App issue system calls to use OS abstractions

* Why good?
— Ease of use: higher level, easier to program

— Reusability: provide common functionality for reuse
* E.g. each app doesn’t have to write a graphics driver

— Portability / Uniformity: stable, consistent interface,
different OS/ver/hw look same

* E.g. scsi/ide/flash disks

 Why hard?
— What are the right abstractions ?

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




OS Architecture

* Privileged mode
— Why needed
— How implemented
— Address spaces and privileges

* OS Structures
— Monolithic kernels
— Microkernels
— Kernel modules
— Virtual machines

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Processes

* Process: an execution stream in the context of a particular
process state or “virtual CPU”

— Seperately scheduled, isolated, protected

— Per-process kernel stack

— Process creation, copying, destruction

— Process relationships: parent, child, special processes
* Process state

— Registers, memory, I/O

— Run states: ready, running, blocked, zombie, dead, new
* Process management

— Process control block (Linux: task_struct)

— Process list

— Wait queues

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Address Space

e Address Space (AS): all memory a process can address
— Linear array of bytes: [0, N), N roughly 2732, 2764
— Physical layout vs. address space layout
* Address space = protection domain
— OS isolates address spaces
— One process can’t even see another’s address space
— Same pointer in different AS point to different memory
— Can change mapping dynamically

* Address spaces and context switching
— Need to change address space
— Expensive operation
— Impact on cache

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Process Dispatch

 What is process dispatch?

* When does dispatch occur?
— Cooperative vs. preemptive multitasking

* How does dispatch occur?

— Context switch: change CPU state from
one process to other

— Registers, address space, files, stacks, I/0
— Role of PCB (task_struct) in storing state
— Role of kernel stack

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




System calls

e User processes cannot perform privileged
operations themselves

* Must request OS to do so on their behalf by issuing
system calls
— System calls vs. API calls
— How syscalls are invoked: hardware mechanisms
— System call tables
— Parameter passing through registers, stack, memory
— System calls and privilege changes

e System calls must treat user data with care
— Copying data to/from userspace

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




* |Interrupts to processes
— Notification from kernel to process
— Also IPC mechanism between processes
— Synchronous vs. Asynchronous
— Catchable, different default actions
— Watch for race conditions

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Inter Process Communication

 Message passing and shared memory
— Pros and Cons

— Implementation issues
* Synchronous vs. asynchronous
* Blocking vs. non-blocking
* Buffering
* Addressing

 Many different examples
— Message passing: pipes, sockets, RPC, Binder
— Shared memory: Sys V shmem, mmap

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Threads

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




 Threads: separate streams of executions that
share an address space

— Allows one process to have multiple point of
executions, can potentially use multiple CPUs

* Thread control block (TCB)

— Program counter (EIP on x86)
— CPU Registers, Stack

* Why threads?
— Concurrency, Multicore, Efficient data sharing

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Threading Models

e User threads

— Pros: fast context switch, Cons: block on syscalls, no
multicore

e Kernel threads

— Pros: no blocking on syscalls, multicore Cons:
overhead

* Many-to-many threads

— Pros: no blocking, multicore, more efficient than user
or kernel threads, Cons: complex

e Scheduler activations

— Pros: no blocking, low overheads, Cons: multicore,
complex, need upcalls

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Linux/Android Process Lifecycle

* Linux PCB
— task_struct: same for processes and threads
— Per process/thread kernel stack
 How processes and threads are differentiated
— Thread groups, pid
— Threads share same address space
e fork() vs vfork() vs clone()
— Performance
— Semantics
* Role of distinguished processes
— init, zygote
* Process termination
— exit() call, zombie on exit

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Interrupts

Why?
— Preemptive multitasking, efficient control of I/O devices
— Role of timer interrupt in scheduling

* Types of interrupts

— Hardware interrupts, exceptions

— Faults, traps, aborts: examples

 Handling interrupts
— Role of PICs, APICs
— Interrupt descriptor table
— Interrupt service routines
— Nested interrupts, exceptions

Interrupts in Linux

— Interrupt stacks

— Deferred work: softirgs, tasklets, work queues
— When to use deferred work?

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Synchronization

e Why needed?
— Shared data access, synchronization of actions
— Race conditions
— Atomic operations

e Critical section problem
— What s it? Requirements?
— Mutual exclusion, progress, bounded waiting
— Desirable properties: efficient, fair, simple
* Solutions to critical section problem: locks (mutex)
— Disabling interrupts. When does it work?

— Hardware based implementation: atomic instructions, test and
set, atomic exchange

— Software algorithms: Peterson’s, Bakery algorithm
— Spinlocks, sleeplocks, adaptive mutexes: when to use

— Reader-writer locks

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Lamport’s Bakery Algorithm

e Support more than 2 processes
— Integer tokens (increasing numbers)
— Each customer gets next largest token
— Same token? Smaller thread_id gets priority

— Smallest token enters critical region
bool flag[1..NUM_THREADS] ={0}; //Wanttoenter unlock(integer i) {

int token[1..NUM_THREADS] = {0}; // My token tokenli] = 0;
lock(i) { // Lock by thread i }

flag [i] = 1;

token[i] = 1 + max(token[0]+...+token[NUM_THREADS-1]);

flag[i] = 0;

for (j = 1; j <= NUM_THREADS; j++) {
while (flag[j]); // Is j getting token?
while ((token[j] && ((tokenl[j], j) < (tokenli], i))); // j has smaller token?
}

Reference: A New Solution of Dijkstra's Concurrent Programming Problem. L. Lamport. Communications
of the ACM, 1974. http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



More Synchronization

* Memory barriers

— Prevent reordering on superscalar processors

— Needed to ensure locking algorithms work
 RCU (read-copy-update)

— Lock-free synchronization

— Readers require no locks

— Relies on atomic updates by writers

— Garbage collect old data after readers done

— Writers must synchronize between themselves

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Semaphores and Monitors

* Higher level constructs

— Semaphores
* Ansimple integer with atomic, race-free access
e Post:increment by 1 and return immediately
* Wait: wait until > 0, then decrement and return
* No strict “locking” semantics, different process can post and wait
* Allows solution to ordering problems in addition to critical section

— Monitors

* Protect a set of functions that access common data from being executed
concurrently

* Need additional signaling primitives: condition variables, wait, signal
* Using condition variables makes code susceptible to races, deadlocks
* Learn to:
— Solve problems using these constructs (including locks)
— E.g., dining philosopher, producer-consumer
— ldentify problems: race conditions, deadlocks, etc.

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Synchronization Errors

* Races: what they are
— ldentify them when they occur
— Techniques to avoid races
— Techniques to detect races: Eraser lock-set algorithm

* Deadlocks: what they are
— ldentify them when they occur
— Techniques for deadlock detection/avoidance
— Ordered access to resources
— Cycle detection
— Banker’s algorithm

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




CPU Scheduling

* Scheduler
— High-level policy
— Responsibility: deciding which process to run

* When is a scheduler invoked?
— Co-operative vs. pre-emptive scheduling

e Scheduler metrics

— Waiting time, utilization, throughput, response
time, fairness

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Scheduler Algorithms

* General scheduling algorithms:
— RR, FCFS, SJF
— Role of priority
— Pre-emptive vs. non-preemptive versions of algorithms
e Specialized scheduling algorithms: realtime
— Rate monotonic scheduling
— EDF
— Optimality
* Linux Scheduling
— Completely fair scheduler
— Scheduling latency
— Which process to pick: pick process with least runtime
— What time slice to set: based on fair share of timeslice

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Scheduling Evaluation

e Gantt Charts

— Evaluation against simple workloads
— Deterministic

— Learn how to use to compute scheduling metrics (wait
time, response time, etc.)

* Probabilistic evaluations
— Queuing networks
— Little’s law: n = A x W

* Trace based Simulation

— Can simulate complex systems
— Can evaluate realistic workloads

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.




Advanced Scheduling

* Hierarchical Scheduling
— Combine multiple scheduling policies
— Achieve different outcomes for different classes of processes
— Feedback vs. non-feedback scheduling

 Multiprocessor scheduling
— Single run queue vs. per-CPU run queue
— Impact on cache
— Processor affinity
— Load balancing: push vs. pull
— Gang scheduling

e Additional issues
— Fairness and aging
— Priority and priority inversion

3/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



