Process Scheduling |

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e Advanced scheduling issues
— Multilevel queue scheduling
— Multiprocessor scheduling issues

* Linux/Android Scheduling

— Scheduler Architecture

— Scheduling algorithm
* O(1) RR scheduler
e CFS scheduler

— Other implementation issues

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e No one-size-fits-all scheduler
— Different workloads
— Different environment

* Building a general scheduler that works well
for all is difficult!

* Real scheduling algorithms are often more
complex than the simple scheduling
algorithms we’ve seen

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Combining scheduling algorithms

 Multilevel queue scheduling: ready queue is
partitioned into multiple queues

* Each queue has its own scheduling algorithm
— Foreground processes: RR (e.g., shell, editor, GUI)
— Background processes: FCFS (e.g., backup, indexing)

* Must choose scheduling algorithm to schedule
between queues. Possible algorithms
— RR between queues
— Fixed priority for each queue
— Timeslice for each queue (e.g., RR gets 80%, FCFS 20%)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Movement between queues

highest priority

interactive editing processes

> batch processes

m— student processes

lowest priority

* No automatic movement between queues
* User can change process queue at any time

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multilevel Feedback Queue

* Process automatically moved between queues
— method used to determine when to upgrade a process
— method used to determine when to demote a process

> quantum = 8 k,

A
quantum = 16 L

—>‘ FCFS L '

 Used to implement
— Aging: move to higher priority queue

Y

— Monopolizing resources: move to lower priority queue

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Aging using Multilevel Queues

Y

quantum = 8 b

quantum = 16 L
:| FORE ! :

* A new job enters queue Q, which is served RR. When it gains
CPU, job receives 8 milliseconds. If it does not finishin 8
milliseconds, job is moved to queue Q;.

* At Q, jobis again served RR and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to low priority FCFC queue Q,.

\ 4

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e Advanced scheduling issues

— Multiprocessor scheduling issues

* Linux/Android Scheduling

— Scheduling algorithm
* O(1) RR scheduler
e CFS scheduler

— Setting priorities and time slices
— Other implementation issues

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multiprocessor scheduling issues

* Shared-memory Multiprocessor

processes

* How to allocate processes to CPU?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Symmetric multiprocessor

 Architecture

Shared Memory

S S S S
e Small number of CPUs

* Same access time to main memory
* Private cache

— Memory
— Memory mappings (TLB)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Global queue of processes

 One ready queue shared across all CPUs

* Advantages N

— Good CPU utilization
— Fair to all processes
* Disadvantages
— Not scalable (contention for global queue lock)
— Poor cache locality

* Linux 2.4 uses global queue

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Per-CPU queue of processes

e Static partition of processes to CPUs

 Advantages

— Easy to implement
— Scalable (no contention on ready queue)
— Better cache locality

 Disadvantages

— Load-imbalance (some CPUs have more processes)
* Unfair to processes and lower CPU utilization

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Hybrid approach

* Use both global and per-CPU queues
e Balance jobs across queues

* Processor Affinity

— Add process to a CPU’s queue if recently run on the CPU

e Cache state may still present

* Linux 2.6 uses a very similar approach

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

SMP: “gang” scheduling

Multiple processes need coordination
Should be scheduled simultaneously

I
N ([N
Scheduler on each CPU does not act independently

Coscheduling (gang scheduling): run a set of processes
simultaneously

Global context-switch across all CPUs

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Linux/Android Scheduling

— Scheduler Architecture

— Scheduling algorithms
* O(1) RR scheduler
e CFS scheduler

— Other implementation issues

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Scheduler Class Overview

 Linux has a hierarchical scheduler

— Soft Real-time scheduling policies __j-———7 |
 SCHED FIFO (FCFS) —>| Real Time 1 >
 SCHED RR (real time round robin) —>| Real Time2 —>
* Always get priority over non real time tasks
e One of 100 priority levels (0..99)

— Normal scheduling policies
« SCHED_OTHER: standard processes
* SCHED_BATCH: batch style processes
 SCHED_IDLE: low priority tasks
* One of 40 priority levels (-20..0..19)

—>| Real Time 99 —>
g Normal —>

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Hierarchical Scheduler

Code from kernel/sched.c:

class = sched_class_highest;
for (;;){
p = class->pick_next_task(rq);
if (p)
return p;

/*

* Will never be NULL as the idle class always
* returns a non-NULL p:

*/

class = class->next;

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The runqueue

All run queues available in array runqueues, one per CPU

struct rq (kernel/sched.c)
— Contains per-class run queues (RT, CFS) and other per-class params
e E.g., CFS: alist of task_struct in struct list_head tasks
* E.g., RT: array of active priorities
e Data structure rt_rq, cfs_rq,
struct sched_entity (kernel/sched.c)
— Member of task_struct, one per scheduler class
— Maintains list head for class runqueue, other per-task params
Current scheduler for task is specified by task_struct.sched class
— Pointer to struct sched_class

— Contains functions pertaining to class (object-oriented code)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

sched class Structure

static const struct sched_class fair_sched_class = {

.hext = &1dle_sched_class,
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
.check_preempt_curr = check_preempt_wakeup,
.pick_next_task = pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.select_task_rq = select_task_rq_fair,
. load_balance = load_balance_fair,
.move_one_task = move_one_task_fair,
.set_curr_task = set_curr_task_fair,
.task_tick = task_tick_fair,
.task_new = task_new_fair,
.prio_changed = prio_changed_fair,

.switched_to = switched_to_fair,

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multiprocessor scheduling

* Per-CPU runqueue

* Possible for one processor to be idle while
others have jobs waiting in their run queues

* Periodically, rebalance runqueues

— Migration threads move processes from one
runque to another

 The kernel always locks runqueues in the
same order for deadlock prevention

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Load balancing

* To keep all CPUs busy, load balancing pulls
tasks from busy runqueues to idle runqueues.

* |f schedule finds that a runqueue has no
runnable tasks (other than the idle task), it
calls load balance

* load balance also called via timer

— schedule_tick calls rebalance _tick
— Every tick when system is idle
— Every 100 ms otherwise

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Processor affinity

* Each process has a bitmask saying what CPUs
it can run on

— By default, all CPUs
— Processes can change the mask

— Inherited by child processes (and threads), thus
tending to keep them on the same CPU

* Rebalancing does not override affinity

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Load balancing

* Joad balance looks for the busiest runqueue (most runnable
tasks) and takes a task that is (in order of preference):

_ inactive (likely to be cache cold)
- high priority

* Joad balance skips tasks that are:
_ likely to be cache warm

_ currently running on a CPU

- not allowed to run on the current CPU (as indicated by the
cpus_allowed bitmask in the task struct)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Priority related fields in struct task struct

 static_prio: static priority set by administrator/
users

— Default: 120 (even for realtime processes)
— Set use sys_nice() or sys_setpriority()
e Both call set_user_nice()

* prio: dynamic priority
— Index to prio_array

* rt_priority: real time priority
— prio =99 —rt_priority

* include/linux/sched.h

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Adding a new Scheduler Class

e The Scheduler is modular and extensible
— New scheduler classes can be installed

— Each scheduler class has priority within hierarchical scheduling
hierarchy

— Priorities defined in sched.h, e.g. #define SCHED_RR 2

— Linked list of sched_class sched_class.next reflects priority
— Core functions: kernel/sched.c, include/linux/sched.h

— Additional classes: kernel/sched_fair.c,sched_rt.c

* Process changes class via sched setscheduler syscall

* Each class needs
— New runqueue structure in main struct runqueue
— New sched_class structure implementing scheduling functions
— New sched_entity in the task_struct

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Linux/Android Scheduling

— Scheduling algorithms
* O(1) RR scheduler
e CFS scheduler

— Other implementation issues

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Real-time policies

* First-in, first-out: SCHED_FIFO
— Static priority
— Process is only preempted for a higher-priority
process

— No time quanta; it runs until it blocks or yields
voluntarily

— RR within same priority level

* Round-robin: SCHED_ RR
— As above but with a time quanta

* Normal processes have SCHED NORMAL
scheduling policy

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Old Linux O(1) scheduler

e Old Linux scheduler (until 2.6.22) for SCHED _NORMAL

— Round robin fixed time slice

* Boost interactivity
— Fast response to user despite high load
— Inferring interactive processes and dynamically increase their priorities
— Avoid starvation

* Scale well with number of processes
— 0O(1) scheduling overhead

* Scale well with number of processors
— Load balance: no CPU should be idle if there is work
— CPU affinity: no random bouncing of processes

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

rungueue data structure

 Two arrays of priority queues
— active and expired
— Total 140 priorities [0, 140)
— Smaller integer = higher priority

active expired
array array
priority task lists priority task lists
0] 0—O 0]
[1] o—0—0 [1]
[140] O [140]

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Aging: the traditional algorithm

for(pp = proc; pp < proc+NPROC; pp++) {
if (pp->prio 1= MAX)
pp->priot++;
if (pp->prio > curproc->prio)
reschedule();

}

Problem: O(N). Every process is examined on each
schedule() call!

This code is taken almost verbatim from 6th Edition
Unix, circa 1976.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Scheduling algorithm for normal processes

1. Find highest priority non-empty queue in rg-
>active; if none, simulate aging by swapping
active and expired

2. next = first process on that queue
3. Adjust next’s priority
4. Context switch to next

5. When next used up its time slice, insert next
to the right queue in the expired array and call
schedule() again

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Simulate aging

* Swapping active and expired gives low priority
processes a chance to run

* Advantage: O(1)

— Processes are touched only when they start or
stop running

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Find highest priority non-empty queue

* Time complexity: O(1)
— Depends on the number of priority levels, not the number
of processes

* Implementation: a bitmap for fast look up
— 140 queues =2 5 integers
— A few compares to find the first non-zero bit
— Hardware instruction to find the first 1-bit
* bsfl on Intel

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Adjusting priority

* Goal: dynamically increase priority of interactive process

* How to determine interactive?
— Sleep ratio
— Mostly sleeping: I/O bound
— Mostly running: CPU bound

* Implementation: per process sleep _avg

— Before switching out a process, subtract from sleep_avg how many
ticks a task ran

— Before switching in a process, add to sleep _avg how many ticks it was
blocked up to MAX_SLEEP_AVG (10 ms)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Calculating time slices

e Stored in field time_slice in struct task_struct
* Higher priority processes also get bigger time-slice

e task timeslice() in sched.c
— If (static_priority < 120) time_slice = (140-static_priority) * 20
— If (static_priority >= 120) time_slice = (140-static_priority) * 5

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example time slices

Priority: Static Pri Niceness Quantum
Highest 100 -20 800 ms
High 110 -10 600 ms
Normal 120 0 100 ms
Low 130 10 50 ms
Lowest 139 19 5 ms

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Problems with O(1) RR Scheduler

Not easy to distinguish between CPU and I/O bound

— 1/0 bound typically need better interactivity

— CPU bound need sustained period of CPU at lower priority
Finding right time slice isn’t easy

— Too small: good for 1/0, but high context switch overhead
— Too large: good for CPU bound jobs, but poor interactivity
Prioritization by increasing timeslice isn’t perfect

— 1/0 bound processes want high priority, but small timeslice!
— CPU bound processes want low priority but large timeslice!
— Need complex aging to avoid starvation

Priority is relative, but time slice is absolute

— Nice 0, 1: time slice 100 and 95 msec: 5% difference!

— Nice 19, 20: time slice 10 and 5: 100% difference!

Time slice has to be multiple of tick, how to give priority to freshly
woken up tasks even if their time slice has expired?

Lots of heuristics to fix these problems
— Problem: heuristics can be attacked, several attacks existed

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Linux/Android Scheduling

* CFS scheduler
— Other implementation issues

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Completely Fair Scheduler (CFS)

 |Introduced in kernel 2.6.23

* Models an ideal multitasking CPU
— Infinitesimally small timeslice

— n processes: each progresses uniformly at 1/n’th rate
| |

1 Process

3 Processes 1/3'rd

Progress

- Problem: real CPU can’t be éplit into infinitesimally
small timeslice without excessive overhead

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Completely Fair Scheduler

* Core ideas: dynamic time slice and order

* Don’t use fixed time slice per task
— Instead, fixed time slice across all tasks
— Scheduling Latency

 Don’t use round robin to pick next task
— Pick task which has received least CPU so far
— Equivalent to dynamic priority

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Scheduling Latency

* Equivalent to time slice across all processes

— Approximation of infinitesimally small

— Default value is 20 msec

— To set/get type: S sysctl kernel.sched_latency ns
* Each process gets equal proportion of slice

— Timeslice(task) = latency/nr_tasks

— Lower bound on smallest slice: default 4 msec

— To set/get: S sysctl kernel.sched_min_granularity_ns

— Too many tasks? sched_latency = nr_tasks*min_granularity
* Priority through proportional sharing

— Task gets share of CPU proportional to relative priority

— Timeslice(task) = Timeslice(t) * prio(t) / Sum_all_t’(prio(t’))
* Maximum wait time bounded by scheduling latency

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Picking the Next Process

* Pick task with minimum runtime so far
— Tracked by vruntime member variable

— Every time process runs for t ns, vruntime +=t (weighed
by process priority)

* How does this impact 1/0 vs CPU bound tasks
— Task A: needs 1 msec every 100 sec (I/O bound)
— Task B, C: 80 msec every 100 msec (CPU bound)
— After 10 times that A, B, and C have been scheduled
e vruntime(A) = 10, vruntime(B, C) = 800
* A gets priority, B and C get large time slices (10msec each)
* Problem: how to efficiently track min runtime?
— Scheduler needs to be efficient
— Finding min every time is an O(N) operation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Finding Lowest Runtime Efficiently

* Need to update vruntime and min_vruntime
— When new task is added or removed
— On every timer tick, context switch

* Balanced binary search tree
— Red-Black Trees
— Ordered by vruntime as key
— O(lgN) insertion, deletion, update, O(1): find min

vruntime=300

cfs_rg->min_vruntime ~ vruntime=
Vruntime=400

vruntime=30 Vruntime=150 vrunti_me=410
e Tasks move from left of tree to the right

* min_vruntime caches smallest value

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Linux/Android Scheduling

— Other implementation issues

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Bookkeeping on each timer interrupt

scheduler_tick()
— Called on each tick

* timer_interrupt = do_timer_interrupt =» do_timer_interrupt_hook =»
update_process_times

* |[frealtime and SCHED_ FIFO, do nothing
— SCHED_FIFO is non-preemptive

* |frealtime and SCHED_RR and used up time slice, move to end of rqg-
>active[prio]
e |f SCHED_NORMAL and used up time slice
— If not interactive or starving expired queue, move to end of rg->expired|[prio]
— Otherwise, move to end of rg->active[prio]
* Boost interactive

* Else// SCHED NORMAL, and not used up time slice
— Break large time slice into pieces TIMESLICE_ GRANULARITY

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Optimizations

e If nextis a kernel thread, borrow the MM
mappings from prev

— User-level MMs are unused.

— Kernel-level MMs are the same for all kernel
threads

* |f prev ==next
— Don’t context switch

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

