Process Scheduling |

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Introduction to scheduling

e Scheduling algorithms

* Real time Scheduling

 Evaluation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Direction within course

* Until now: interrupts, processes, address
spaces, threads, synchronization

— Mostly mechanisms

* From now on: resources

— Resources: things processes operate upon
e E.g., CPU time, memory, disk space

— Policies play a more important role

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Types of resources

* Preemptible

— OS can take resource away, use it for something
else, and give it back later

* E.g.,, CPU

* Non-preemptible

— OS cannot easily take resource away; have to wait
after the resource is voluntarily relinquished

* E.g., disk space

* Type of resource determines how to manage

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Decisions about resource

* Allocation: which process gets which resources
— Which resources should each process receive?
— Space sharing: Controlled access to resource through indirection
— Implication: resources are not easily preemptible

* Scheduling: how long process keeps resource
— In which order should requests be serviced?

— Time sharing: more resources requested than can be granted
— Implication: resource is preemptible

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Role of Dispatcher vs. Scheduler

* Dispatcher
— Low-level mechanism
— Responsibility: context switch

* Scheduler
— High-level policy
— Responsibility: deciding which process to run

 Could have an allocator for CPU as well

— Early job-based systems (before timesharing)
— Parallel and distributed systems

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

When to schedule?

e When does scheduler make decisions?

When a process
switches from running to waiting state
switches from running to ready state
switches from waiting to ready
terminates

W e

e Minimal: nonpreemptive
— 7

 Additional circumstances: preemptive
— 7

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e Scheduling algorithms

* Real Time Scheduling

 Evaluation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Overview of scheduling algorithms

Criteria: workload and environment

Workload

— Process behavior: alternating
sequence of CPU and I/O bursts

— CPU bound v.s. I/0 bound

Environment

— Batch v.s. interactive?
— Specialized v.s. general?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

> CPU burst

> 1/0 burst

} CPU burst

J‘ I/O burst

> CPU burst

> 1/0 burst

Typical Burst Times

160

140 \

—t
N
o

—
o
o

frequency

60

40

20

0 8 16 24 39 40
burst duration (milliseconds)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Scheduling performance metrics

Min waiting time: time spent waiting in queue for service
— don’t have process wait long in ready queue

Max CPU utilization: % of time CPU is busy
— keep CPU busy

Max throughput: processes completed/time
— complete as many processes as possible per unit time

Min response time: submission to beginning of response
— respond immediately

Fairness: give each process/user same percentage of CPU

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

First-Come, First-Served (FCFS)

* Simplest CPU scheduling algorithm
— First job that requests the CPU gets the CPU
— Nonpreemptive

* Implementation: FIFO queue

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example of FCFS

Process Arrival Time Burst Time
P, 0 7
P, 0 4
P, 0 1
P, 0 4

e Gantt chart

Schedule: P1 P2 P3 P4

e Average waitingtime: (0+7+11+12)/4 =7.5

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example of FCFS: different arrival order

Process Arrival Time Burst Time
P, 0 7
P, 0 4
P, 0 1
P, 0 4

Arrival order: P, P, P, P,

P3 P2 P4 P1

e Average waiting time: (9+1+0+5)/4 =3.75

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

FCFS advantages and disadvantages

* Advantages
— Simple
— Fair

* Disadvantages

— waiting time depends on arrival order

— Convoy effect: short process stuck waiting for long
process

— Also called head of the line blocking

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Shortest Job First (SJF)

e Schedule the process with the shortest time

e FCFS if same time

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example of SJF (w/o preemption)

Process

o
-Uw-UN-U'—‘

I

e Gantt chart

Schedule: P1

P3 P4

Arrival: P1 P2

Arrival Time

0

2
4
5

Burst Time

7

4
1
4

* Average waiting time: (0+6+3+7)/4 =4

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Shortest Job First (SJF)

e Schedule the process with the shortest time
— FCFS if same time

* Advantages

— Minimizes average wait time. Provably optimal if no
preemption allowed

* Disadvantages

— Not practical: difficult to predict burst time
* Possible: past predicts future

— May starve long jobs

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Shortest Remaining Time First (SRTF)

* If new process arrives w/ shorter CPU burst
than the remaining for current process,
schedule new process

— SJF with preemption

* Advantage: reduces average waiting time

— Provably optimal

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example of SRTF

Process Arrival Time Burst Time
P, 0 7
P, 2 4
P, 4 1
P, 5 4

e Gantt chart

Schedule: P1 P2 P3 P2 P4 P1

Arrival: P1 P2 P3 P4

e Average waitingtime: (9+1+0+2)/4 =3

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Length of Next CPU Burst?

Estimate the length: similar to the previous bursts
— Pick process with shortest predicted next CPU burst

Combine predictions and measured bursts using exponential
averaging (or smoothing)

1. t, =actual length of n CPU burst

2. 7, =predicted value for the next CPU burst

3. 2,0=a =<1

4, Define: T,, =al, + (1 —a)fn-
Commonly, a set to %

“Exponential averaging” because expanding recursion gives:
T =ot+(1 -ajot -1+ ...
+1-a)ot, i+ ..
+(1-a)"+ 1,

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Exponential Smoothing

CPU burst (t) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Round-Robin (RR)

* Practical approach to support time-sharing

* Run process for a time slice, then move to
back of FIFO queue

* Preempted if still running at end of time-slice

e How to determine time slice?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example of RR: time slice = 3

Process Arrival Time Burst Time
P, 0] 7
P, 2 4
P 4 1
P, 5 4
Arrival: P1 P2 P3 P4
Queue: P1 P1 | P2 | P2 [P2 | P1 P3 | P4 P2 | P1 | P2
P2 |P1 |P1 [P1 [P3 P4 | P2 P1 | P4
P3 |P3 | P4 P2 | P1 P4
P4 | P2 P1

e Average waitingtime: (8 +8+5+7)/4 =7
* Average response time: (0+1+5+5)/4=2.75
* # of context switches: 7

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Smaller time slice =1

Process Arrival Time Burst Time
P, 0] 7
P, 2 4
P, 4 1
P, 5 4
Arrival: P1 P2 P3 P4
Queue: P1 |P1 | P2 |P1 | P2 [P3 [Pl [P4a |P2 |PL |Pa P2 [Pl |P4|P1L |Pa4

P1 (P2 [P3 |P1|Pa|P2 |P1|Pa|P2|P1|Pa|PL|Pa
P1 [Pa [P2 P2 |Pa|P2|P1 |Pa
P2

e Average waitingtime: (8+6+1+7)/4 =5.5
* Average response time: (0+0+1+2)/4=0.75
* # of context switches: 14

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Arrival: P1

Queue: P1

* Average waitingtime: (0+5+7+7)/4 =4.75
e Average response time: same
e # of context switches: 3 (minimum)

Larger time slice = 10

Process

P2

Py

P1
P2

Arrival Time

P3 P4

P1
P2
P3

P1
P2
P3
P4

0

2
4
5

Burst Time

P2
P3
P4

Lol ~

P3
P4

P4

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

RR advantages and disadvantages

* Advantages
— Low response time, good interactivity
— Fair allocation of CPU across processes
— Low average waiting time when job lengths vary widely

* Disadvantages
— Poor average waiting time when jobs have similar lengths
e Average waiting time is even worse than FCFS!

— Performance depends on length of time slice
* Too high = degenerate to FCFS
* Too low =2 too many context switches, costly

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Real Time Scheduling

 Evaluation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Real-time scheduling

Real-time processes have timing constraints
— Expressed as deadlines or rate requirements
— E.g. gaming, video/music player, autopilot, medical devices...

Hard real-time systems — required to complete a critical task
within a guaranteed amount of time

Soft real-time computing — requires that critical processes
receive priority over less fortunate ones

Linux supports soft real-time

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Real-Time Scheduling

interrupt

 Mechanism Challenges
determine

— Latencies can affect sk Trumning | ————— inerrupt
guarantees ,, e
context

1.Interrupt latency: time between T switch
interrupt arrival to start of ISR :
(don’t disable interrupts!)

2.Dispatch latency: time to switch
processes

* Policy Challenges e
— Ensure that soft real-time
processes get priority time

— Ensure that hard real-time
processes can finish within
deadline

* Admission Control is key

ISR

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* A priority is associated with each process

— Run highest priority ready job (some may be blocked)
— Round-robin among processes of equal priority
— Can be preemptive or nonpreemptive

* Representing priorities
— Typically an integer
— The larger the higher or the lower?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Setting priorities

* Priority can be statically assigned
— Some always have higher priority than others
— Problem: starvation

* Priority can be dynamically changed by OS
— Aging: increase the priority of processes that wait in the ready queue
for a long time
for(pp = proc; pp < proc+NPROC; pp++) {
if (pp->prio '= MAX)
pp->prio++;
if (pp->prio > curproc->prio)
reschedule();

¥

This code is taken almost verbatim from 6t Edition Unix, circa 1976.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Priority Inversion

* High priority process depends on low priority process
(e.g. to release a lock)

— Another process with in-between priority arrives?
P1 (low): lock(my_lock) (gets my_lock)

P1 (low): lock(my_lock) (gets my_lock) P2(high): lock(my_lock)
P2(high): lock(my_lock) P3(medium): while (...) {}
P2 waits, P1 completes, P2 is scheduled P2 waits, P3 runs, P1 waits

P2’s effective priority less than P3!

e Solution: priority inheritance

— Inherit highest priority of waiting process

— Must be able to chain multiple inheritances

— Must ensure that priority reverts to original value
e Critical for real time systems

— Example: Mars rover (http://research.microsoft.com/en-us/
um/people/mbj/mars_pathfinder/)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Hard Real-time Scheduling

* Priority scheduling only guarantees soft real-time
e Hard real-time: must also meet deadlines

* Processes have new characteristics: periodic ones
require CPU at constant intervals
— Has processing time t, deadline d, period p
—0<tsds<p
— Rate of perio:zlic task is 1/pp

! 1
| d |
! |

period, periods periods

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Rate Montonic Scheduling

* Applicable only to periodic processes
e Static priority based on period
* Don’t need to know burst length

* A priority is assigned based on the inverse of its period
— Shorter periods = higher priority
— Longer periods = lower priority
e E.g.,Pl:p=50,t=20 P2:p=100, t=35
* P1 higher than P2
e CPU Utilization U =20/50 + 35/100 = 0.75, so good...
Deadlines P, P, P, P, P, P,

| ' l l

it P2, Fr Pal, | R P2 Rt Pal, |
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Optimality of Rate Monotonic Scheduling

* Optimal static scheduling policy
* But not optimal dynamic one

* E.g.,, P1: p=50, t=25 P2: p=80, t=35
o Utilization = 25/50 +35/80 = 0.9375, but...
Deadlines P, P, P, P
l | ' b
B L P1 | [EEES | | | | | |

O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

e P2 misses deadline

* In general, Rate monotonic can’t guarantee if
— Utilization > N(2¥/N-1) (or > 83%)
— Admission control must deny to ensure schedulability

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Earliest Deadline First Scheduling (EDF)

* Priorities are assigned according to deadlines

— Earlier deadline, higher priority, later deadline, lower the priority
* Dynamic priorities

— Process can have higher/lower priority at different times

— Doesn’t require periodicity

— Doesn’t require knowledge of burst length

— Provably optimal, but need to know deadlines

e Earlier ex. P1: t=25, d=50,100,150... P2:t=35 d=80, 160, 240,...

Deadlines P4 Ps P, P, P,

l } } Vo

|P1 | | |P2 | |P1 | |P2 1P1 | |P2| | |
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

 Dynamic EDF order: P1, P2, P1, P1, P2, ...

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

 Evaluation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Evaluating Scheduling Algorithms

e Difficult: scheduling dependent on complex inputs

— Workloads are non-deterministic even in tightly
controlled environments

— Timer interrupts can occur asynchronously

— Hard to reproduce the same environment

* How to test?
— How the system “feels”: responsive? sluggish?
— Analytical: Gantt charts, queuing models
— Simulation

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Analytical Evaluation

* Deterministic (Gantt charts)
— Like what we’ve done in this lecture
— Construct deterministic workload
— For each algorithm, calculate minimum average waiting time

— Simple and fast, but requires exact numbers for input, applies only
to those inputs

* Probabilistic (Queuing models)
— Describe the arrival of processes, CPU, 1/0 bursts probabilistically
— Simple distributions (e.g., exponential)
— Compute average throughput, utilization, waiting time
— Limited in kinds of policies that can be modeled
— Generally out of scope of this class, except...

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Little’s Law

e Valid for any scheduling algorithm and arrival distribution
— n = average gueue length
— W =average waiting time in queue (sec)
— A = average arrival rate into queue (processes/sec)
— Little’s law: n=A x W
Why? Complex proof, but intuitively...
1. Let N =total number of jobs over some large time T

n = Avg. # of queue length = Sum_T(# jobs in queue at time T)/T
Sum_T(# jobs in queue at time T) = Sum_jobs(time of job j in queue)
n = Sum_jobs(wait time of job j)/T = Sum_jobs(wait time of job j)/N*N/T

Lk w

n = Avg. wait time * Arrival rate =W * A

 E.g.:if on average 7 processes arrive per sec, and normally 14
processes in queue, then average wait time per process = 2 sec

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Simulation

Programmed model of computer system

Gather statistics indicating algorithm performance

Clock is a variable simulation |
More detailed than queuing models ~ rors
CP.U"10
/0 213
actual CPU 12
process —=p|l/0 112———emmp simulation =P
execution CPU 2
/0 147
CPU 173 SJF
trace tape
simulation =»

Data to drive simulation gathered via

RR (g = 14)

— Random number generator according to probabilities
— Distributions defined mathematically or empirically

— Traces: recorded sequences of real events in real systems

performance
statistics
for FCFS

performance
statistics
for SJF

performance
statistics
for RR (g = 14)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Time slice and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9
o 1 2 383 4 5 6 7 8 9 10

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

