Races and Deadlocks

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

2/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Goals

* |dentify patterns of concurrency errors
— so you can avoid them in your code

* Learn techniques to detect concurrency errors

— so you can apply these techniques to your code

Concurrency error classification

* Deadlock: a situation wherein two or more
processes are never able to proceed because
each is waiting for the others to do something
— Key: circular wait

* Race condition: a timing dependent error
involving shared state

— Data race: concurrent accesses to a shared variable and at least one
access is a write

— Atomicity bugs: code does not enforce the atomicity programmers
intended for a group of memory accesses

— Order bugs: code does not enforce the order programmers intended for a
group of memory accesses

Examples

 Deadlock T1 T2
lock(m1);
lock(m?2);
lock(m?2);
lock(m1);
* Data race
++ balance --balance
o if (len > 200)
* Atomicity len = 100;

buf = realloc(len);
memcpy(buf, str, 200);

= NULL
e QOrder P

Benign race examples

* Double-checking locking
— Faster if vis often 0
— Doesn’t work with compiler/hardware reordering

if(v) { // race
lock(m);
if(v)
unlocl.<.(.r’n) ;
)

e Statistical counter

— ++ nrequests

Writing correct parallel code is hard!

* Too many schedules (exponential to program
size), hard to reason about

* Correct parallel code does not compose =»

can’t ¢

— Sync
— Loca

ivide-and-conquer
nronization cross-cuts abstraction boundaries

correctness may not yield global

correctness.

« We'll see a few error examples next

Example 1: good + bad =» bad

* Result: race between deposit() and withdraw()

deposit() // properly synchronized
lock();
++ balance;
unlock();

withdraw() // no synchronization

-- *balance;

void deposit(Account *acnt)

{

}

int balance(Account *acnt)

{

lock(acnt->guard);
++ acnt->balance;

unlock(acnt->guard);

int b;
lock(acnt->guard);

b = acnt->balance;
unlock(acnt->guard);
return b;

Example 2: good + good =» bad

Compose single-account operations to operations on two accounts
— deposit(), withdraw() and balance() are properly synchronized
— sum() and transfer()? Race

void withdraw(Account *acnt)

{
lock(acnt->guard);
-- acnt->balance;
unlock(acnt->guard);
}

int sum(Account *al, Account *a2)

{
¥

void transfer(Account *al, Account *a2)

{

return balance(al) + balance(a2)

withdraw(al);
deposit(a2);
)

Example 3: good + good =» deadlock

e 2Md gttempt: use locks in sum()
* One sum() call, correct
 Two concurrent sum() calls? Deadlock

int sum(Account *al, Account *a2)
{
int s;
lock(al->guard);
lock(a2->guard);
s = al->balance;
s += a2->balance;
unlock(a2->guard);
unlock(al->guard);
return s

T1: T2:
sum(al, a2) sum(az, al)

Example 4: monitors don’t compose as well

e Usually bad to hold lock (in this case Monitor
lock) across abstraction boundary

Monitor M1 {
cond_t cv; Monitor M2 {
foo() { f1() {M1.foo();}
// releases monitor lock ,f2() {M1.bar();}
wait(cv); b
¥
bar() {
signal(cv); T1: T2:
3 M2.f1(); M2.f2();
ol

e Concurrency error detection
— Deadlock detection
— Data race detection

Automatic software error detection

Static analysis: inspect the code/binary without actually running it

— E.g., gcc does some simple static analysis
e Sgcc—Wall

* Dynamic analysis: actually run the software
— E.g. valgrind
 Svalgrind run-test

e Staticv.s. dynamic
— Static has better coverage, since compiler sees all code
— Dynamic is more precise, since can see all values

 Which one to use for concurrency errors?

e Runtime detection

— Detect problems when they happen in production
— Cannot prevent only recover

A Historical Perspective on Deadlocks

* Deadlock handling is a problem once beloved
of computer science theorists

— Many deadlock avoidance/detection techniques in
the literature

e Canonical Example
— Dining Philosophers

2/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Dining-Philosophers Problem

* Philosophers spend their lives thinking and eating
 Don’t interact with their neighbors, occasionally try to pick up
2 chopsticks (one at a time) to eat from bowl
— Need both to eat, then release both when done
— Shared data: Rice (data set), lock chopstick [n]

 What happens if each one does Pick(left) before Pick(right)?

Deadlocks in Practice

* Ensure that the system will never deadlock
— Easy to do by ordered locking, but programmers forget
— Harder in the kernel — some code cant be preempted

* Allow the system to deadlock and then recover
— Hard to do, recovery can be application specific

* In reality: ignore the problem and let applications
deal with it; used by most operating systems,
including UNIX

— OS still cares about deadlocks within the kernel

Example from Android/Linux

From the kernel source tree: kernel/pid.c

/*

* Note: disable interrupts while the pidmap_lock is held as an

* interrupt might come in and do read_lock(&tasklist lock).

*

* If we don't disable interrupts there is a nasty deadlock between
* detach_pid()->free_pid() and another cpu that does

* spin_lock(&pidmap_lock) followed by an interrupt routine that does
* read_lock(&tasklist_lock);

*

* After we clean up the tasklist_lock and know there are no

*irg handlers that take it we can leave the interrupts enabled.

* For now it is easier to be safe than to prove it can't happen.

*/

2/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Why do deadlocks occur?

Deadlocks can arise if the following 4 conditions hold at once:

* Mutual exclusion: only one process at a time can use a resource

* Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

 No preemption: aresource can be released only voluntarily by the
process holding it, after that process has completed its task

e Circular wait: there’s aset {A, B, C, ..., X} of waiting processes such
that Ais waiting for a resource held by B, B is waiting for a
resource that is held by C, and X is waiting for a resource held by A

Here, resources can be anything, but in practice, usually locks

Dealing with Deadlocks

* Deadlock prevention

— Always acquire locks in same order
* Dining philosophers: first acquire left and then right? No!
* Doesn’t work when you can’t sleep, e.g., Interrupt handler
* Easy to do in userspace, need best practices

* Deadlock detection
— Detect a deadlock after it has happened, and recover

* Deadlock avoidance
— Basic idea: detect unsafe states that might dead to deadlock

— Often need additional information about what processes will
need what resources in the future

2/27/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Deadlock detection

e Root cause of deadlock: circular wait

* Detecting deadlock manually: system halts
— Can run debugger and see the wait cycle

* Detecting deadlock automatically: resource
allocation graph

* Detecting potential deadlocks automatically:
lock order

Resource allocation graph

Nodes
— Locks (resources)
— Threads (processes)

Edges

— Assignment edge: lock->thread
* Removed on unlock()

— Request edge: thread->lock

* Converted to assighment edges on
lock() return

Cycles <~ deadlock

Resource allocation graph for

Problem: can we detect potential example 3 deadlock

deadlocks before we run into them?

Detecting potential deadlocks

e Can deduce lock order: the order in which locks are
acquired

— For each lock acquired, order with locks held

— Cycles in lock order =» potential deadlock

T1: T2:

sum(al, a2) // locks held sum(az2, al) /[locks held
lock(al->guard) // {}

lock(a2->quard) // {al->guard}

lock(a2->quard) // {}
lock(al->quard) // {a2->guard}

Cycle = Potential deadlock!

Multi-Resource Resource Allocation Graphs

\ \
\
° o
o
R, °

* Cycle and deadlock

Multi-Resource Resource Allocation Graphs

* Cycle but no deadlock

* |f graph contains no cycles = no deadlock

* |f graph contains a cycle =

— if only one instance per resource type, then
deadlock

— if several instances per resource type, possibility of
deadlock

— Use Banker’s algorithm and variants

Banker’s Algorithm

* Designed by Dijkstra for THE multiprogramming system,
1968

 Multiple instances of resources
* Each process must a priori claim maximum use

* When a process gets all its resources it must return
them in a finite amount of time

e Check if an allocation is safe and won’t lead to a

deadlock —i.e., there is some way to satisfy all future
demands for resources

* |f a system is in safe state = no deadlocks

e |f a system is in unsafe state = possibility of
deadlock

* Avoidance = ensure that a system will never
enter an unsafe state.

Banker’s Algorithm Variables

N: processes, and m: resource types

Available[m]: how many resources of type m available

 Max[n, m]: total number of m type resources process n will
eventually need

e Allocation[n,m]: how many m type resources n already has

* Need[n,m]: how many more m type resources does n needs
— (Max[n,m] — Allocation[n,m]

Safety Algorithm

Basic idea: check if available resources are sufficient to satisfy all future
demands for all processes in some order. l.e., we are in a safe state.

1. Let Work[m] be the hypothetical future availability for resource type m,
and CanFinish[n] be true if process n can finish. Initial:

Work = Available
Finish[n] = false for all n
2. Find anisuch that both:
(a) CanFinish[i] = false
(b) Need. = Work // needs fewer resources than available
If no such i exists, go to step 4

3. Work = Work + Allocation[i] // i satisfied: will eventually release its resources
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

* Check if new allocation request will lead to safe state before granting
* Let Max=Request to detect if we are already in deadlock

» Concurrency error detection

— Data race detection

Race detection

 We will look at only data race detection

— Techniques exist to detect atomicity and order bugs,
but we won’t discuss them in this class

 One approach to data race detection
— Lockset algorithm

— Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. In ACM Transactions on
Computer Systems, 1997.
http://dl.acm.org/citation.cfm?id=265927

— Other techniques exist in literature

Happens-before definition

* Event A happens-before event B if
— B follows A in the same thread

—AinT1,and Bin T2, and a synchronization event C
such that
* AhappensinTl
 Cisafter Ain T1 and before Bin T2
* BinT2

Happens-before race detection

* Tools before eraser are based on happens-
before

o Sketch

— Monitor all data accesses and synch operations

— Watch for

e Access of vin thread T1

e Access of vin thread T2

* No synchronization operation between the accesses
* One of the accesses is write

Problems with happens-before

* Problem I: expensive T1: T2:
— Requires per thread ++y
* List of accesses to shared data lock(m)
unlock(m)
* List of synch operations ~~alock(m);
unlock(m);
++y;

* Problem II: false negatives

— Happens-before looks for actual data races (moment
in time when multiple threads access shared data w/
o synchronization)

— lgnores programmer intention; the synchronization
op between accesses may happen to be there

Eraser: a different approach

* |dea: check invariants
— Violations of invariants =» likely data races

* |nvariant: the locking discipline

— Assume: accesses to shared variables are protected by
locks

— Every access is protected by at least one lock
— Any access unprotected by a lock = an error

* Problem: how to find out what lock protects a
variable?

— Linkage between locks and variables undeclared

Lockset algorithm: infer the locks

* |ntuition: it must be one of the locks held at the
time of access

e C(v): a set of candidate locks for protecting v
* |nitialize C(v) to the set of all locks

* On access to v by thread t, refine C(v)
— C(v) = C(v) " locks_held(t)
— If C(v) = {}, report error

 Sounds good! But ...

Implementing eraser

* Binary tool
— Pros: does not require source

— Cons: lose source semantics
* Track memory access at word granularity

* How to monitor memory access?
— Binary instrumentation

 How to track lockset efficiently?
— A shadow word for each memory word
— Each shadow word stores a lockset index
— A table maps lockset index to a set of locks
— Assumption: not many distinct locksets

Problems w/ simple lockset algorithm

e |nitialization
— When shared data is first created and initialized

 Read-shared data
— Shared data is only read (once initialized)

 Read/write lock
— We’'ve seen it last class

— Locks can be held in either write mode or read
mode

Initialization

 When shared data first created, only one
thread can see it =2 locking unnecessary with
only one thread

e Solution: do not refine C(v) until the creator
thread finishes initialization and makes the
shared data accessible by other threads

* How do we know when initialization is done?
— We don’t ...

— Approximate with when a second thread accesses
the shared data

Read-shared data

 Some data is only read (once initialized) =»
locking unnecessary with read-only data

e Solution: refine C(v), but don’t report
warnings
— Question: why refine C(v) in case of read?

— To catch the case when
e C(v) is {} for shared read

e Athread writestov

State transitions

e Each shared data value (memory location) is in
one of the four states

write, first thread

write, new thread

Refine
Read, new C(v) and
thread check
Refine C(v), ,
no check write

Read-write locks

* Read-write locks allow a single writer and
multiple readers

* Locks can be held in read mode and write mode
— read_lock(m); read v; read_unlock(m)
— write_lock(m); write v; write_unlock(m)

* Locking discipline

— Lock can be held in some mode (read or write) for
read access

— Lock must be held in write mode for write access
e A write access with lock held in read mode =» error

Handling read-write locks

* |dea: distinguish read and write access when
refining lockset

* On each read of v by thread t (same as before)
— C(v) = C(v) ~ locks_held(t)
— If C(v) = {}, report error

* On each write of v by thread t
— C(v) = C(v) A write_locks held(t)
— If C(v) = {}, report error

Results

 Eraser works
— Find bugs in mature software

— Though many limitations
* Major: benign races (intended races)

* However, slow
— Monitoring each memory access: costly, 10-30X slowdown

— Can be made faster
e With static analysis
* Smarter instrumentation (e.g., sampling)

* Lockset algorithm is influential, used by many tools

— E.g. Helgrind (a race detection tool in Valgrind)
http://valgrind.org/docs/manual/hg-manual.html

