Synchronization |l

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

2/24/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Problems with Locks

 Low level
— Users must remember to lock/unlock

— All it takes is one forgetful programmer

 Unlock without lock: no mutual exclusion
e Lock without unlock: deadlock

 How to handle multiple resources
— Have n resources of same type
— n threads can access concurrently
— How to co-ordinate?
— Can’t nest locks (one thread, multiple resources?)

 How to enforce ordering?
— E.g., producers, consumers, pipelines

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Higher Level Synchronization Constructs

Atomic Variables
— Allow race-free manipulation of simple variables
— Very useful for kernel programming

 Semaphores
— Easy coordination for multi-resource and ordering situations
* Monitors

— Language level constructs
— Free users from having to worry about synchronization
— Ensure correct usage

(Software) Transactional Memory

— Need compiler support

— Fine-grained critical sections with compiler support

— Allow DB-techniques like optimistic execution and rollback

2/24/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Atomic Variables

 Semaphores

* Monitors and condition variables
* Transactional Memory

* Linux Synchronization Primitives

Atomic Operations

Many instructions not atomic in hardware (smp)
— Read-modify-write instructions: inc, test-and-set, swap
— unaligned memory access

Compiler may not generate atomic code
— even i++ is not necessarily atomic!

If the data that must be protected is a single word,
atomic operations can be used. These functions examine
and modify the word atomically.

The atomic data type is atomic t.

Intel implementation
— lock prefix byte 0xfO — locks memory bus

Atomic Operations

ATOMIC _INIT — initialize an atomic _t variable (integer)
atomic_read — examine value atomically

atomic_set — change value atomically

atomic_inc — increment value atomically

atomic_dec — decrement value atomically

atomic_add - add to value atomically

atomic_sub — subtract from value atomically
atomic_inc_and_test —increment value and test for zero
atomic_dec_and_test — decrement value and test for zero
atomic_sub_and_test — subtract from value and test for zero

64 bit integer and bitwise operations are also available (see LKD 10)

 Semaphores
* Monitors and condition variables
* Transactional Memory

* Linux Synchronization Primitives

Semaphore motivation

* Problem with lock: ensures mutual exclusion, but
no execution order

* Producer-consumer problem: need to enforce
execution order
— Producer: create resources
— Consumer: use resources
— bounded buffer between them

— Execution order: producer waits if buffer full,
consumer waits if buffer empty

— E.g., S cat 1.txt | sort | uniq | wc

Semaphore definition

* A synchronization variable that contains an
integer value
— Can’t access this integer value directly
— Must initialize to some value
* sem_init (sem_t *s, int pshared, unsigned int value)

— Has two operations to manipulate this integer
* sem_wait (or down(), P())
e sem_post (or up(), V())

int sem_wait(sem_t *s) { int sem_post(sem_t *s) {
wait until value of semaphore s increment the value of
is greater than 0 semaphore s by 1
decrement the value of if there are threads waiting, wake
semaphore s by 1 up one
} }

Semaphore uses: mutual exclusion

 Mutual exclusion // initialize to X
— Semaphore as mutex sem_init(s, 0, X)
— Binary semaphore: X=1 sem_wait(s);

// critical section
sem_post(s);

e Mutual exclusion with more than one
resources

— Counting semaphore: X>1
— Initialize to be the number of available resources

Semaphore uses: execution order

e Execution order
— One thread waits for another

— What should initial value be?
//thread 0

... [/ 15t half of computation
// thread 1

sem_post(s); —

— sem_wait(s);

... //2" half of computation

How to implement semaphores?

* Exercise
* Q: can we build on top of locks?

Producer-Consumer (Bounded-Buffer) Problem

* Bounded buffer: size N, Access entry 0... N-1, then “wrap around” to 0
again
* Producer process writes data to buffer
 Consumer process reads data from buffer
* Execution order constraints
— Producer shouldn’t try to produce if buffer is full

— Consumer shouldn’t try to consume if buffer is empty

Producer Consumer

Solving Producer-Consumer problem

e Two semaphores
— sem_t full; // # of filled slots

— sem_t empty; // # of empty slots
e What should initial values be?
* Problem: mutual exclusion?

sem_init(&full, 0, X);
sem_init(&empty, 0, Y);

producer() { consumer() {
sem_wait(empty); sem_wait(full);
... // fill a slot ... [/ empty a slot
sem_post(full); sem_post(empty);
} }

Solving Producer-Consumer problem

 Three semaphores
— sem_t full; // # of filled slots
— sem_t empty; // # of empty slots
— sem_t mutex; // mutual exclusion

sem_init(&full, 0, 0);
sem_init(&empty, 0, N);
sem_init(&mutex, 0, 1);

producer() { consumer() {
sem_wait(empty); sem_wait(full);
sem_wait(&mutex); sem_wait(&mutex);
... // fill a slot ... [/ empty a slot
sem_post(&mutex); sem_post(&mutex);
sem_post(full); sem_post(empty);
} }

e Monitors and condition variables
* Transactional Memory

* Linux Synchronization Primitives

* Background: concurrent programming meets object-oriented
programming
— When concurrent programming became a big deal,
object-oriented programming too

— People started to think about ways to make concurrent
programming more structured

* Monitor: object with a set of monitor procedures
and only one thread may be active (i.e. running one
of the monitor procedures) at a time

Schematic view of a monitor

Q Can think of a monitor | >
as one big lock for a set /\/@/Oﬁg
of operations/ methods g

Q In other words, a

1

language ||
implementation of . .
operations
mutexes
‘: initialization i
code

How to implement monitor?

Compiler automatically inserts lock and unlock operations upon
entry and exit of monitor procedures

class account {

int balance; lock(this.m);
public synchronized void deposit ++Dbalance;

++balance; unlock(this.m);
¥

public synchronized void withdraw() {

} --balance; » lock(this.m);

y. --balance;
! unlock(this.m);

Condition Variables

* Need wait and wakeup as in semaphores

* Monitor uses Condition Variables
— Conceptually associated with some conditions

e Operations on condition variables:

— wait(): suspends the calling thread and releases the monitor lock.
When it resumes, reacquire the lock. Called when condition is not
true

— signal(): resumes one thread waiting in wait() if any. Called when
condition becomes true and wants to wake up one waiting thread

— broadcast(): resumes all threads waiting in wait(). Called when
condition becomes true and wants to wake up all waiting threads

Monitor with condition variables

entry queue

shared data

queues associated with
X, y conditions

TR

YT

operations

initialization
code

Condition variables vs. semaphores

 Semaphores are sticky: they have memory,
sem_post() will increment the semaphore
counter, even if no one has called sem_wait()

e Condition variables are not: if no one is
waiting for a signal(), this signal() is not saved

* Despite the difference, they are as powerful

— Exercise: implement one using the other

Producer-consumer with monitors

monitor ProducerConsumer {

int nfull = 0; .y .
cond has_empty, has full: ~© 1 WO condition variables
producer() { — has_empty: buffer has at
if (nfull == N) least one empty slot
wait (has_empty);
.. // fill a slot — has_full: buffer has at least
++ nfull;
signal (has_full); one full slot
}
consumer() { * nfull: number of filled slots
if (nfull == 0)
wait (has_full); — Need to do our own
- /] empty @ siof counting for condition
signal éhas_empty); variables
}
b

Condition variable semantics

e Design question: when signal() wakes up a waiting thread, which
thread to run inside the monitor, the signaling thread, or the

waiting thread?

 Hoare semantics: suspends the signaling thread, and immediately
transfers control to the woken thread

— Difficult to implement in practice

 Mesa semantics: signal() moves a single waiting thread from the
blocked state to a runnable state, then the signaling thread
continues until it exits the monitor
— Easy to implement

— Problem: race! Before a woken consumer continues, another
consumer comes in and grabs the buffer

Fixing the race in mesa monitors

monitor ProducerConsumer {

int nfull = 0; -
cond has._empty, has_full: ~ ° The fix: when woken up, a

producer() { thread must recheck the
while (nfull == N) e .
wait (has_empty); condition it was waiting on
.. // fill slot

++ nfull;
signal (has_full);

}

consumer() {
while (nfull == 0)
wait (has_full);

... /| empty slot
-- nfull

} signal (has_empty); * You should use while!

hor

* Most systems use mesa
semantics

— E.g., pthread

Monitor and condition variable in pthread

 C/C++ don’t provide monitors;

class ProducerConsumer { but we can implement monitors
int nfull = 0; using pthread mutex and
pthread_mutex_t m; condition variable
pthread_cond_t has_empty, has_full;
_ * For producer-consumer
public: problem, need 1 pthread mutex
producer() { and 2 pthread condition
pthread_mutex_lock(&m); variables (pthread cond_t)

while (nfull == N)
pthread_cond_wait (&has_empty, &m?: Manually lock and unlock mutex

.. // fill slot for monitor procedures
++ nfull; :
! . . pthread cond wait (cv, m):
pthread_cond_signal (has_full); atomically waits on cv and
\ pthread_mutex_unlock(&m); releases m

o

* Transactional Memory

* Linux Synchronization Primitives

Transactional Memory

* Problem: locks have a fundamentally pessimistic
worldview

— Assume conflict will happen when reading/writing and
try to prevent it

— Leads to poor scalability when lots of cores

* Transactional memory proposes optimistic view
— Assume that conflict won’t usually happen
— Read/update shared data without locking

— After operation is done, check if another thread
intervened

— If yes, then retry read/update

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Transactional Memory (2)

Do {
Transaction: {
balance++;
)

} while (!conflict);

* Need mechanism to check if conflict occurred
— In software, or in hardware

— Compiler can automatically insert checks for every
shared memory access

— Hardware can use dirty flags whenever updates occur
* Need mechanism to roll back partially executed
transaction

— Modern processors already have support for speculative
execution and rollback (for performance reasons)

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Transactional Memory Pros and Cons

* Pros:

— Scalable concurrency at fine granularity, i.e., lots of
concurrent small operations

— Composability - new code can’t create problems
— No blocking
— No deadlocks
— No priority inversion

* Cons:
— Not universal — need operations to be idempotent
— E.g., what to do with I/O? RPCs?

— Need hardware support for efficiency (maintain conflict
state)

— Can have substantial overhead if conflict rate is high

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Kernel Seq Locks

* Locks that favor writers over readers
— Lots of readers, few writers, light-weight
— Programmer invoked transactional memory
— Limited — doesn’t support lock free concurrent writes

* Basicidea:
— Lock is associated with sequence number
— Writers increment seq number
— Readers check seqg number at lock and unlock
— If different, try again

— Writers synchronize between themselves, never block
for readers

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Seq Lock Operations

* Operations for manipulating seq locks:

DEFINE _SEQLOCK — initialize seq lock

write _seqlock — get the seqlock as writer, incr seq
(can block)

write _sequnlock — release seqglock, incr seq

read _seqgbegin, read _seqretry — define read atomic
region, seqretry returns true if op was atomic

Writer Reader
do {

write_seqlock(&mr_seq_lock); seq = read_seqbegin(&mr_seq_lock);
/* update data here */ /* read data here */

write_sequnlock(&mr_seq_lock); } while (read_seqretry(&mr_seq_lock, seq)) ;

* Linux Synchronization Primitives

Linux Kernel Synch Primitives

* Memory barriers
— avoids compiler, cpu instruction re-ordering

* Atomic operations
— memory bus lock, read-modify-write ops

* RCU
— Atomic pointer update, list APIs

* |Interrupt/softirqg disabling/enabling
— Local, global

e Spin locks
— general, read/write, big reader

* Semaphores/Mutex
— general, read/write, mutex

* Seq Locks

— provides reader side transactional memory

Choosing Synch Primitives

e Avoid synch if possible! (clever instruction ordering)
— Example: RCUs

e Use atomics or rw spinlocks if possible

* Use semaphores or mutexes if you need to sleep
— Can’ tsleep in interrupt context
— Don’ t sleep holding a spinlock!

 Complicated matrix of choices for protecting data
structures accessed by deferred functions

Barrier Operations

barrier — prevent only compiler reordering
mb — prevents load and store reordering
rmb — prevents load reordering

wmb — prevents store reordering

smp_mb — prevent load and store reordering only
in SMP kernel

smp _rmb — prevent load reordering only in SMP
kernels

smp _wmb — prevent store reordering only in SMP
kernels

set_mb — performs assignment and prevents load
and store reordering

Interrupt Operations

* Intel: “interrupts enabled bit”
— cli to clear (disable), sti to set (enable)

* Enabling is often wrong; need to restore

e Services used to serialize with interrupts are:
local irq_disable - disables interrupts on the current CPU
local irq_enable - enable interrupts on the current CPU
local save flags - return the interrupt state of the processor

local _restore flags - restore the interrupt state of the
processor

* Dealing with the full interrupt state of the system is
officially discouraged. Locks should be used.

Spin Locks

* Aspin lock is a data structure (spinlock t) thatis
used to synchronize access to critical sections.

* Only one thread can be holding a spin lock at any
moment. All other threads trying to get the lock
will “spin” (loop while checking the lock status).

* Spin locks should not be held for long periods
because waiting tasks on other CPUs are
spinning, and thus wasting CPU execution time.

Spin Lock Operations

. Functions used to work with spin locks (struct
spinlock_t):
DEFINE _SPINLOCK — initialize a spin lock before using it
for the first time

spin_lock — acquire a spin lock, spin waiting if it is not
available

spin_unlock — release a spin lock

spin_unlock_wait — spin waiting for spin lock to become
available, but don't acquire it

spin_trylock — acquire a spin lock if it is currently free,
otherwise return error

spin_is_locked — return spin lock state

Spin Locks & Interrupts

* The spin lock services also provide interfaces
that serialize with interrupts (on the current
processor):

spin_lock irg - acquire spin lock and disable
interrupts

spin_unlock_irq - release spin lock and reenable

spin_lock _irgsave - acquire spin lock, save interrupt
state, and disable

spin_unlock _irgrestore - release spin lock and restore
interrupt state

RW Spin Lock Operations

* Several functions are used to work with read/
write spin locks (struct rwlock_t):

DEFINE _RWLOCK, rwlock init — initialize a read/write
lock before using it for the first time

read lock — get a read/write lock for read
write lock — get a read/write lock for write

read_unlock — release a read/write lock that was
held for read

write_unlock — release a read/write lock that was
held for write

read_trylock, write trylock — acquire a read/write
lock if it is currently free, otherwise return error

RW Spin Locks & Interrupts

* The read/write lock services also provide
interfaces that serialize with interrupts (on the
current processor):

read lock irqg - acquire lock for read and disable
Interrupts

read _unlock irq - release read lock and reenable

read lock _irgsave - acquire lock for read, save
interrupt state, and disable

read _unlock irgrestore - release read lock and
restore interrupt state

- Corresponding functions for write exist as well
(e.g., write_lock irgsave).

 Asemaphore is a data structure that is used to
synchronize access to critical sections or other
resources.

 Asemaphore allows a fixed number of tasks
(generally one for critical sections) to "hold" the
semaphore at one time. Any more tasks
requesting to hold the semaphore are blocked
(put to sleep).

A semaphore can be used for serialization only in
code that is allowed to block.

Semaphore Operations

* Operations for manipulating semaphores:
up — release the semaphore
down — get the semaphore (can block)

down_interruptible — get the semaphore, but
return whether we blocked

down_trylock — try to get the semaphore
without blocking, otherwise return an error

Semaphore Structure

e Struct semaphore

— count (atomic_t): struct semaphore
« >0: free; . atomic_t count
* =0:in use, no waiters;
. '< 0: il:l use, waiters int sleepers
— walt: walt queue
— sleepers: wait_queue_head_t wait
* 0(none),
* 1 (some), occasionally 2 lock prev next

— wait: wait queue
* Implementation requires lower-level
synch

— atomic updates, spinlock, interrupt
disabling

e optimized assembly code for normal case (down())
— C code for slower “contended” case (__down())

e up()is easy

— atomically increment; wake up() if necessary

* uncontended down() is easy
— atomically decrement; continue

e contended down() is really complex!
— basically increment sleepers and sleep
— loop because of potentially concurrent ups/downs

e still in down() path when lock is acquired

RW Semaphores

A rw_semaphore is a semaphore that allows either one
writer or any number of readers (but not both at the
same time) to hold it.

Any writer requesting to hold the rw_semaphore is
blocked when there are readers holding it.

A rw_semaphore can be used for serialization only in code
that is allowed to block. Both types of semaphores are
the only synchronization objects that should be held
when blocking.

Writers will not starve: once a writer arrives, readers
gueue behind it

Increases concurrency; introduced in 2.4

RW Semaphore Operations

* Operations for manipulating semaphores:
up_read —release a rw_semaphore held for read.
up_write —release a rw_semaphore held for write.

down read —get a rw_semaphore for read (can
block, if a writer is holding it)

down_write —get a rw_semaphore for write (can
block, if one or more readers are holding it)

More RW Semaphore Ops

* Operations for manipulating semaphores:

down read trylock —try to get a rw_semaphore for
read without blocking, otherwise return an error

down_write trylock — try to get a rw_semaphore for
write without blocking, otherwise return an error

downgrade write — atomically release a
rw_semaphore for write and acquire it for read
(can't block)

A mutex is a data structure that is also used to
synchronize access to critical sections or other
resources, introduced in 2.6.16.

* Why? (pocumentation/mutex-design.txt)
— simpler (lighter weight)
— tighter code
— slightly faster, better scalability
— no fastpath tradeoffs

— debug support — strict checking of adhering to
semantics

* Prefer mutexes over semaphores

Mutex Operations

* Operations for manipulating mutexes:
mutex_unlock — release the mutex
mutex lock — get the mutex (can block)

mutex_lock interruptible — get the mutex, but allow
Interrupts

mutex_trylock — try to get the mutex without
blocking, otherwise return an error

mutex _is_locked — determine if mutex is locked

Completions

* Slightly higher-level, FIFO semaphores

— Solves a subtle synch problem on SMP

* Up/down may execute concurrently
— This is a good thing (when possible)

* Operations: complete(), wait_for _complete()
— Spinlock and wait_queue
— Spinlock serializes ops
— Wait_queue enforces FIFO

