Synchronization |

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

2/16/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Banking example

int balance = 0;

int main()

{
pthread_t t1, t2;
pthread_create(&t1, NULL, deposit, (void*)1);
pthread_create(&t2, NULL, withdraw, (void*)2);
pthread_join(tl, NULL);
pthread_join(t2, NULL);
printf(“all done: balance = %d\n", balance);

return O;
¥
void* deposit(void *arg) void* withdraw(void *arg)
{ {
int i int i;
for(i=0; i<1e7; ++i) for(i=0; i<1e7; ++i)
++ balance; -- balance;

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Results of the banking example

S gcc —Wall —lpthread —o bank bank.c

S bank

all done: balance =0

S bank

all done: balance = 140020
S bank

all done: balance =-94304

S bank

all done: balance =-191009

Why?

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

A closer look at the banking example

S objdump —d bank

08048464 <deposit>:

// ++ balance

8048473: a1 8097 04 08 mov 0x8049780,%eax
8048478: 83 c001 add SOx1,%eax
804847b: a3 8097 04 08 mov %eax,0x8049780

0804849b <withdraw>:

// -- balance

80484aa: al 8097 04 08 mov 0x8049780,%eax
80484af: 83 e801 sub SOx1,%eax

80484b2: a3 8097 04 08 mov %eax,0x8049780

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

One possible schedule

CPU O CPU 1
balance: 0
mov 0x8049780,%eax
eax: 0
add $0x1,%eax
eax: 1
mov %eax,0x8049780
balance: 1
mov 0x8049780,%eax
' eax: 1
time sub $0x1,%eax
eax: 0
mov %eax,0x8049780
balance: 0

One deposit and one withdraw,
balance unchanged. Correct

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Another possible schedule

CPU O CPU 1
balance: 0
mov 0x8049780,%eax
eax: 0
add $0x1,%eax
eax: 1
mov 0x8049780,%eax
eax: 0
mov %eax,0x8049780
time balance: 1 sub $0x1,%eax
eax: -1
mov %eax,0x8049780
balance: -1

One deposit and one withdraw,
balance becomes less. Wrong!

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Race condition

* Definition: a timing dependent error involving shared
state

 Can be very bad

— “non-deterministic:” don’t know what the output will be, and it is
likely to be different across runs

— Hard to detect: too many possible schedules

— Hard to debug: “heisenbug,” debugging changes timing so hides
bugs (vs “bohr bug”)

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/18/13

How to avoid race conditions?

Atomic operations: no other
instructions can be interleaved,
executed “as a unit” “all or none”,
guaranteed by hardware

A possible solution: create a super
instruction that does what we want
atomically

— inc 0x8049780

Problem

— Can’t anticipate every possible way
we want atomicity

— Increases hardware complexity,
slows down other instructions

!

// ++ balance

mov 0x8049780,%eax
add $0x1,%eax

mov %eax,0x8049780

/] -- balance

mov 0x8049780,%eax
sub $0x1,%eax

mov %eax,0x8049780

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Layered approach to synchronization

2/18/13

Hardware provides simple low-level atomic
operations, upon which we can build high-level,
synchronization primitives, upon which we can
implement critical sections and build correct multi-

threaded/multi-process programs

Properly synchronized application

High-level synchronization
primitives

Hardware-provided low-level
atomic operations

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example synchronization primitives

* Low-level atomic operations
— On uniprocessor, disable/enable interrupt
— On x86, aligned load and store of words
— Special instructions

* High-level synchronization primitives
— Lock
— Semaphore
— Monitor

2/18/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Critical section requirements

* Implementing locks

e Readers-writer lock

e RCUs

Avoid race conditions

Critical section: a
segment of code that

accesses a shared
variable (or resource)

No more than one
thread in critical section
at a time.

[// ++ balance
mov 0x8049780,%eax
add $0x1,%eax

\ mov %eax,0x8049780

! /] -- balance

mov 0x8049780,%eax
sub $0x1,%eax
| mov %eax,0x8049780

Critical section requirements

« Safety (aka mutual exclusion): no more than one thread in critical
section at a time.

e Liveness (aka progress):

— If multiple threads simultaneously request to enter critical section,
must allow one to proceed

— Must not depend on threads outside critical section

 Bounded waiting (aka starvation-free)
— Must eventually allow waiting thread to proceed

* Makes no assumptions about the speed and number of CPU
— However, assumes each thread makes progress

Critical section desirable properties

Efficient: don’t consume too much resource while waiting

— Don’t busy wait (spin wait) for a long time. Better to relinquish
CPU and let other thread run

Fair: don’t make one thread wait longer than others. Hard to
do efficiently

Simple: should be easy to use

Implementing critical section using locks

* lock(l): acquire lock exclusively; wait if not
available

* unlock(l): release exclusive access to lock
pthread_mutex_t | = PTHREAD_MUTEX_INITIALIZER

void* deposit(void *arg) void* withdraw(void *arg)
{ {
int i int i;
for(i=0; i<1e7; ++i) { for(i=0; i<1e7; ++i) {
pthread_mutex_lock(&l); pthread_mutex_lock(&l);
++ balance; (balance;
pthread_mutex_unlock(&l); pthread_mutex_unlock(&l);
} }
) }

* Implementing locks

e Readers-writer lock

e RCUs

Version 1: Disable interrupts

e (Can cheat on uniprocessor: implement locks by disabling and
enabling interrupts

lock() unlock()
{ {
disable_interrupt(); enable_interrupt();
by by
* Good: simple!

* Bad:
— Both operations are privileged, can’t let user program use
— Doesn’t work on multiprocessors
— Cant use for long critical sections

Version 2: Software Locks

* Peterson’s algorithm: software-based lock
implementation (2 page paper with proof)

 Good: doesn’t require much from hardware

* Only assumptions:
— Loads and stores are atomic
— They execute in order
— Does not require special hardware instructions

Reference: G. L. Peterson: "Myths About the Mutual Exclusion Problem", Information
Processing Letters 12(3) 1981, 115-116

Software-based lock: 15t attempt

// 0: lock is available, 1: lock is held by a thread

int flag = 0;
I{ock() unlock()
while (flag == 1) { flag = 0;
; // spin wait }
flag = 1;
}

* Idea: use one flag, test then set; if unavailable, spin-wait

* Problem?
— Not safe: both threads can be in critical section

— Not efficient: busy wait, particularly bad on uniprocessor (will solve this
later)

Unsafe software lock, 15t attempt

lock()
{
1: while (flag == 1)
; // spin wait
2:flag = 1;
}
flag=0;
Thread O:
call lock()
1: while (flag ==1) // it is 0, so
continue
2:flag=1;

unlock()

{
¥

3: flag = 0;

Thread 1:

call lock()
1: while(flag==1) //itis 0, so
continue

2:flag=1; // ! Thread 0O is already
in critical section

In general, adversarial scheduler model useful to
think about concurrency problems

Software-based locks: 2" attempt

// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

lock() unlock()
{ {
flag[self] = 1; // I need lock // not any more
while (flag[1- self] == 1) flag[self] = 0;
;] spin wait }
¥

* |dea: use per thread flags, set then test, to achieve mutual
exclusion

* Why doesn’t work?

— Not live: can deadlock

Deadlock: 2"9 attempt

// 1: a thread wants to enter critical section, 0: it doesn't
int flag[2] = {0, 0};

lock() unlock()
{ {
flag[self] = 1; // I need lock // not any more
while (flag[1- self] == 1) flag[self] = 0;
: // spin wait }
)
Thread O Threadl
call lock()
flag[0] = 1;
flag[1] = 1;

while (flag[0] == 1) ;
//spins forever!

while (flag[1] == 1) ;
// spins forever too!

Software-based locks: 3™ attempt

/[whose turn is it?

int turn = 0;
'{OCKO unlock()
. {
/1 wait for my turn // I'm done. your turn
while (turn == 1 — self) turn = 1 — self;
;] spin wait 1
¥

* |dea: strict alternation to achieve mutual exclusion

* Why doesn’t work?

— Not live: depends on threads outside critical section
— Can’t handle repeated calls to lock by same thread

Software-based locks: final attempt (Peterson’s algorithm)

// whose turn is it?

int turn = 0;

// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

lock() zlnlock()
{
flag[self] = 1; // I need lock // not any more
turn = 1 — self; flag[self] = O;
// wait for my turn }
while (flag[1-self] == o Why works?
&& turn == 1 — self)
; [/ spin wait while the — Safe?
/[other thread has intent I
// AND it is the other — Live:
/[thread's turn — Bounded wait?

Software-based lock

* Problem
— It’s hard!
— N>2 threads? (Lamport’s Bakery algorithm)
— Modern out of order processors?

Multiprocessor Challenges

 Modern processors are out-of-order/speculative
— Reorder instructions to keep execution units full
— Try very hard to avoid inconsistency
— Guarantees valid only within single execution stream

* Memory access guarantees on x86
— x86 is relatively conservative with reordering
— Loads not reordered with other loads
— Stores not reordered with other stores
— Stores not reordered with older loads
— All loads and stores to same location are not reordered
— Load can reorder with older store to different addr

* Breaks Peterson’s algorithm!

Reference: http://www.linuxjournal.com/article/8211
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

2/20/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Instruction Reordering affects Locking

Thread O Thread 1
Lock: flag[0] = 1; // I need lock Lock: flag[1] = 1; // I need lock
turn = 1; turn = 0O;
while (flag[1]==1 && turn==1) while (flag[0]==1 && turn==0)
by by
 Possible for mutual exclusion to be violated?
— Yes!

Lock: r1 = Load(flag[1])
Lock: flag[1] = 1; // I need lock

eorder turn = 0;
while (flag[0]==1 && turn==0);
turn = 1; // flag[0]==
flag[0] = 1; // I need lock }
while (r1==1 && turn==1);
/[flag[1]==

2/20/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Memory Barriers

A memory barrier or fence

— Ensures that all memory operations up to the barrier
are executed before proceeding

* x86 provides several memory fence instructions

2/24/13

— Relatively expensive (100s of cycles)

— mfence: all prior memory accesses completed
— Ifence: all prior loads completed

— sfence: all prior stores flushed

lock() {
flag[self] = 1; // I need lock

turn = 1 — self;
sfence; // Store barrier
while (flag[1-self] == 1 && turn == 1 - self);

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Lamport’s Bakery Algorithm

e Support more than 2 processes
— Integer tokens (increasing numbers)
— Each customer gets next largest token
— Same token? Smaller thread_id gets priority

— Smallest token enters critical region

bool flag[1..NUM_THREADS] ={0}; // Want to enter
int token[1..NUM_THREADS] = {0}; // My token
lock(i) { // Lock by thread i

flag [i] = 1;

token[i] = 1 + max(token[0..NUM_THREADS-1]); unlock(integer i) {
flag[i] = 0; tokenli] = 0;
for (j = 1; j <= NUM_THREADS; j++) {)

while (flag[j]); // Is j getting token?
while ((token[j] && ((tokenl[j], j) < (tokenli], i))); // j has smaller token?
}

Reference: A New Solution of Dijkstra's Concurrent Programming Problem. L. Lamport. Communications
of the ACM, 1974. http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

2/20/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Version 3: Hardware Instructions

// 0: lock is available, 1: lock is held by a thread

int flag = 0;
lock() unlock()
{ {
while(test_and_set(&flag)) flag = 0;
; }
)

Problem with the test-then-set approach: test and set are not atomic

Fix: special atomic operation
— inttest_and_set (int *lock) {
int old = *lock;
*lock = 1;
return old;

}

— Atomically returns *lock and sets *lock to 1

Implementing test_and _set on x86

long test_and_set(volatile long* lock)

{
int old;
asm("xchgl %0, %1"
: "=r"(old), "+m"(*lock) // output
: "0"(1) // input
: "memory" // can clobber anything in memory
);
return old;
)

xchg reg, addr: atomically swaps *addr and reg

Spin locks on x86 are implemented using this instruction

x86 also provides a lock prefix that allows bus to be locked for inst
In Linux:

— Arch independent: kernel/spinlock.c
— Arch dependent: arch/x86/include/asm/spinlock.h

Spin-wait or block?

* Problem of spin-wait: waste CPU cycles

— Worst case: thread holding a busy-wait lock gets
preempted, other threads try to acquire the same lock

* On uniprocessor: should not use spin-lock
— Yield CPU when lock not available (need OS support)

* On multi-processor
— Thread holding lock gets preempted = ???

— Correct action depends on how long before lock release

* Lock released “quickly” = ?
* Lock released “slowly” =» ?

Problem with simple yield

lock()
{
while(test_and_set(&flag))
yield();
¥
* Problem:

— Still a lot of context switches: thundering herd
— Starvation possible

* Why? No control over who gets the lock next
* Need explicit control over who gets the lock

Version 4: Sleep Locks

lock() { unlock() {

hile flag =0
@gst_and_set(&ﬂag))) if(any thread in wait queue)

add myself to wait queue wake up one wait thread

yield Lock from another
}--- } “ thread?

* The idea: add thread to queue when lock

unavailable; in unlock(), wake up one thread in
queue

* Problem I: lost wakeup

* Problem Il: wrong thread gets lock

lock() { unlock() {
1: while (test_and_set(&flag))) 4: flag =0
2: add myself to wait queue 5: if(any thread in wait queue)
3: yield 6: wake up one wait thread
} }
Thread O: Thread 1
call lock()
while (test_and_set(&flag)) {
call unlock()
flag=0

if (any thread in wait queue) // No!

wake up_one_wait_thread
add myself to wait queue
yield

}// wait forever (or until next unlock)!

I
* Fix: use a spin_lock or lock w/ simple yield!
* Doesn’t avoid spin-wait, but make wait time short

Wrong thread gets lock

lock() { unlock() {
1: while (test_and_set(&flag))) 4: flag =0
2: add myself to wait queue 5: if(any thread in wait queue)
3: yield 6: wake up one wait thread
} }
Thread O: Thread 1 Thread 2
call lock()

while (test_set(&flag))
add myself to wait queue
yield call unlock()
flag=0
if (thread in wait queue)
wake_up_thread call lock()
while (test_set(&flag))

e Fix: unlock() directly transfers lock to waiting thread

Implementing locks: version 4, the code

typedef struct __mutex_t {
int flag; // 0: mutex is available, 1: mutex is not available
int guard; // quard lock to avoid losing wakeups
queue_t *q; // queue of waiting threads

} mutex_t;
void lock(mutex_t *m) { void unlock(mutex_t *m) {

while (test_and_set(m->guard)) while (test_and_set(m->guard))
; //acquire guard lock by spinning ;

if (m->flag == 0) { if (queue_empty(m->q))
m->flag = 1; // acquire mutex // release mutex; no one wants mutex
m->guard = 0; m->flag = O;

}else{ else
enqueue(m->q, self); // direct transfer mutex to next thread
m->qguard = 0; wakeup(dequeue(m->q));
yield(); m->guard = 0;

})

}

Adaptive Mutexes

e Cons of Spinlocks
— Inefficient if lock is held for long duration
— Inefficient on uniprocessors

* Cons of Sleeplocks
— Higher overhead, state maintenance

e Solaris, OS X, FreeBSD

— Idea: use spinlock if holder is currently running,
sleeplock otherwise

— Best of both worlds

2/16/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e Readers-writer lock

e RCUs

Readers-Writers problem

A reader is a thread that needs to look at the shared
data but won’t change it

A writer is a thread that modifies the shared data

Example: making an airline reservation

Courtois et al 1971

Solving Readers-Writers w/ regular lock

lock_t lock;

Writer Reader
lock (&lock); lock (&lock);
)/. write shared data }/. read shared data
unlock (&lock); unlock (&lock);

* Problem: unnecessary synchronization
— Only one writer can be active at a time

— However, any number of readers can be active
simultaneously!

e Solution: acquire lock for read mode and write mode

Readers-writer lock

rwlock_t lock;

Writer Reader
write_lock (&lock); read_lock (&lock);
)/. write shared data }/. read shared data
write_unlock (&lock); read_unlock (&lock);

* read lock: acquires lock in read (shared) mode
— Lock is not acquired or is acquired in read mode =» success
— Otherwise (lock is in write mode) = wait

* write_lock: acquires lock in write (exclusive) mode

— Lock is not acquired =» success
— Otherwise =» wait

Implementing readers-writer lock

ead lock(rwlock t *I
struct rwlock_t { 2 —lock(rwlock_t *1)

int nreader; // initto 0 lock(&lJ->auard):
lock_t guard; // init to unlocked oy |(1readger')

lock_t lock; // init to unlocked if(nreader == 1) // first reader

by lock(&lI->lock);
lock(&l-> d);
write_lock(rwlock_t *I) y unlock(&!->guard)
{
y lock(&l->lock); read_unlock(rwlock_t *I)
{
lock(&l->guard);
write_unlock(rwlock_t *[) _c_)cnr(eadecrg.u "d)
{ if(nreader,== 0) // last reader
unlock(&l->lock); unlock(&l->lock);
¥ unlock(&l->quard);

Problem: may starve writer!

Driving out readers in a RW-Lock

struct rwlock_t { read_lock(rwlock_t *I)
int nreader; // init to O {
lock_t guard; // init to unlocked lock(&l->writer);
lock_t lock; // init to unlocked lock(&I->guard);
lock_t writer; // init to unlocked ++ nreader;
1 if(nreader == 1) // first reader
lock(&l->lock);
write_lock(rwlock_t *|) unlock(&l->quard);
{ unlock(&I->writer);
lock(&I->writer);)
lock(&l->lock);
unlock(&l->writer); read_unlock(rwlock_t *|)
) {
lock(&I->guard);
write_unlock(rwlock_t *I1) -- nreader;
{ if(nreader == 0) // last reader
unlock(&I->lock); unlock(&l->lock);
1 unlock(&I->guard);
)

Q: In write_lock, can we just use guard instead of writer lock?

e RCUs

Drawbacks of Locks

 Reader-writers lock is faster than plain lock

* But acquiring read lock is still expensive
— Can still lead to blocking
— If update time is long, all readers must wait
— Can’t do when time critical operations involved
— Poor scalability — serializes concurrent access

* Can lead to deadlocks
— Bug in single reader breaks other code
— Hard to get right

* Lock free data structures
— Basic Idea: use versions instead of locks
— Borrowed from database community
— Eliminate locking altogether

2/24/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

RCU (Read-Copy Update)

e Useful for read-mostly data structures

* Replace locking in time vs. locking in space
— Writer creates a new version of data structure offline
— Swaps in the new version atomically
— Existing readers continue with older version
— New readers use newer version
— Old version garbage collected
— Used in UNIX filesystem

* No locks, no deadlocks
— Readers read block-free
— Writers can update without blocking
— Need to wait to garbage collect

Reference: http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf

2/24/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How RCUs Work

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How RCUs Work

Thread 1 wants to modify B

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How RCUs Work

Copy and update the copy

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How RCUs Work

Atomic update of next pointer
New readers will see updated |j

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How RCUs Work

* Thread 0 looses reference to B. Can GC.

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How RCUs Work

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How/When to Garbage Collect?

* Need to know when no outstanding references to a data
structure (quiescence state)
— Updater can wait for quiescence or register callback

* On non-preemptive kernels, can do cheaply

— Impose spinlock semantics, no sleeping while holding RCU
pointers

— Then, a context switch ensures quiescence!
— Zero overhead for readers, GC forces context switch

* On preemptive kernels
— Need some form of reference counting

— Global reference counting using a lock like API
— lock, unlock increments/decrements global RCU ref counter

— When reference count is 1, can garbage collect

2/25/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

RCU Pros and Cons

* Pros
— Readers never block
— Updates never block
— Extremely scalable for large number of cores
— No deadlocks

* Cons
— Still need to synchronize multiple concurrent writers
— Need to maintain multiple versions — can get complex
— Not a universal mechanism
— Better to wrap in higher level API (e.g., list API, tree API)

 Widely used in Linux kernel

— From 35 uses in 2002 to > 10000 in 2012

— http://www.rdrop.com/users/paulmck/RCU/linuxusage/
rculocktab.html

2/24/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux RCU API

* Low Level
— Readers: rcu read lock(), rcu read unlock()
— Atomic update: rcu_dereference(),
rcu_assign_pointer()
— Wait for garbage collection:

* synchronize rcu(): wait for all readers to finish
* call _rcu(f, d): call f(d) when all readers finish

e RCU Lists (works on Linux list_head lists)

— Traversal: list for each entry rcu()
— Update: list_add rcu(), list_del rcu(),
list_replace_rcu()

e RCU red-black trees

2/24/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/24/13

RCU Reading Materials

A nice tutorial on RCUs is found here:
— Part 1: http://lwn.net/Articles/262464/
— Part 2: http://lwn.net/Articles/263130/
— Part 3: http://lwn.net/Articles/264090/

Linux documentation in: documentation/RCU in kernel
source tree

Exhaustive description can be found in: Exploiting
Deferred Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System Kernels. Paul
McKenney. Ph.D. dissertation, Oregon State U., 2007.
http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

