Linux Processes

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Sys Concepts 9e, Understanding the Linux Kernel, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

e The Android Emulator

* Processes/tasks
— The process descriptor: task_struct
— Thread context
— Task States
— Process relationships
— Wait queues

* Context switching
* Creating and destroying processes
* Kernel threads

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Development using Android emulator

 Based on QEMU emulator
— Does what a real phone does
— Except implemented in s/w!
— Can emulate x86, arm,...
— We'll use x86 Atom
— Allows us to virtualize

 Run like a normal program
on “host” OS

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Emulator of Registers

int32 t regs[8];
#define REG EAX 1;
#define REG_EBX 2;
#define REG_ECX 3;
int32 t eip;
intlé t segregs[4];

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Emulator of CPU logic

for (;:) {
read instruction();
switch (decode instruction opcode()) {
case OPCODE_ADD:
int src = decode src _reg();
int dst = decode dst reg();
regs[dst] = regs[dst] + regs[src];

break;

case OPCODE_SUB:
int src = decode src reg();
int dst = decode dst reg();

regs[dst] = regs[dst] - regs[src];
break;

}

eip += instruction length;

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Emulation of x86 memory

uint8 t read byte(uint32 t phys addr) {

if (phys_addr < LOW_MEMORY)
return low mem[phys addr];

else if (phys addr >= 960*KB && phys addr < 1*MB)
return rom bios[phys addr - 960*KB];

else if (phys addr >= 1*MB && phys addr < 1*MB+EXT MEMORY) {
return ext mem[phys addr-1*MB];

else ...

}

void write byte(uint32 t phys addr, uint8 t val) {

if (phys_addr < LOW_MEMORY)
low mem[phys addr] = val;

else if (phys _addr >= 960*KB && phys addr < 1*MB)
; /* lgnore attempted write to ROM! */

else if (phys addr >= 1*MB && phys addr < 1*MB+EXT MEMORY) {
ext mem[phys addr-1*MB] = val;

else ...

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Emulating devices

* Hard disk: use file of the host
* VGA display: draw in a host window
* Keyboard: host’s keyboard API

 Clock chip: host’s clock
* Etc.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

VM Password

e Write it down! Not on web version of slides:

 andrO1ld_vm!

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Starting up the Emulator

* Create an Android Virtual Device (AVD)
— tools/android avd
— Choose Android 4.1.2, Atom x86 image
— Image contains base kernel/OS/apps
— We'll replace with our own kernel

e Start the emulator
— tools/emulator —avd w4118
— Wait a long time... (unless using virtualization)

* |Interacting with the emulator
— adb —s emulator-5555 shell | push | pull|...

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Getting the Android Source

* Custom per-group repository that will work
with the emulator

— Name is groupN (where N is your group number)
— git clone krj@sp13-w4118-git.cs.columbia.edu:groupO

* Learn about git!

— Useful commands: checkout, commit —a, push,
pull, format-patch

* Repository will not work with a Nexus 7
— Need a different kernel branch (tegra)
— See AOSP webpage on how to download

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Compiling the kernel

 To compile Android kernel, need NDK (native dev kit)
— Provides cross compilers (same as native, we’re on x86!)
— Add the appropriate cross-compiler to your path
— For Atom image, it’s the <ndk>/toolchains/x86-4.4.3/prebuilt/
linux-x86/bin compiler
* Configure and build the kernel

— make CC="“S{CROSS_COMPILE}-gcc —mno-android”
goldfish_defconfig

— make CC=“S{CROSS_COMPILE}-gcc -mno-android” bzImage
— Kernel in arch/x86/boot/bzlmage directory of source tree

e To boot a custom kernel in the emulator

— emulator —avd w4118 —kernel <path_to_kernel>

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Compiling command line programs

* Need to set path to right libraries and headers
— Sample Makefile.ndk provided
— Just change name of binary
— make —f ~krj/android/Makefile.ndk

* To push binary to the emulator and run
— adb —s dev_name shell mkdir —p /data/tmp
— adb —s dev_name push <bin> /data/tmp
— adb —s dev_name shell chmod 755 /data/tmp/bin

— adb —s dev_name shell bin

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Android/Linux Kernel Source Tree

* include/linux/: architecture independent data structures
* kernel/: architecture independent code
— Scheduler, synchronization, timers, syscalls
* mm/: memory management functions and syscalls
» arch/: architecture specific code
— x86/, arm/

» kernel/: arch specific code
* include/asm/: arch specific includes
* mach-goldfish/, ...: platform specific directories (timer, APIC)

e drivers/: device drivers

* block/: arch independent block device scheduling
» fs/: filesystem functions and syscalls

* net/: network protocol stacks

* init/: kernel setup and init process

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Linux kernel is big

 The bad news...
— 11511 .c, 10256 .h files, 7.7 million LOC

 The good news...

— More than half the code in device drivers
* 5000 .c, 2216 .h, 4.5 million LOC

— Still more to support different architectures
e 20+ different architectures
* 1.1 million LOC in architecture specific code

— Modular structure
— E.g., the kernel directory is “just” 127k LOC

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Documentation

* /Documentation directory
— Lot of useful information here
— Design information
— Architecture specific info

e LXR: the Linux Cross Referencer

— Browsable/searchable repository of the code (where
structs are defined, where used)

— 2.6.29 Linux: http://Ixr.linux.no/linux+v2.6.29/

— Android:
http://sp13-w4118-dev.cs.columbia.edu/Ixr/goldfish/source
(currently only partially functional)

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* Processes/tasks
— The process descriptor: task_struct
— Thread context
— Task States
— Process relationships
— Wait queues

Context switching
* Creating and destroying processes

e Kernel threads

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Header Files

e The major header files used for process management are:

2/11/13

include/linux/sched.h —declarations for most task data
structures

include/linux/threads.h —some configuration constants
(unrelated to threads)

include/linux/times.h —time structures
include/linux/time.h —time declarations
include/linux/timex.h —wall clock time declarations

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Source Code

 The source code for process and thread
management is in the kernel directory:

sched. c —task scheduling routines
signal.c —signal handling routines
fork.c —process/thread creation routines
exlit.c —process exit routines
time.c —time management routines
timer.c —timer management routines

* The source code for the program initiation
routinesisin fs/exec.c.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux: Processes or Threads?

* Linux uses a neutral term: tasks
— Tasks represent both processes and threads

* Linux view
— Threads: processes that share address space
— Linux "threads" (tasks) are really "kernel threads”

* Lighter-weight than traditional processes
— File descriptors, VM mappings need not be copied

— Implication: file table and VM table not part of
process descriptor

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Stacks and task-descriptors

To manage multitasking, the OS needs to use a data-structure which
can keep track of every task’ s progress and usage of the computer’ s
available resources (physical memory, open files, pending signals, etc.)

Such a data-structure is called a ‘process descriptor’ — every active
task needs one

Every task needs its own ‘private’ stack

So every task, in addition to having its own code and data, will also
have a stack-area that is located in user-space, plus another stack-area
that is located in kernel-space

Each task also has a process-descriptor which is accessible only in
kernel-space

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

CHERENE

* Why need a special kernel stack?
— Kernel can’t trust addresses provided by user
— Address may point to kernel memory
— Address may not be mapped

— Memory region may be swapped out from physical
RAM

— Leftover data from kernel ops could be read by process

 Why a different stack for every process?

— What to do if a process sleeps while executing kernel
code?

— Wasn’t a problem up to Linux 2.4
— Kernel wasn’t pre-emptive

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Pre-emptive Kernels

* Pre-emptive kernel different from process pre-emption

A non-preemptive kernel may not task switch while executing kernel
code on behalf of a process

Up to Linux 2.4, implemented through BKL (big kernel lock)
Each syscall acquires BKL before execution

All other syscalls block. So, kernel code must run fast!
Inefficient on multicore architectures!

Finally removed in 2011

* Pre-emptive kernel: allow task switch while in kernel mode

What to do with kernel state?

Need per-process kernel stack!

What to do with interrupts?

Share process kernel stack (previously), or get their own (now)
All interrupts share single 4KB or 8KB kernel stack

 Which stack is being used determines kernel “context”

2/11/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

A task’ s virtual-memory layout

process descriptor
Privilege-level 0 Kernel/space and
kernel-mode stack

User-mode stack-area

Privilege-level 3

Shared runtime-libraries

Task’ s code and data

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process Descriptor

* Process —dynamic, program in motion
— Kernel data structures to maintain "state"
— Descriptor, PCB (control block), task_struct
— Larger than you think! (about 1K)
— 160+ fields
— Complex struct with pointers to others
 Type of info in task_struct
— state, id, priorities, locks, files, signals, memory maps, locks,
qgueues, list pointers, ...
 Some details
— Address of first few fields hardcoded in asm
— Careful attention to cache line layout

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Linux process descriptor

agedir
task_struct pagedirl]

state
" " mm_struct
Each process stac
descriptor
contains many flags *pgd
fields "
mm >
user_struct
and.some are exit code
pointers to
other kernel A user s
structures)
files_struct
pid
which may
themselves *files >
include fields signal_struct
that point to *parent
structures
*signal >

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Task Structure

 The task struct is used to represent a task.

* The task struct has several sub-structures that it
references:
tty struct —TTY associated with the process

fs struct — current and root directories associated with the
process

files_struct — file descriptors for the process
mm_struct — memory areas for the process
signal_struct — signal structures associated with the process

user _struct — per-user information (for example, number of
current processes)

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process/Thread Context

e Linux uses part of a task’ s kernel-stack
page-frame to store thread information

e The thread info includes a pointer to the task’s
process-descriptor data-structure

Task’ s kernel-stack
struct task struct l l l l l l l l 4-KB
Task’ s
process-descriptor Task’ s thread-info !
page-frame aligned

A

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Finding a task s ‘thread-info’

 Duringa :cask’ s execution in kernel-mode, it’ s very quick to find
that task s thread info object

* Just use two assembly-language instructions:

movl SOXFFFFFO00, %eax
and| %esp, %eax

Ok, now %eax = the thread-info’ s base-address
 Masking off 13 bits of the stack yields thread info
 Macro current_thread info implements this computation
* thread info points to task struct
* current macro yields the task struct
° currentis not a static variable, useful for SMP

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Finding task-related kernel-data

e Use amacro ‘task_thread_info(task) to get a pointer

to the ‘thread info structure:
struct thread_info *info = task_thread_info(task);

 Then one more step gets you back to the address of the

task s process-descriptor:
struct task_struct *task = info->task;

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

PID Hashes and Task Lookup

PID: 16-bit process ID

task structs are found by searching for pid structures, which
point to the task structs. The pid structures are kept in
several hash tables, hashed by different IDs:

process ID

thread group ID // pid of first thread in process
process group ID // job control

session ID // login sessions

(see include/linux/pid.h)

Allocated process IDs are recorded in a bitmap representing
around four million possible IDs.

PIDs dynamically allocated, avoid immediate reuse

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process Relationships

* Processes are related
— Parent/child (fork()), siblings

— Possible to "re-parent”
* Parent vs. original parent

— Parent can "wait" for child to terminate

* Process groups
— Possible to send signals to all members

* Sessions
— Processes related to login

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Task Relationships

e Several pointers exist between task structs:
parent — pointer to parent process
children — pointer to linked list of child processes
sibling — pointer to task of "next younger sibling" of current
process
* children and sibling point to the task struct for the
first thread created in a process.

 The task struct for every thread in a process has
the same pointer values.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

From kernel-header: <linux/sched.h>

* #define TASK_RUNNING 0
* #define TASK_INTERRUPTIBLE 1
* #define TASK_UNINTERRUPTIBLE 2

e #define TASK_STOPPED 4
e #define TASK_TRACED 8
* #Hdefine EXIT_ZOMBIE 16
* #define EXIT_DEAD 32

* #define TASK_NONINTERACTIVE 64
* #define TASK_DEAD 128

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Task States

TASK_RUNNING —the thread is running on the CPU or is waiting
to run

TASK _INTERRUPTIBLE — the thread is sleeping and can be awoken
by a signal (EINTR)

TASK_UNINTERRUPTIBLE — the thread is sleeping and cannot be
awakened by a signal

TASK_STOPPED —the process has been stopped by a signal or by a
debugger

TASK_TRACED —the process is being traced via the ptrace
system call

TASK_NONINTERACTIVE — the process has exited

TASK DEAD —the process is being cleaned up and the task is
being deleted

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Exit States

e

135 * We have two separate sets of flags: task->state
* 1s about runnability, while task->exit state are

* about the task exiting. Confusing, but this way

* modifying one set can't modify the other one by

[
@V
o

|_\
o
J

=
(@)
(69)

* mistake.

[
w
O

EXIT_ZOMBIE —the process is exiting but has not yet been
waited for by its parent

EXIT_DEAD —the process has exited and has been waited for

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* Wait queues

* Kernel threads

* Context switching

* Creating processes
* Destroying processes

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

List Operations

2/11/13

 The list _head is a generic list structure
with a set of services:
LIST HEAD — declare and initialize list hea¢d
list_ add —add a list_head after item

list add tail —add a list head before item
list_del —remove list_head from list

list_del init — remove and initialize list_head
list_ empty —is a list empty?

list_for each, list for each _entry, list_entry

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Kernel’ s ‘task-list’

* Kernel keeps a list of process descriptors
* A ‘doubly-linked’ circular list is used

e The ‘init_task’ serves as a fixed header

» Other tasks inserted/deleted dynamically

e Tasks have forward & backward pointers,
implemented as fields in the ‘tasks’ field

* Togo forward: task = next task(task);
 To go backward: task = prev_task(task);

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Doubly-linked Circular List

next

prev

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Locking during Access

next

2/11/13

prev

When traversing the task list, must protect against
concurrent accesses

— read_lock _irq(&tasklist _lock), read unlock_irq(&tasklist _lock)
When modifying a task_struct
— task_lock(task), task unlock(task)

Don’t sleep when holding a lock on task list or structs!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

‘) ‘ «,
run queues and wait queues

In order for Linux to efficiently manage the
scheduling of its various ‘tasks’ , separate
queues are maintained for ‘running’ tasks
and for tasks that temporarily are ‘blocked’
while waiting for a particular event to occur
(such as the arrival of new data from the
keyboard, or the exhaustion of prior data sent

to the printer)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Some tasks are ‘ready-to-run’

init_task list

run_queue

2/11/13

Those tasks that are ready-to-run comprise a sub-list of all the tasks,
and they are arranged on a queue known as the ‘run-queue’

Those tasks that are blocked while awaiting a specific event to occur

are put on alternative sub-lists, called ‘wait queues’, associated with
the particular event(s) that will allow a blocked task to be unblocked

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Kernel Wait Queues

wait_queue_head t

wait_queue_t

wait_queue_head t can
have O or more
wait_queue_t chained
onto them

However, usually just
one element

Each wait _queue t
contains a list_head of
tasks

All processes waiting for
specific "event”

Used for timing, synch,
device i/o, etc.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How Do | Block?

2/11/13

By calling one of the sleep _on functions:

— sleep_on, interruptible _sleep _on, sleep _on timeout, etc.
These functions create a wait _queue and place the
calling task on it
Modify the value of its ‘state’ variable:

— TASK_UNINTERRUPTIBLE

— TASK_INTERRUPTIBLE

Then call schedule or schedule timeout

The next task to run calls deactivate task to move us out
of the run queue

Only tasks with ‘state == TASK_RUNNING’ are granted
time on the CPU by the scheduler

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How Do | Wake Up?

2/11/13

By someone calling one of the wake functions:
— wake_up, wake_up_all, wake _up_interruptible, etc.

These functions call the curr->func function to wake up
the task

— Defaults to default wake function which is try to wake up

try to _wake up calls activate task to move us out of the
run queue

The ‘state’ variable is set to TASK_ RUNNING
Sooner or later the scheduler will run us again
We then return from schedule or schedule timeout

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

What are all these options?

* INTERUPTIBLE vs. NON-INTERUPTIBLE:

— Can the task be woken up by a signal?

* TIMEOUT vs no timeout:
— Wake up the task after some timeout interval

* EXCLUSIVE vs. NON-EXCLUSIVE:

— Should only one task be woken up?

— Only one EXCLUSIVE task is woken up
* Kept at end of the list

— All NON-EXCLUSIVE tasks are woken up
* Kept at head of the list

— Functions with _nr option wake up number of tasks

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Other Wait Queue Notes

e Process can wakeup with event not true
— If multiple waiters, another may have resource
— Always check availability after wakeup
— Maybe wakeup was in response to signal

e ‘Interruptible’ functions are preferred

* sleep on functions are deprecated
— sleep _on functions suffer from race conditions
— Want to atomically test and sleep
— prepare_to_wait functions preferred

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* Context switching
* Creating and destroying processes
* Kernel threads

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example: Linux Context Switch

Contains both arch dependent and independent pieces
* Arch independent code in kernel/sched.c, context_switch()

* Arch dependent in include/asm/system.h and arch/x86/ P1 P2
kernel/process_32.cin switch _to macro / /
1. Save P1’s user-mode CPU context and switch from user
to kernel mode (need hw)
2. Scheduler selects another process P2 user
3. Switch to P2’s address space (need hw, but kernel kernel
memory stays same)
4. Save P1’s kernel CPU context (arch dependent)
5. Switch to P2’s kernel CPU context (arch dependent) ©
6. Switch from kernel to user mode and load P2’s user- ?D'
mode CPU context (need hw) =
* Change context by changing kernel stack ;T

 When stack changes, all local variables change, including the
identity of the previous and next PCB!

* Solution: maintain across process switch by storing in registers
Reference: Bovet and Cesati, Ch. 3.3

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Context Switch

* Context switching is the process of saving the
state of the currently running task and loading
the state of the next task to run.

* This involves saving the task's CPU state
(registers), changing the current task value, and
loading the CPU state of the new task into the
registers.

e schedule determines the next task to run, calls
context_switch, which calls switch_mm to
change the process address space, then calls
switch _to to context switch to the new task.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Context Switch: switch_mm

e switch_mm is architecture specific. It
generally loads any hardware state
required to make the process' user
address space addressible in user
mode. If the address space is
unchanged (task switching between

threads in one process), very little is
done.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Context Switch: switch to

e switch to is architecture specific.

* Generally, it saves the old task’s hardware

state of the CPU (registers) to one of three
places:

— The task's kernel stack
— the thread struct
— task_struct->thread

* |t then copies the new task's hardware state
from the appropriate places

— Stack is in next->thread.esp

2/11/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The Role of the Stack

* One process must save state where another can find it

* When the new state is loaded, the CPU is running
another process -- the state is the process!

 The stack pointer determines most of the state
 Some of the registers are on the stack

* The stack pointer determines the location of thread info,
which also points to task struct

* Changing the stack pointer changes the process!

2/13/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Stack Switching

Stack (A) Stack (B)
prev prev >
next next

eax
esp
current current

* switch to:A->B

2/13/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Floating Point Registers

Floating point (FPU) and MMX instructions use a
separate set of registers

SSE and SSE2 instructions use yet another set of registers

FPU/MMX and SSE/SSE2 registers are not automatically
saved

Legacy issue: floating point originally handled by
outboard (expensive) chip

Expense: it takes a fair number of cycles to save and
restore these registers

Rarity: most processes don’ t use floating point

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Context Switch: FP Registers

 Many CPU architectures support lazy saving of
floating point state (registers) by allowing
floating point capability to be disabled, resulting
in an exception when a floating point operation
is performed.

e With this capability, state save can detect when a
thread first uses floating point and only save
floating point state from then on. It can also only
load floating point state after a floating point
operation following a context switch.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Context Switch: FP Registers

On context switch:
— Hardware flag set: TS in crO
— Software flag TS _USEDFPU is cleared in task struct
If task uses floating point instruction and hardware flag is set:
— Hardware raises “device not available” exception (trap)
— Kernel restores floating point registers
— TSis cleared
— TS USEDFPU is set in the task struct for this process

Any time it’ s set, floating point registers are saved for that process at
switch time (but not restored for the next)

Bottom line: only done if needed; if only one process uses floating
point, no save/restore needed

Not needed on modern processors! More efficient FPU.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* Creating and destroying processes
* Kernel threads

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Creating New Processes

* The fork system call is used to create a new
process.

Identical to parent except ...
execution state

process ID

parent process ID.

other data is either copied (like process state) or
made copy on write (like process address space).

* Copy on write allows data to be shared as long as
it is not modified, but each task gets its own copy
when one task tries to modify the data.

2/11/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Creating New Processes

* The fork system call uses do_fork to
create a new task. The flags passed to
do fork indicate which task attributes
to copy and which to create anew.

* do fork calls copy process to create a
new task struct and initialize it
appropriately.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

fork() Call Chain

OO0 O UL B WDN -

libc fork()
system_call (arch/i386/kernel/entry.S)
sys_clone() (arch/i386/kernel/process.c)
do_fork() (kernel/fork.c)

copy_process() (kernel/fork.c)
p = dup_task_struct(current) // shallow copy
copy_* // copy point-to structures
copy_thread () // copy stack, regs, and eip

wake up _new_task() // set child runnable

2/12/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

do_ fork creates a new task and allows the new task
to share resources with the calling task.

The following options specify what should be
shared with the calling task:
CLONE_VM - share address space
CLONE_FS - share root and current working directories
CLONE_FILES - share file descriptors
CLONE_SIGHAND - share signal handlers
CLONE_PARENT —share parent process ID
CLONE_THREAD — create thread for process

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Creating New Threads

The clone system call also uses do_fork to create
a new task.

The clone system call takes flags which are
passed to do fork to indicate which task
attributes to copy and which to create anew.

This system call gives applications the ability to
create new processes, new threads, or new tasks
that have the attributes of both processes and
threads.

clone is used by threads libraries to create new
kernel threads.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

vfork System Call

 What usually happens after a fork()?
— execve() call to start new executable
— Replace entire process address space
— Then why bother duplicating?

e Enter vfork()
— Create child with same page tables as as parent
— Child only allowed to invoke execve()
— Pause the parent until child invokes execve()
— Then resume parent/child
— Faster than fork+exec

* Implemented through clone() syscall

— CLONE_VFORK flag needs to be set in the clone call
— Tells clone to suspend parent until child calls execve or exit

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Destroying a Task

* Tasks stop executing when they call the exit system call, are killed by the
kernel (due to an exception), or are killed by a fatal signal which was sent.

e exit calls do_exit which decrements usage counts on the sub-structures of the
task struct. Any substructure with a zero usage count has its memory freed.

* Lastly, the task is changed to the EXIT ZOMBIE state.

* task structs are actually destroyed by release _task, which is called when the
process' parent calls the wait system call.

— extremely difficult for a task to delete its own task structure and kernel
stack.

— also provides an easy mechanism for parents to determine their
children's exit status.

* release_task removes the task from the task list and frees its memory.
e The init process cleans up children.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

exit() Call Chain

1
2
3
4
5
6
7/
8
9

2/12/13

libc exit (code)
system _call (arch/i386/kernel/entry.S)
sys_exit() (kernel/exit.c)
do_exit() (kernel/exit.c)

exit_*() // free data structures

exit_notify() // tell other processes we exit
// reparent children to init
// EXIT_ZOMBIE
// EXIT DEAD

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

e Kernel threads

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

2/11/13

Threads in a process are represented by creating a
task struct for each thread in the process and
keeping most of the data the same for each

task struct.

ultimately done by using do_fork

simplifies some algorithms because there is only one
structure for both processes and threads.

can improve performance for single threaded
processes.

Process data is generally in task sub-structures which
can be shared by all tasks in the process.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Thread Structures

The thread state is represented by the thread info structure.

The thread info structure has a reference to the task struct for
the thread as well as the execution domain for the program
the thread is executing within.

The thread info structure and the thread's kernel stack are
located together within a thread union structure. size varies
by architecture

thread’s stack thus also varies by architecture
- just less than 4K in size on 32-bit architectures
- just less than 8K in size on 64-bit architectures.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Kernel Threads

— Linux has a small number of kernel threads that run
continuously in the kernel (daemons)

* No user address space
* Only execute code and access data in kernel address space

— How to create: kernel thread
— Scheduled in the same way as other threads/tasks

— Process O: idle process

— Process 1: init process
* Spawns several kernel threads before transitioning to user mode as /
sbin/init
e kflushd (bdflush) — Flush dirty buffers to disk under "memory pressure"
* kupdate — Periodically flushes old buffers to disk
* kswapd — Swapping daemon

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

The task with process ID zero is called the swapper or the idle task

Its task structure is in init_thread union, which also includes its
kernel stack.

The kernel builds this task piece by piece to use to boot the
system. (All other tasks are copied from an existing task by
do_fork.)

All other tasks are maintained in a linked list off of this task.

This task becomes the idle task that runs when no other task is
runnable.

This task forks the init task (task 1) and is the ancestor of all other
tasks.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

 On SMP systemes, this task uses clone to create
duplicate tasks which run as the idle task on each of
the other processors.

* All of these tasks have process ID zero.

* Each of these tasks is used only by its associated
processor.

2/11/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

