Threads

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

 Thread definition

* Multithreading models

* Synchronization

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Threads: separate streams of executions that
share an address space

— Allows one process to have multiple point of
executions, can potentially use multiple CPUs

* Thread control block (TCB)
— Program counter (EIP on x86)
— Other registers
— Stack

* Very similar to processes, but different

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

code

Single and multithreaded processes

code

data

files

registers

registers

registers

registers

stack

stack

stack

Ik

single-threaded

§<—— thread

multithreaded

Threads in one process share code, data, files, ...
Same security context (e.g., uid, etc.)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Why threads?

* Express concurrency

— Web server (multiple requests), Browser (GUI +
network 1/O + rendering), most GUI programs ...

for(;;) {
struct request *req = get_request();
create_thread(process_request, req);

)
* Efficient communication

— Using a separate process for each task can be
heavyweight

e Leverage multiple cores (depends)
— Unthreaded process can only run on a single CPU

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Threads vs. Processes

A thread has no data segment or
heap

A thread cannot live on its own, it
must live within a process

There can be more than one
thread in a process, the first
thread calls main() & has the
process’s stack

Inexpensive creation
Inexpensive context switching
Efficient communication

If a thread dies, its stack is
reclaimed

A process has code/data/heap &
other segments

A process has at least one thread

Threads within a process share code/
data/heap, share I/0O, but each has its
own stack & registers

Expensive creation
Expensive context switching

Interprocess communication can be
expressive

If a process dies, its resources are
reclaimed & all threads die

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Using threads

* Through thread library
— E.g. pthread, Win32 thread

 Common operations
— create/terminate
— suspend/resume
— priorities and scheduling

— synchronization

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example functions

int pthread create(pthread_t *thread, const pthread_attr_t *attr, void
*(*start _routine)(void*), void *arg);

— Create a new thread to run start_routine on arg

— thread holds the new thread’s id

— Can be customized via attr

int pthread join(pthread_t thread, void **value ptr);
— Wait for thread termination, and retrieve return value in value ptr

void pthread_exit(void *value ptr);

— Terminates the calling thread, and returns value ptr to threads
waiting in pthread join

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

pthread creation example

void* thread_fn(void *arg)

{
int id = (int)arg;
printf("thread %d runs\n", id);
return NULL; $ gcc —o threads threads.c —Wall —Ipthread
_} _ $ threads
int main() thread 1 runs
{ thread 2 runs
pthread_t t1, t2;
pthread_create(&t1, NULL, thread_fn, (void*)1);
pthread_create(&t2, NULL, thread_fn, (void*)2);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return O;
) One way to view threads: function calls,

except caller doesn’t wait for callee; instead,
both run concurrently

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Multithreading models

* Synchronization

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multithreading models

 Where to support threads?

* User threads: thread management done by

user-level threads library; kernel knows
nothing

* Kernel threads: threads directly supported by
the kernel

— Virtually all modern OS support kernel threads

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

User vs. Kernel Threads

Process Thread Process Thread

_/ __/

i \ \

=3 (¢4

=
Kernel g
space Kernel Kernel
% / 3
/ N / I
Run-time Thread Process Process Thread
system table table table table

E.g., GreenThreads, any OS

E.g., LinuxThreads, Solaris
(event ancient ones like DOS)

Example from Tanenbaum, Modern Operating Systems 3 e,
c¢) 2008 Prentice-Hall. Inc. All rights reserved. 0-13-6006639

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Scheduling User Threads

* Non-preemptive Scheduling
— No timer to make a thread yield the CPU

— Threads must voluntarily yield control to let another
thread run, e.g., pthread yield()

— Thread history isn’t taken into account by scheduler
— Threads are co-operative, not competitive

* Preemptive Scheduling
— Can use signals to simulate interrupts, e.g., alarm
— But then user code can’t use directly

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

User Thread Blocking

 What happens when a process does a read()?
— Data needs to be fetched from disk

— Kernel blocks the process (i.e., doesn’t return) until disk
read is done

— Kernel unaware of thread structure: all user level
threads will block as well!

* One solution: wrapper functions
— Thread library contains alternate versions of syscalls
— Check for blocking before calling the kernel
— E.g., select() before read()
— If the call will block, then schedule another thread
— Complex — need to handle all blocking calls!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

User vs. Kernel Threads (cont.)

User Kernel
* Pros: fast, no system call for e Cons: slow, kernel does creation,
creation, context switch scheduling, etc

e Cons: kernel doesn’t know = one Pros: kernel knows =» one thread
thread blocks, all threads in the blocks, schedule another
process blocks
e Pros: can fully utilize multiple

e Cons: can’t benefit from multicore cores/CPUs
or multiple CPUS

No free lunch, but kernel lunch looks more delicious!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Scheduler Activations

* Hybrid approach (Tru UNIX, NetBSD, some
Mach, implementations for Linux)

— Benefits of both user and kernel threads
— Relies on upcalls (like signals)

* Scheduling done at user level

— When a syscall is going to block, kernel informs
user level thread manager via upcall

— Thread manager can run another thread
— When blocking call is done, kernel informs thread
manager again

Reference: http://homes.cs.washington.edu/~bershad/Papers/p53-anderson.pdf (“Scheduler
Activations: Effective Kernel Support for the User-Level Management of Parallelism”)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Scheduler Activations

Thread Thread Thread Thread Thread Thread Thread
1 Sched 2 Sched 1 Sched 2

S AL

Kernel

System Upcall
call

Interrupt Upcall

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multiplexing User-Level Threads

e Athread library must map user threads to kernel threads

* Big picture:
— kernel thread: physical concurrency, how many cores?
— User thread: application concurrency, how many tasks?

* Different mappings exist, representing different tradeoffs

— Many-to-One: many user threads map to one kernel thread, i.e. kernel
sees a single process

— One-to-One: one user thread maps to one kernel thread
— Many-to-Many: many user threads map to many kernel threads

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Many-to-One

* Many user-level threads map
to one kernel thread ; ;
«—— user thread
* Pros

— Fast: no system calls required

— Portable: few system
dependencies

e Cons

— No parallel execution of threads

e All thread block when one
waits for I/O <«—— kernel thread

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

One-to-One

* One user-level thread maps
to one kernel thread

* Pros: more concurrency

— When one blocks, others can
un <«— user thread

— Better multicore or
multiprocessor performance

« Cons: expensive Lo ° ° ‘_keme”hread

— Thread operations involve
kernel

— Thread need kernel resources

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Many-to-Many

d Many user-level threads
map to many kernel threads
(U >=K)

= Supported in some versions of
BSD and Windows

[Pros: flexible

= (OS creates kernel threads for
physical concurrency

= Applications creates user
threads for application
concurrency

 Cons: complex

= Most programs use 1:1
mapping anyway

A

<«—— Kkernel thread

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Thread pool

* Problem:
— Creating a thread for each request: costly
* And, the created thread exits after serving a request
— More user request = More threads, server overload

e Solution: thread pool
— Pre-create a number of threads waiting for work
— Wake up thread to serve user request --- faster than thread creation
— When request done, don’t exit --- go back to pool
— Limits the max number of threads

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Other thread design issues

* Semantics of fork() system calls

— Does fork() duplicate only the calling thread or all threads?
* Running threads? Threads trapped in system call?
— Linux fork() copies only the calling thread

* Signal handling
— Which thread to deliver signals to?
— Segmentation fault kills process or thread?

 When using threads
— Make sure to use re-entrant functions
— Only stack variables for per-call data (no globals)

— If you want globals? Use thread-local storage
(pthread key create), or an array with one entry per-thread

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* Synchronization

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Banking example

int balance = 0;

int main()

{
pthread_t t1, t2;
pthread_create(&tl, NULL, deposit, (void*)1);
pthread_create(&t2, NULL, withdraw, (void*)2);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
printf(“all done: balance = %d\n", balance);

return O;
)
void* deposit(void *arqg) void* withdraw(void *arg)
{ {
int i int i;
for(i=0; i<1e7; ++i) for(i=0; i<1e7; ++i)
++ balance; -- balance;

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Results of the banking example

S gcc —Wall —lpthread —o bank bank.c

S

al

S

al

S

al

S

al

nank

done: balance =0

nank

done: balance = 140020
nank

done: balance =-94304
nank

done: balance =-191009

Why?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

A closer look at the banking example

S objdump —d bank

08048464 <deposit>:

// ++ balance

8048473: a1 8097 04 08 mov 0x8049780,%eax
8048478: 83 c001 add SOx1,%eax
804847b: a3 8097 04 08 mov %eax,0x8049780

0804849b <withdraw>:

// -- balance

80484aa: al 8097 04 08 mov 0x8049780,%eax
80484af: 83 e801 sub SOx1,%eax

80484b2: a3 8097 04 08 mov %eax,0x8049780

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

One possible schedule

CPU O CPU 1
balance: 0
mov 0x8049780,%eax
eax: 0
add $0x1,%eax
eax: 1
mov %eax,0x8049780
balance: 1
mov 0x8049780,%eax
' eax: 1
time sub $0x1,%eax
eax: 0
mov %eax,0x8049780
balance: 0

One deposit and one withdraw,
balance unchanged. Correct

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Another possible schedule

CPU O CPU 1
balance: 0
mov 0x8049780,%eax
eax: 0
add $0x1,%eax
eax: 1
mov 0x8049780,%eax
eax: 0
mov %eax,0x8049780
time balance: 1 sub $0x1,%eax
eax: -1
mov %eax,0x8049780
balance: -1

One deposit and one withdraw,
balance becomes less. Wrong!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Race condition

* Definition: a timing dependent error involving shared
state

 Can be very bad

— “non-deterministic:” don’t know what the output will be, and it is
likely to be different across runs

— Hard to detect: too many possible schedules

— Hard to debug: “heisenbug,” debugging changes timing so hides
bugs (vs “bohr bug”)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How to avoid race conditions?

* Atomic operations: no other

instructions can be interleaved, ' // ++ balance
executed “as a unit” “all or none”, mov 0x8049780.%eax
14
guaranteed by hardware add $0x1,%eax
I

. . | mov %eax,0x8049780
* A possible solution: create a super

instruction that does what we want

atomically // -- balance

— inc 0x8049780 ! mov 0x8049780,%eax
. " sub $0x1,%eax

Problem | MoV %eax,0x8049780

— Can’t anticipate every possible way
we want atomicity

— Increases hardware complexity,
slows down other instructions

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Layered approach to synchronization

 Hardware provides simple low-level atomic
operations, upon which we can build high-level,
synchronization primitives, upon which we can
implement critical sections and build correct multi-

threaded/multi-process programs

Properly synchronized application

High-level synchronization
primitives

Hardware-provided low-level
atomic operations

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example synchronization primitives

* Low-level atomic operations
— On uniprocessor, disable/enable interrupt
— On x86, aligned load and store of words

— Special instructions:
e test-and-set (TSL), compare-and-swap (XCHG)

* High-level synchronization primitives
— Lock
— Semaphore
— Monitor

« We'll look at them all later. In the next class...
— Look at how Linux handles processes, threads, context switches

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

