Systems Calls and IPC

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Address Space Overview

Kernel Address Space

max max max
stack stack stack

! ! !

heap heap heap
data data data
text text text
0 0 0
Process A Process B Process C

* Processes can’t access anything outside address space
 How do they communicate with outside world?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System Calls

Signals

Co-operating Processes

Shared Memory

Message based IPC

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System calls

e User processes cannot perform privileged
operations themselves

* Must request OS to do so on their behalf by
issuing system calls

e Basic concepts (today), more details on
how done on Linux (later)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System Calls

* Programming interface to the services provided by the OS
* Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

 E.g., Win32 API for Windows and POSIX API (UNIX, Linux,
and Mac OS X)

 Why use APIs rather than system calls?
— Exact mechanism to invoke varies for different hardware
— Changes with type (e.g., x86 moved from int to sysenter)
— Backward compatibility
— Portability

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard AP, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read
on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size_t count)
| | |] 1 |
return function parameters
value name

A program that uses the read () function must include theunistd.h header
file, as this file defines the ssize -t and size-t data types (among other
things). The parameters passed to read () are as follows:
¢ int fd—the file descriptor to be read
¢ void *buf—a buffer where the data will be read into
¢ size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Library vs. System Calls

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
2 Implementation
i » of open ()
. system call
return

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Library vs. System Calls

e Cprogram invoking printf() libc library call, which

calls write() system call

#include <stdio.h>
int main ()

printf ("Greetings"”); |-

return O;
}

user
mode

standard C library
kernel
mode

write ()

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

write ()
system call

Types of System Calls

* Process control
— end, abort
— load, execute
— create process, terminate process
— get process attributes, set process attributes
— wait for time
— wait event, signal event
— allocate and free memory

— Dump memory if error
— Debugger for determining bugs, single step execution

— Locks for managing access to shared data between
processes

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Types of System Calls

* File management
— create file, delete file
— open, close file
— read, write, reposition
— get and set file attributes

* Device management
— request device, release device
— read, write, reposition
— get device attributes, set device attributes
— logically attach or detach devices

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Types of System Calls (Cont.)

* |Information maintenance
— get time or date, set time or date
— get system data, set system data
— get and set process, file, or device attributes

e Communications
— create, delete communication connection

— send, receive messages if message passing model to host
name or process hame

— Shared-memory model create and gain access to memory
regions

— transfer status information
— attach and detach remote devices

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Types of System Calls (Cont.)

* Protection
— Control access to resources
— Get and set permissions
— Allow and deny user access

See “man syscalls” on any Linux system

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Examples of Windows and Unix System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () 1octl ()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe)
CreateFileMapping() shmget ()
MapViewOfFile () mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() wumask()
SetSecurityDescriptorGroup() chown()

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System Call Dispatch

* How should actual system call be invoked?
— Program can’t see kernel namespace

user process

user mogie
user process executing » calls system call return from system call (mode bit = 1)
4 7
LY r 4
y 7
K | trap return
e mode bit = 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

 Need hardware support to change privilege level

* Traps
— Type of interrupt

— Software interrupts and exceptions
— Software interrupts initiated by programmer
— Exceptions occur automatically

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Traps, Interrupts, Exceptions

for(;;) {
if (interrupt) {
n = get interrupt number
call interrupt handler n
}
fetch next instruction
run next instruction

_

=

for(;;) {
fetch next instruction
run next instruction {
if (instr == "“int n”)
call interrupt handler n
}

if (error or interrupt) {
n = get error or interrupt type
call interrupt handler n

}

* Onx86, int n (n=0:255) calls interrupts n
 Some interrupts are privileged

 Can’tbe called by user mode
e Others aren’t, e.g., syscalls

* Processor transitions to privileged mode when handling interrupt

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

x86 Hardware Exceptions

* Intel Reserved first 32 interrupts for exceptions.
* OS can use others: Linux used 0x80 for syscalls

* 0x00 Division by zero * 0Ox0B Segment not present

* 0x01 Debugger e 0xO0C Stack Fault

* 0x03 Breakpoint * 0xO0D General protection fault
 0x04 Overflow * OxOE Page fault

e 0x05 Bounds * 0x10 Math Fault

e 0x06 Invalid Opcode e 0x11 Alignment Check

* 0x07 Coprocessor not available * 0x12 Machine Check

* 0x08 Double fault 0x13 SIMD Floating-Point Exception

* OxOA Invalid Task State Segment

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System call dispatch

1.

Kernel assigns system call type a system call number

Kernel initializes system call table, mapping system call number
to functions implementing the system call

— Also called system call vector

User process sets up system call number and arguments
User process runs int X (on Linux, X=80h)

Hardware switches to kernel mode and invokes kernel’s
interrupt handler for X (interrupt dispatch)

Kernel looks up syscall table using system call number
Kernel invokes the corresponding function
Kernel returns by running iret (interrupt return)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux System Call Dispatch

write(fd, buf, sz)

movl __ NR_write, %eax

' int Ox80
User mode et //lbe

User program

kernel mpode

system_call() {

0x80 * system_call

sys_write(...) {
// do real work

IDT sys_call_table[%eax]()
/ }// arch/x86/kernel/entry_32:

sys_call_
table

Sys_write

/

}// fs/read_write.c

To find code for a Linux syscall: http://syscalls.kernelgrok.com

/arch/x86/kernel/
syscall _table 32.S

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System call parameter passing

* Typical methods

— Pass via registers (e.g., Linux)
 More parameters than registers?

— Pass via user-mode stack
 Complex: user mode and kernel mode stacks

— Pass via designated memory region
* Address passed in register

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Parameter Passing via Table

—> X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 — » call 13

user program

operating system

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux System Call Parameter Passing

* Syscalls with less than 6 parameters passed in registers
— %eax (syscall number), %ebx, %ecx, %esi, %edi, %ebp

* |f more than 6 arguments
— Pass pointer to block structure containing argument list

 Maximum size of argument is register size
— Larger arguments passed as pointers

— Stub code copies parameters onto kernel stack before calling
syscall code (kernel stack, will study later)

* Use special routines to fetch pointer arguments
— get_user(), put_user(), copy_to _user(), copy from user
— Include/asm/uaccess.S

— These functions can block. Why?
— Why use these functions?

OS must validate system call parameters

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux system call naming convention

e Usually the user-mode wrapper foo() traps into kernel,
which calls sys foo()

— sys_foo is implemented by DEFINEx(foo, ...)

— Expands to “asmlinkage long sys_foo(void)”

— Where x specifies the number of parameters to syscall
— Often wrappers to foo() in kernel

e System call number for foo() is _ NR_foo
— arch/x86/include/asm/unistd_32.h

— Architecture specific

e All system calls begin with sys

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System Call from Userspace

* Generic syscall stub provided in libc
— syscalln
— Where n is the number of parameters

* Example

— To implement: ssize t write(int fd, const void
*buf, size_t count);

— Declare:
#tdefine _ NR_write 4 /* Syscall number */
_syscall3(ssize t, write, int, fd, const void*, buf,
size_t count)

e Usually done in libc for standard syscalls

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Tracing system calls in Linux

e Use the “strace” command (man strace for info)

* Linux has a powerful mechanism for tracing system call
execution for a compiled application

* OQutputis printed for each system call as it is executed,
including parameters and return codes

* ptrace() system call is used to implement strace
— Also used by debuggers (breakpoint, singlestep, etc)

* Use the “ltrace” command to trace dynamically loaded library
calls

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

System Call Tracing Demo

ssh clic-lab.cs.columbia.edu

pwd

ltrace pwd
— Library calls
— setlocale, getcwd, puts: makes sense

strace pwd
— System calls

— execve, open, fstat, mmap, brk: what are these?
— getcwd, write

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Interesting System Calls

* brk, sbrk: increase size of program data
— void* sbrk(int bytes)
— Accessed through malloc

* mmap
— Another way to allocate memory

— Maps a file into a process’s address space
— More a bit later

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Signals

Co-operating Processes

Shared Memory

Message based IPC

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Kernel to Process Notification

 Hardware exceptions
— Those that kernel can’t handle

— E.g., divide by O
 Timer callbacks

— What does user want to do?

e Process termination
— Run cleanup code

* How to notify?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

UNIX Signals

* Signals
— A very short message: just a small integer

— A fixed set of available signals. Examples:
e 9: kill
e 11: segmentation fault

* |nstalling a handler for a signal
— sighandler_t signal(int signum, sighandler_t handler);

* Blocking signals
— sigprocmask(SIGBLOCK, sigset_t *set, sigset_t *oldset);

* Send a signal to a process
— kill(pid_t pid, int sig)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

POSIX Signals

* What kinds of signals? Examples defined by POSIX
* Process Control

— SIGINT: Ctrl+C, default: terminate process

— SIGTSTP: Ctrl+Z, default: suspend process

— SIGCONT: resume process stopped with SIGSTP

— SIGQUIT: Ctrl+\, default: terminate and dump core

— SIGKILL: kill process (cannot be caught or ignored)
* Exceptions or Errors

— SIGSEGV: segmentation fault

— SIGFPE: arithmetic exception (div by zero)

— SIGPIPE: notify when writing to reader closed pipe

— SIGILL: illegal instruction

— SIGSYS: illegal syscall parameters
e External events

— SIGALRM: timer set by alarm function

— SIGCHLD: child process terminated or stopped

— SIGUSR1, SIGUSR2: user defined (can be raised by kill)

— SIGPOLL: asynchronous I/O event that user was waiting for has happened
— SIGURG: socket has urgent out of band data available to read

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Synchronous vs. Asynchronous

* When is a signal delivered?

e Synchronous signals
— Raised in response to a process’s own activities
— E.g., error or exception (SIGSEGV, SIGFPE)

— Process is not allowed to continue until signal is
handled

* Asynchronous signals
— Raised due to external events
— Can occur at any time
— No guarantees on when they are delivered

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Signal Delivery

e Signal generation mask

e Signal delivery mask

e Scheduler checks before returning control

* Pending signals continue to be expressed until handled

pending blocked
signal mask signal mask
0 0
0 1
> N > N

> B > i - e
0 1

— . =
signal signal
generation delivery

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Signal Handler Gotchas

Closest thing in userspace to interrupts
Similar issues (we’ll see more later)
Asynchronous: can happen anytime

Can be nested (even signals of the same type)
— New signal during signal handler routine
— Can’t use non re-entrant functions

Can interrupt system call in progress
Race conditions

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Co-operating Processes

* Shared Memory

 Message based IPC

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Cooperating Processes

* Independent process cannot affect or be
affected by the execution of another process.

* Cooperating process can affect or be affected
by the execution of another process

* Advantages of process cooperation
— Information sharing
— Computation speed-up
— Modularity/Convenience
— System services (microkernels)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Interprocess Communication Models

Message Passing Shared Memory

process A M process A
L
shared
2
process B M process B j
2 1
kernel M | kernel

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Message Passing vs. Shared Memory

* Message passing

— Why good? All sharing is explicit = less chance for
error

— Why bad? Overhead. Data copying, cross protection
domains

 Shared Memory

— Why good? Performance. Set up shared memory
once, then access w/o crossing protection domains

— Why bad? Things change behind your back =» error
prone

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Shared Memory

 Message based IPC

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

IPC Example: UNIX Shared Memory

int shmget(key _t key, size_t size, int shmflg);
— Create a shared memory segment; returns ID of segment
— key: unique key of a shared memory segment, or IPC_PRIVATE

int shmat(int shmid, const void *addr, int flg)

— Attach shared memory segment to address space of the calling
process

— shmid: id returned by shmget()

int shmdt(const void *shmaddr);
— Detach from shared memory

Problem: synchronization! (later)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Implementing Shared Memory

* Need OS support
* Kernel maps same physical page to different address

spaces
4 I
Physical
Address
a
b
C
Process 2
d
b \
G FREE
File cache
_ VMM Subsystem (page tables) .

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

mmap Shared Memory

* mmap: map file to a processes address space

— void *mmap(void *addr, size_t length, int prot, int
flags, int fd, off t offset);

— “Magic memory”
— Can share maps between processes

— Any changes by one process are immediately
reflected to other processes that have mapped

e Can create dnonymous maps
— Similar to UNIX shared memory

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

 Message based IPC

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Message Passing

e Explicit communication without resorting to shared variables

 Two basic operations:
— send(message) — message size fixed or variable
— receive(message)

* Processes wishing to communicate
— establish a communication link between them
— exchange messages via send/receive

* Implementation
— physical (e.g., shared memory, hardware bus)

— logical (e.g., direct or indirect, synchronous or asynchronous,
automatic or explicit buffering)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Implementing Message Passing

* Data copied by kernel
 Kernel involved at every operation (unliked shared memory)

Process 1

pipe(int fd[2]) —] Process 2

write(fd, buf, sz) \ read(fd, buf, sz) }‘\ User mode
\ kernel mode

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Implementation Questions

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Direct Communication

* Processes must name each other explicitly:
— send (P, message) — send a message to process P
— receive(Q, message) — receive message from process Q

* Properties of communication link
— Links are established automatically

— A link is associated with exactly one pair of
communicating processes

— Between each pair there exists exactly one link

— The link may be unidirectional, but is usually bi-
directional

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Indirect Communication

 Messages are directed and received from mailboxes (ports)
— Each mailbox has a unique id
— Processes can communicate only if they share a mailbox

* Properties of communication link
— Link established only if processes share a common mailbox
— A link may be associated with many processes
— Each pair of processes may share several communication links
— Link may be unidirectional or bi-directional

* Operations
— create a new mailbox
— send(A, msg), receive(A, msg) —message to/from mailbox A
— send and receive messages through mailbox
— destroy a mailbox

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Indirect Communication

* Mailbox sharing
— P, P,, and P; share mailbox A
— P,, sends; P, and P, receive
— Who gets the message?

e Solutions

— Allow a link to be associated with at most two
processes

— Allow only one process at a time to execute a receive
operation

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Synchronization

Message passing may be either blocking or non-
blocking

Blocking is considered synchronous

— Blocking send: sender blocks until the message is
received

— Blocking receive: receiver blocks until a message is
available

Non-blocking is considered asynchronous
— Sender, receiver return immediately
— Sender may block if buffer full

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

 Queue of messages attached to the link;
implemented in one of three ways

1.Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2.Bounded capacity — finite length of n
messages
Sender must wait if link full

3.Unbounded capacity — infinite length
Sender never waits

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Ordinary Pipes

* Allow communication in standard producer-consumer style
* Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)
* Ordinary pipes are therefore unidirectional
* Require parent-child relationship

parent child
fd(0) fd(1) fd(0) fd(1)

| |

* Windows calls these anonymous pipes

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Code example: UNIX pipe

* int pipe(int fds[2])
— Creates a one way communication channel
— fds[2] holds the returned two file descriptors
— Bytes written to fds[1] will be read from fds[0]

int pipefd[2];
pipe(pipefd);
switch(pid=fork()) {
case -1: perror("fork"); exit(1);
case 0: close(pipefd[0]);
// write to fd 1
break;
default: close(pipefd[1]);
// read from fd O
break;

}

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Named Pipes

* Named Pipes are more powerful than ordinary
pipes

e Communication is bidirectional

* No parent-child relationship is necessary
between the communicating processes

* Several processes can use the named pipe for
communication

* Provided on both UNIX and Windows systems

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Using Named Pipes

* int mkfifo(const char* path, mode t mode)
— Creates a hamed pipe
— Can read or write to it like a regular file
— Seen as a file in the filesystem (Is, etc.)
— Support multiple writers
— Support multiple readers, but first to read gets the data

e Command line
$ mkfifo my_pipe
$ gzip -9 -c < my_pipe > out.gz &
$ cat file > my_pipe
$ 1s -all my_pipe

——————— 1 krj research 0 Feb 3 22:08 my_pipe

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

File-based IPC

Everything as files
— Core UNIX philosophy

Normal Files

— Persistent storage across reboots

Devices (/dev/hda0)

— Allow device |I/O through reads and writes

Named Pipes

— |PC

Special filesystems (/proc and /sys)

— Communicate kernel information to userspace programs
— Saw examples in last class (/proc/pid/maps)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Network Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(01671 219.71€HH310)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Network Sockets

« Communication between endpoints on different machines
* Asocket is defined as an endpoint for communication
* <|P address, port>— unique endpoint

e 5-tuple <src IP, src port, dst IP, dst port, protocol> designate
unigue communication channel

 Ports below 1024 are well known, used for standard services

e Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Network (Berkeley) Sockets

* Code example (no error checking)
int sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
server.sin_family = AF_INET;
server.sin_port = 22;
server.sin_addr.s_addr = INADDR_ANY;
bind(sock, (struct sockaddr *) &server, sizeof(server))) ;
listen(sock, 5);
for (;;) {
msgsock = accept(sock, 0, 0);
read(msgsock, buf, 1024);
10. close(msgsock);
11. }
12. close(sock);

Lo N AEWDN R

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

UNIX Domain Sockets

 Same API as network sockets
— Implemented as a local IPC similar to named pipes
— ldentified by pathname

* Code example (no error checking)
int sock = socket(AF_UNIX, SOCK_STREAM, 0);
server.sun_family = AF_UNIX;
strcpy(server.sun_path, “/tmp/my_socket”);
bind(sock, (struct sockaddr *) &server, sizeof(server))) ;
listen(sock, 5);
for (;;) {
msgsock = accept(sock, 0, 0);
read(msgsock, buf, 1024);
close(msgsock);

O NOUL AWNRE

}

close(sock);
unlink(“/tmp/my_socket”);

=
= O

[EEY
™

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Remote Procedure Calls

RPC abstracts procedure calls between processes

— Call, return, Ports for service differentiation

Stubs — client-side proxy for the actual procedure on the server
— The client stub locates server and marshalls the parameters

— The server-side stub receives and unpacks the marshalled
parameters, and performs the procedure on the server

Data representation handled via External Data Representation
— Account for different architectures

— Big-endian and little-endian

Remote communication has more failure scenarios than local
— Deliver exactly once rather than at most once

OS provides a matchmaker service to connect client and server

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RPE

kernel receives
reply, passes
it to user

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Bontae

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client

Port: kernel

<output>

server

matchmaker
receives
message, looks
up answer

h 4

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

y

A
daemon
processes
request and
processes send
output

Android Binder

Based on BeOS OpenBinder
— Implemented as an I/O “device” (/dev/binder)

Using from user-space
— Called through Binder library from Java code
— Apps write method definitions in AIDL
— Automatically generate stubs for un/marshaling

Tracking object lifetimes

— Prevent remote objects from being deleted while being used by
another process

Naming service
— Context manager (binder with id 0)
— Implemented by servicemanager process

More details

 http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
Binder|lPCMechanism.html

 http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Android Binder Operation

/__-————-1) register service with a context

-~
Client Process 0) get se/rvice Service Process 2)
from a context aService.foo(someBar).) GRS & Sesvioe
Vi e T)\‘~~ ‘/ \
([ciet J« | senvicelmpl Main
/ return someResult- -~~~
1) invoke aService.foo(someBar) 9) invoke this.foo(someBar) 12 rl?it:smlt
defined by AIDL defined by AIDL e
17) return someResult 8) unmarshal someBar
16) unmarshal someResult from dataParcel
from replyParcel -4) start a pool of
/ threads
each waiting for
Service.Stub.Proxy Service.Stub binder requgsts

-

2) marshal someBar to dataParcel) 11) marshal
3) transact(aService, 15) update the 7) handle transaction someResult
TRANSACTION_foo, reply parcel onTransact(TRANSACTION_foo, o replyParcel

dataParcel, replyParcel, ...) / dataParcel, replyParcel, ...) 12) return

o

-3) wait for binder driver to respond via blocking ioctl
6) get the binder object corresponding to the transaction

4) submit transaction/data via a blocking ioctl call 5) wake up from a blocking ioctl call
14) wake up from a blocking ioctl call and and get the transaction data
get transact'ion reply data 13) submit repIyI;’aroeI via a ioctl
1 L
Kernel -
/dev/binder

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Android Binder Message Flow

Source:http://lukejin.wordpress.com

process A service manager Binder kernel Service B
open binder driver s

open binder driver & record précess A > < record Service U '
add service

transfer data suspend Service B

& wakeup .

register service B :

reply E

pl . :

wake up Service B

reply with status

¢t Service B
£ >

suspend process A

< :
et service B .
< £ :
reply with result .
wakeup process A
d .
reply with Service B IBigder objin kernel :
B - '
' N .
' .
transact >’ : >
' aftdr connected with servide B ¢ :
reply ' ' .
< ‘ -+]
' ' .
L A ot .
binder_loop Thread pool

Client and Service connection flow

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Mixer

* Find your groupmates!

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

