Processes and Address Spaces

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Processes
* Address spaces
e Mechanisms

* Process lifecycle

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Multiprogramming

* OSrequirements for multiprogramming
— Scheduling: what to run? (later)
— Dispatching: how to switch? (today)

— Memory protection: how to protect from one
another? (today + later)

* Separation of policy and mechanism
— Recurring theme in OS

— Policy: decision making with some performance
metric and workload (scheduling)

— Mechanism: low-level code to implement decisions
(dispatching, protection)

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

What is a process

* Process: an execution stream in the context of a
particular process state

— “Program in execution” “virtual CPU”

 Execution stream: a stream of instructions

* Process state: determines effect of running code

— Registers: general purpose, instruction pointer
(program counter), floating point, ...

— Memory: everything a process can address, code,
data, stack, heap, ...

— 1/0 status: file descriptor table, ...

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Program v.s. process

* Program != process
— Program: static code + static data
— Process: dynamic instantiation of code + data + more

* Program < process: no 1:1 mapping
— Process > program: more than code and data
— Program > process: one program runs many processes

— Process > program: one process can run multiple
programs (exec)

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Why use processes?

* EXpress concurrency

— Systems have many concurrent jobs going on
* E.g. Multiple users running multiple shells, 1/0, ...

— OS must manage

* General principle of divide and conquer

— Decompose a large problem into smaller ones =»
easier to think of well contained smaller problems

* |solated from each other
— Sequential with well defined interactions

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example: The Chrome Browser

 Multiple processes, one for each plugin, webpage
* If one webpage unresponsive, doesn’t crash browser

VO thread. o e , NOIUCEEd. e cccncnncncnacncnccaiccccccicacsacacacsnnacann :
Browser
& Googe i ;
& C)ise com . B A é Bl : RenderProcessHost RenderViewHost
Web Images News Shopping Gmail more v iGoogle | Sign in ; '
§ RenderViewHost
O O e E Fiter Channel RenderProcessHost !
= = RenderViewHost
........ i'"""é""""" e SO, ———rrrrrrrre]
[: E E Mainthread_________ Renderthread . _______________________.
EB'II!BSSS : -
| Google Search || I'm Feeling Lucky | Lanauage Tools = = rc : Render\View
= o] RenderProcess
New! Download Chroma (BETA) - the new browser from Google E -
- |
E ResourceDispatcher -(WebKit)
Adverising Programs - Businass Solutions - About Google H _B?_'!S’_?_r_e_[__
- Mar thread, Rerm.ibnead ___________________________ :
-' IPC ! '
'IIIIIIIIIIIIIIIIIIIIII* RenderProcess 0 : RenderView
ResourceDispatcher —(WebKit)
Renderer

...

Source: http://www.chromium.org/developers/design-documents/multi-process-architecture

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

* Address spaces
* Mechanisms

* Process lifecycle

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

How to assign memory to processes?

1/30/13

Uniprogramming: one process at a time
Eg., early main frame systems, MSDOS

Good: simple

Bad: poor resource utilization, inconvenient for users

Application can overwrite OS

free memory

command
interpreter

kernel

()

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

free memory

process

command
interpreter

kernel

(b)

Supporting Multiprogramming

 Want Multiprogramming: multiple processes, when one
waits, switch to another

— Can’t have one process overwriting other’s memory. What to do?

MEMTOP

i I

OS

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Supporting Multiprogramming (2)

e Solution 1: enforce in programming language
— The “Java” approach
— No pointers, runtime array bounds checks
— Compiler can statically optimize many checks
— Forces programmers to write in high level language

Solution 2: runtime checks on every memory access
— Solves security problem. Expensive, but hardware support can help.
— Memory addresses change every time program is loaded
— Can’t move program once its loaded (to compact space)
* Solution 3: add a level of indirection!
— Each memory address is really a pointer
— Table maps “virtual” memory address to “physical” or real address
— Hardware usually provides support to speed up (more later)

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Address Space

* Address Space (AS): all memory a process can address

— Really large memory to use
— Linear array of bytes: [0, N), N roughly 2732, 2764

* Process <> address space: 1:1 mapping

* Address space = protection domain
— OS isolates address spaces
— One process can’t even see another’s address space

— Same pointer address in different processes point to
different memory

— Can change mapping dynamically

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

1/30/13

x86 PC Physical Memory Layout

OXFFFFFFFF 4GB

3GB

Accessible RAM
Memory (nearly 3GB,
not to scale)

OXFFFFF 1MB
960 KB

896 KB

768 KB

640 KB

Accessible RAM
Memory (640KB is
enough for anyone -
old DOS area)

Specific to each platform
Different across architectures

Different for machines with
the same processor

Firmware knows exact layout

Passes to kernel at boot time
(in Linux through atag_ mem
structures)

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Address Space Layout

 Same address layout for all processe

OXFFFFFFFF 4GB

3GB

Accessible RAM
Memory (nearly 3GB,
not to scale)

OxFFFFF 1MB
960 KB

896 KB

768 KB
640 KB
Accessible RAM
Memory (640KB is
enough for anyone -
old DOS area)

3GB <<

0xc0000000 == TASK_SIZE
} Random stack offset

Stack (grows down)

}RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

U brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

0x08048000

2]

0 0
Read: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

1/30/13

COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Address space illustration

max max
stack stack

! 1

heap heap
data data
text text
0 0
Process A Process B

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process Switching

* Process switch? Just change memory map!
— Therefore, also called context switch
— All CPUs with memory management unit (MMU)
— Special register points to active map
— On x86, cr3 register (is this privileged?)

_ Process _ Process _

Switch Switch

A A

| |)
User Mode Space) User Mode Space User Mode Space
(Firefox) (/bin/1s) (Firefox)

Source: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Linux Address Space Demo

e ssh =Y clic-lab.cs.columbia.edu

* The /proc and /sys filesystems

— Another abstraction: live data structure as a file
e [sys/firmware/memmap

— Raw physical memory regions reported by BIOS
» /proc/iomem (/proc/ioports while at it)

— Additional information filled in by OS drivers
e /proc/<own_process_pid>/

— cmdline: name of program

— maps: address space

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

e Mechanisms

* Process lifecycle

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process management

* Process control block (PCB)
— Process state (new, ready, running, waiting, finish ...)
— CPU registers (e.g., %eip, %eax)
— Scheduling information
— Memory-management information
— Accounting information program counter
— |/0 status information

process state
process number

. registers
e OS often puts PCBs on various queues
— Queue of all processes memory limits
— Ready queue list of open files
— Wait queue

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process Scheduling Queues

5 ready queue CPU g
I/O queue *=—— /O request [« ——
time slice P
expired

child fork a
executes child

interrupt waitforan |
occurs interrupt

* Process can be in one of many states: new, ready, waiting,
running, terminated

» Scheduler only looks at ready queue (policy: later)
e |/O interrupts move processes from waiting to ready queues

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process dispatching mechanism

OS dispatching loop:
while(1) { /QI: how to gain control?

run process for a while;

save process state;

next process = schedule (ready processes);
load next process state;

Q2: how to switch context?

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Q1: How does Dispatcher gain control?

e Must switch from user mode to kernel mode

* Cooperative multitasking: processes voluntarily
vield control back to OS

— When: system calls that relinquish CPU
— OS trusts user processes!

* True multitasking: OS preempts processes by
periodic alarms
— Processes are assigned time slices
— Counts timer interrupts before context switch

— OS trusts no one!

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Q2: how to switch context?

* Implementation: machine dependent

* Tricky: OS must save state w/o changing state!
* Need to save all registers to PCB in memory
* Run code to save registers? Code changes registers

* Solution: software + hardware

® P e rf O r m a n Ce ? process P, operating system process P,

interrupt or system call

— Can take long. Save and restore many excuing ||

things. The time needed is hardware) SRR
dependent e
— Context switch time is pure overhead: s e
the system does no useful work while ridleinterruptor system call hexecuting
SWitChing | save state into PCB, |
— Must balance context switch frequency X dle
with scheduling requirement Fefoad state rom PCB

executing I\

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Example: Linux Context Switch

Contains both arch dependent and independent pieces
* Arch independent code in kernel/sched.c, context_switch()

* Arch dependent in include/asm/system.h and arch/x86/ P1 P2
kernel/process_32.cin switch _to macro / /
1. Save P1’s user-mode CPU context and switch from user
to kernel mode (need hw)
2. Scheduler selects another process P2 user
3. Switch to P2’s address space (need hw, but kernel kernel
memory stays same)
4. Save P1’s kernel CPU context (arch dependent)
5. Switch to P2’s kernel CPU context (arch dependent) ©
6. Switch from kernel to user mode and load P2’s user- ?D'
mode CPU context (need hw) =
* Change context by changing kernel stack ;T

 When stack changes, all local variables change, including the
identity of the previous and next PCB!

* Solution: maintain across process switch by storing in registers
Reference: Bovet and Cesati, Ch. 3.3

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Outline

* Process lifecycle

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process creation

e Option 1: cloning (e.g., Unix fork(), exec())
— Pause current process and save its state
— Copy its PCB (can select what to copy)
— Add new PCB to ready queue
— Must distinguish parent and child

e Option 2: from scratch (Win32 CreateProcess)
— Load code and data into memory

— Create and initialize PCB (make it like saved from
context switch)

— Add new PCB to ready queue

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

A Process Tree

init
pid = 1

kthreadd
pid = 2

login
pid = 8415

bash
pid = 8416

pPs emacs) dtc-sc;h(.)OS
pid = 9298 pid = 9204 pid =

* On Linux: ps axjf to see process tree

sshd
pid = 3028

sshd
pid = 3610

pdflush
pid = 200

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Distinguished Processes

* The UNIX init process: /sbin/init
— First and only user process instantiated by the kernel
— Kernel forks init and goes idle

— Responsible for forking all other processes
* login screen, window manager

— Can be configured to start different things
* Read scripts in /etc/init.d on Linux
 The Android zygote process
— Parent of all managed (Java) applications
— Preloaded version of Dalvik runtime, libraries
— fork() makes new application loading very efficient
— Less memory, faster app start

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

Process termination

 Normal: exit(int status)

— OS passes exit status to parent via wait(int
*status)

— OS frees process resources

 Abnormal: kill(pid t pid, int sig)
— OS can kill process
— Process can kill process

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

/ombies and orphans

 What if child exits before parent?

— Child becomes zombie
o NEEd to store exit status
e OS can’t fully free

— Parent must call wait() to reap child

 What if parent exits before child?

— Child becomes orphan

* Need some process to query exit status and maintain
process tree

— Re-parent to the first process, the init process

1/30/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.

